705
Views
2
CrossRef citations to date
0
Altmetric
Review

Carotenoids in Cereals and Related Foodstuffs: A Review of Extraction and Analysis Methods

, ORCID Icon &

References

  • Carpentier, S.; Knaus, M.; Suh, M. Associations between Lutein, Zeaxanthin, and Age-related Macular Degeneration: An Overview. Crit. Rev. Food Sci. 2009, 49(4), 313–326. DOI: 10.1080/10408390802066979.
  • Nishino, H.; Murakoshi, M.; Tokuda, H.; Satomi, Y. Cancer Prevention by Carotenoids. Arch. Biochem. Biophys. 2009, 483(2), 165–168. DOI: 10.1016/j.abb.2008.09.011.
  • Saini, R. K.; Keum, Y. S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. DOI: 10.1016/j.foodchem.2017.07.099.
  • Namitha, K. K.; Negi, P. S. Chemistry and Biotechnology of Carotenoids. Crit. Rev. Food Sci. 2010, 50(8), 728–760. DOI: 10.1080/10408398.2010.499811.
  • Paznocht, L.; Kotikova, Z.; Sulc, M.; Lachman, J.; Orsak, M.; Eliasova, M.; Martinek, P. Free and Esterified Carotenoids in Pigmented Wheat, Tritordeum and Barley Grains. Food Chem. 2017, 240, 670–678. DOI: 10.1016/j.foodchem.2017.07.151.
  • Pixle, K.; Palacios, N.; Babu, R.; Mutale, R.; Simpungwe, E. Biofortification of Maize with Provitamin A Carotenoids. In Carotenoids and Human Health; Tanumihardjo, S.A., Ed.; Humana Press Inc: Totowa, NJ, USA, 2013; pp 271–292. DOI: 10.1007/978-1-62703-203-2_17.
  • Zhu, C. F.; Naqvi, S.; Breitenbach, J.; Sandmann, G.; Christou, P.; Capell, T. Combinatorial Genetic Transformation Generates a Library of Metabolic Phenotypes for the Carotenoid Pathway in Maize. Proc. Natl. Acad. Sci. U.S.A. 2008, 105(47), 18232–18237. DOI: 10.1073/pnas.0809737105.
  • McKevith, B. Nutricional Aspects of Cereals. Nutr. Bull. 2004, 29(2), 111–142. DOI: 10.1111/j.1467-3010.2004.00418.x.
  • Abdel-Aal, E. S. M.; Young, J. C.; Rabalski, I.; Hucl, P.; Fregeau-Reied, J. Identification and Quantification of Seed Carotenoids in Selected Wheat Species. J. Agr. Food Chem. 2007, 55(3), 787–794. DOI: 10.1021/jf062764p.
  • Shewry, P. R.; Hey, S. Do “Ancient” Wheat Species Differ from Modern Bread Wheat in Their Contents of Bioactive Components? J. Cereal Sci. 2015, 65, 236–243. DOI: 10.1016/j.jcs.2015.07.014.
  • Paznocht, L.; Kotikova, Z.; Orsak, M.; Lachman, J.; Martinek, P. Carotenoid Changes of Colored-grain Wheat Flours during Bun-making. Food Chem. 2019, 277, 725–734. DOI: 10.1016/j.foodchem.2018.11.019.
  • Konopka, I.; Czaplicki, S.; Rotkiewicz, D. Differences in Content and Composition of Free Lipids and Carotenoids in Flour of Spring and Winter Wheat Cultivated in Poland. Food Chem. 2006, 95(2), 290–300. DOI: 10.1016/j.foodchem.2005.01.011.
  • Bauernfeind, J. C. Carotenoids as Colorants and Vitamin A Precursors. Technological and Nutritional Applications; Academic Press, Inc: New York, USA, 1981.
  • Shen, R.; Yang, S. P.; Zhao, G. H.; Shen, Q.; Diao, X. M. Identification of Carotenoids in Foxtail Millet (Setaria Italica) and the Effects of Cooking Methods on Carotenoid Content. J. Cereal Sci. 2015, 61, 86–93. DOI: 10.1016/j.jcs.2014.10.009.
  • Zhang, L. Z.; Liu, R. H. Phenolic and Carotenoid Profiles and Antiproliferative Activity of Foxtail Millet. Food Chem. 2015, 174, 495–501. DOI: 10.1016/j.foodchem.2014.09.089.
  • Ortiz, D.; Rocheford, T. R.; Ferruzzi, M. G. Influence of Temperature and Humidity on the Stability of Carotenoids in Biofortified Maize (Zea Mays L.) Genotypes during Controlled Postharvest Storage. J. Agr. Food Chem. 2016, 64(13), 2727–2736. DOI: 10.1021/acs.jafc.5b05698.
  • Trono, D. Carotenoids in Cereal Food Crops: Composition and Retention Throughout Grain Storage and Food Processing. Plants-Basel. 2019, 8(12), 551. DOI: 10.3390/plants8120551.
  • Kim, J. K.; Lee, S. Y.; Chu, S. M.; Lim, S. H.; Suh, S. C.; Lee, Y. T.; Cho, H. S.; Ha, S. H. Variation and Correlation Analysis of Flavonoids and Carotenoids in Korean Pigmented Rice (Oryza Sativa L.) Cultivars. J. Agr. Food Chem. 2010, 58(24), 12804–12809. DOI: 10.1021/jf103277g.
  • Kean, E. G.; Ejeta, G.; Hamaker, B. R.; Ferruzi, M. G. Characterization of Carotenoid Pigments in Mature and Developing Kernels of Selected Yellow-endosperm Sorghum Varieties. J. Agr. Food Chem. 2007, 55(7), 2619–2626. DOI: 10.1021/jf062939v.
  • Fernandez, M. G. S.; Kapran, L.; Souley, S.; Abdou, M.; Maiga, I. H.; Acharya, C. B.; Hamblin, M. T.; Kresovicah, S. Collection and Characterization of Yellow Endosperm Sorghum from West Africa for Biofortification. Genet. Resour. Crop Evol. 2009, 56(7), 991–1000. DOI: 10.1007/s10722-009-9417-3.
  • Ndolo, V. U.; Beta, T. Distribution of Carotenoids in Endosperm, Germ, and Aleurone Fractions of Cereal Grain Kernels. Food Chem. 2013, 139(1–4), 663–671. DOI: 10.1016/j.foodchem.2013.01.014.
  • Hidalgo, A.; Brandolini, A.; Pompei, C. Carotenoids Evolution during Pasta, Bread and Water Biscuit Preparation from Wheat Flours. Food Chem. 2010, 121(3), 746–751. DOI: 10.1016/j.foodchem.2010.01.034.
  • Lachman, J.; Hejtmankova, K.; Kotikova, Z. Tocols and Carotenoids of Einkorn, Emmer and Spring Wheat Varieties: Selection for Breeding and Production. J. Cereal Sci. 2013, 57(2), 207–214. DOI: 10.1016/j.jcs.2012.05.011.
  • Blanco, A.; Colasuonno, P.; Gadaleta, A.; Mangini, G.; Schiavulli, A.; Simeone, R.; Digesu, A. M.; De Vita, P.; Mastrangelo, A. M.; Cattivelli, L. Quantitative Trait Loci for Yellow Pigment Concentration and Individual Carotenoid Compounds in Durum Wheat. J. Cereal Sci. 2011, 54(2), 255–264. DOI: 10.1016/j.jcs.2011.07.002.
  • Borrelli, G. M.; Troccoli, A.; Di Fonzo, N.; Fares, C. Durum Wheat Lipoxygenase Activity and Other Quality Parameters that Affect Pasta Color. Cereal Chem J. 1999, 76(3), 335–340. DOI: 10.1094/CCHEM.1999.76.3.335.
  • Mamatha, B. S.; Sangeetha, R. K.; Baskaran, V. Provitamin-A and Xanthophyll Carotenoids in Vegetables and Food Grains of Nutritional and Medicinal Importance. Int. J. Food Sci. Technol. 2011, 46(2), 315–323. DOI: 10.1111/j.1365-2621.2010.02481.x.
  • Panfili, G.; Fratianni, A.; Irano, M. Improved Normal-phase High-performance Liquid Chromatography Procedure for the Determination of Carotenoids in Cereals. J. Agr. Food Chem. 2004, 52(21), 6373–6377. DOI: 10.1021/jf0402025.
  • Kean, E. G.; Hamaker, B. R.; Ferruzzi, M. G. Carotenoid Bioaccessibility from Whole Grain and Degermed Maize Meal Products. J. Agr. Food Chem. 2008, 56(21), 9918–9926. DOI: 10.1021/jf8018613.
  • Blessin, C. W.; Brecher, J. D.; Dimler, R. J. Carotenoids of Corn and Sorghum. 5. Distribution of Xanthophylls and Carotenes in Hand-dissected and Dry-milled Fractions of Yellow Dent Corn. Cereal Chem. 1963, 40(5), 582–586.
  • Rivera, S.; Canela, R. Influence of Sample Processing on the Analysis of Carotenoids in Maize. Molecules. 2012, 17(9), 11255–11268. DOI: 10.3390/molecules170911255.
  • Burkhardt, S.; Bohm, V. Development of a New Method for the Complete Extraction of Carotenoids from Cereals with Special Reference to Durum Wheat (Triticum Durum Desf.). J. Agr. Food Chem. 2007, 55(21), 8295–8301. DOI: 10.1021/jf0712853.
  • Li, J. S.; Engelberth, A. S. Quantification and Purification of Lutein and Zeaxanthin Recovered from Distillers Dried Grains with Solubles (DDGS). Bioresour. Bioprocess. 2018, 5. DOI: 10.1186/s40643-018-0219-3.
  • Hiranvarachat, B.; Devahastin, S.; Chiewchan, N.; Raghavan, G. S. V. Structural Modification by Different Pretreatment Methods to Enhance Microwave-assisted Extraction of β-carotene from Carrots. J. Food Eng. 2013, 115, 190–197. DOI: 10.1016/j.jfoodeng.2012.10.012.
  • Gu, J. H.; Xin, Z.; Meng, X.; Sun, S. Z.; Qiao, Q. G.; Deng, H. B. Recovering High Value-added Substances from Corn Distillers Dried Grains with Solubles: A Semi-continuous Countercurrent Downstream Processing Method. J. Chem. Technol. Biotechnol. 2016, 91(5), 1327–1338. DOI: 10.1002/jctb.4726.
  • Kyriakopoulou, K.; Papadaki, S.; Krokida, M. Life Cycle Analysis of Beta-carotene Extraction Techniques. J. Food Eng. 2015, 167, 51–58. DOI: 10.1016/j.jfoodeng.2015.03.008.
  • Milutinovic, M.; Radovanovic, N.; Corovic, M.; Siler-Marinkovic, S.; Rajilic-Stojanovic, M.; Dimitrijevic-Brankovic, S. Optimisation of Microwave-assisted Extraction Parameters for Antioxidants from Waste Achillea Millefolium Dust. Ind. Crop Prod. 2015, 77, 333–341. DOI: 10.1016/j.indcrop.2015.09.007.
  • Ye, J.; Feng, L. L.; Xiong, J.; Xiong, Y. D. Ultrasound‐assisted Extraction of Corn Carotenoids in Ethanol. Int. J. Food Sci. Technol. 2011, 46(10), 2131–2136. DOI: 10.1111/j.1365-2621.2011.02727.x.
  • Grimi, N.; Dubois, A.; Marchal, L.; Jubeau, S.; Lebovka, N. I.; Vorobiev, E. Selective Extraction from Microalgae Nannochloropsis Sp. Using Different Methods of Cell Disruption. Bioresour. Technol. 2014, 153, 254–259. DOI: 10.1016/j.biortech.2013.12.011.
  • Liu, Z. W.; Zeng, X. A.; Ngadi, M. Enhanced Extraction of Phenolic Compounds from Onion by Pulsed Electric Field (PEF). J. Food Process Pres. 2018, 42(9), e13755. DOI: 10.1111/jfpp.13755.
  • Luengo, E.; Alvarez, I.; Raso, J. Improving Carotenoids Extraction from Tomato Waste by Pulsed Electric Fields. Front Nutr. 2014, 1, 1–10. DOI: 10.1016/j.seppur.2014.09.008.
  • Pataro, G.; Carullo, D.; Siddique, M. A. B.; Falcone, M.; Donsi, F.; Ferrari, G. Improved Extractability of Carotenoids from Tomato Peels as Side Benefits of PEF Treatment of Tomato Fruit for More Energy-efficient Steam-assisted Peeling. J. Food Eng. 2018, 233, 65–73. DOI: 10.1016/j.jfoodeng.2018.03.029.
  • Rocha, C. M. R.; Genisheva, Z.; Ferreira-Santos, P.; Rodriguez, R.; Vicente, A. A.; Teixeira, J. A.; Pereira, R. N. Electric Field-based Technologies for Valorization of Bioresources. Bioresour. Technol. 2018, 254, 325–339. DOI: 10.1016/j.biortech.2018.01.068.
  • Ishida, B. K.; Chapman, M. H. Carotenoid Extraction from Plants Using a Novel, Environmentally Friendly Solvent. J. Agric. Food Chem. 2009, 57(3), 1051–1059. DOI: 10.1021/jf8026292.
  • Strati, I. F.; Oreopoulou, V. Effect of Extraction Parameters on the Carotenoid Recovery from Tomato Waste. Int. J. Food Sci. Technol. 2011, 46(1), 23–29. DOI: 10.1111/j.1365-2621.2010.02496.x.
  • Puertolas, E.; Barba, F. J. Electrotechnologies Applied to Valorization of Byproducts from Food Industry: Main Findings, Energy and Economic Cost of Their Industrialization. Food Bioprod. Process. 2016, 100, 172–184. DOI: 10.1016/j.fbp.2016.06.020.
  • Rajha, H. N.; Abi-Khattar, A. M.; El Kantar, S.; Boussetta, N.; Lebovka, N.; Maroun, R. G.; Louka, N.; Vorobiev, E. Comparison of Aqueous Extraction Efficiency and Biological Activities of Polyphenols from Pomegranate Peels Assisted by Infrared, Ultrasound, Pulsed Electric Fields and High-voltage Electrical Discharges. Innov. Food Sci. Emer. 2019, 58, 102212. DOI: 10.1016/j.ifset.2019.102212.
  • Sarkis, J. R.; Boussetta, N.; Tessaro, I. C.; Marczak, L. D. F.; Vorobiev, E. Application of Pulsed Electric Fields and High Voltage Electrical Discharges for Oil Extraction from Sesame Seeds. J. Food Eng. 2015, 153, 20–27. DOI: 10.1016/j.jfoodeng.2014.12.003.
  • Yu, X.; Gouyo, T.; Grimi, N.; Bals, O.; Vorobiev, E. Pulsed Electric Field Pretreatment of Rapeseed Green Biomass (Stems) to Enhance Pressing and Extractives Recovery. Bioresour. Technol. 2016, 199, 194–201. DOI: 10.1016/j.biortech.2015.08.073.
  • Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of Lycopene from Industrially Derived Tomato Processing By-products by Pulsed Electric Fields-assisted Extraction. Innov. Food Sci. Emerg. 2020, 63, 102369. DOI: 10.1016/j.ifset.2020.102369.
  • Hosseini, S. R. P.; Tavakoli, O.; Sarrafzadeh, M. H. Experimental Optimization of SC-CO2 Extraction of Carotenoids from Dunaliella Salina. J. Supercrit. Fluids. 2017, 121, 89–95. DOI: 10.1016/j.supflu.2016.11.006.
  • Macias-Sanchez, M. D.; Fernandez-Sevilla, J. M.; Fernandez, F. G. A.; Garcia, M. C. C.; Grima, E. M. Supercritical Fluid Extraction of Carotenoids from Scenedesmus Almeriensis. Food Chem. 2010, 123(3), 928–935. DOI: 10.1016/j.foodchem.2010.04.076.
  • Lim, G. B.; Lee, S. Y.; Lee, E. K.; Haam, S. J.; Kim, W. S. Separation of Astaxanthin from Red Yeast Phaffia Rhodozyma by Supercritical Carbon Dioxide Extraction. Biochem. Eng. J. 2002, 11(2–3), 181–187. DOI: 10.1016/S1369-703X(02)00023-2.
  • Xie, L. Y.; Cahoon, E.; Zhang, Y.; Ciftci, O. N. Extraction of Astaxanthin from Engineered Camelina Sativa Seed Using Ethanol-modified Supercritical Carbon Dioxide. J. Supercrit. Fluid. 2019, 143, 171–178. DOI: 10.1016/j.supflu.2018.08.013.
  • Cobb, B. F.; Kallenbach, J.; Hall, C. A.; Pryor, S. W. Optimizing the Supercritical Fluid Extraction of Lutein from Corn Gluten Meal. Food Bioprocess. Tech. 2018, 11(4), 757–764. DOI: 10.1007/s11947-017-2052-7.
  • Vallverdu-Queralt, A.; Martinez-Huelamo, M.; Arranz-Martinez, S.; Miralles, E.; Lamuela-Raventos, R. M. Differences in the Carotenoid Content of Ketchups and Gazpachos through HPLC/ESI (Li plus)-MS/MS Correlated with Their Antioxidant Capacity. J. Sci. Food Agr. 2012, 92(10), 2043–2049. DOI: 10.1002/jsfa.5598.
  • Rivera, S.; Vilaro, F.; Canela, R. Determination of Carotenoids by Liquid Chromatography/mass Spectrometry: Effect of Several Dopants. Anal. Bioanal. Chem. 2011, 400(5), 1339–1346. DOI: 10.1007/s00216-011-4825-6.
  • Kurouski, D.; Van Duyne, R. P.; Lednev, I. K. Exploring the Structure and Formation Mechanism of Amyloid Fibrils by Raman Spectroscopy: A Review. Analyst. 2015, 140(15), 4967–4980. DOI: 10.1039/c5an00342c.
  • Hara, R.; Ishigaki, M.; Kitahama, Y.; Ozaki, Y.; Genkawa, T. Excitation Wavelength Selection for Quantitative Analysis of Carotenoids in Tomatoes Using Raman Spectroscopy. Food Chem. 2018, 258, 308–313. DOI: 10.1016/j.foodchem.2018.03.089.
  • Krimmer, M.; Farber, C.; Kurouski, D. Rapid and Noninvasive Typing and Assessment of Nutrient Content of Maize Kernels Using a Handheld Raman Spectrometer. ACS Omega. 2019, 4(15), 16330–16335. DOI: 10.1021/acsomega.9b01661.
  • Carvalho, D. G.; Sebben, J. A.; de Moura, N. F.; Trierweiler, J. O.; Espindola, J. D. Raman Spectroscopy for Monitoring Carotenoids in Processed Bunchosia Glandulifera Pulps. Food Chem. 2019, 294, 565–571. DOI: 10.1016/j.foodchem.2019.04.120.
  • Schulz, H.; Baranska, M.; Baranski, R. Potential of NIR-FT-Raman Spectroscopy in Natural Carotenoid Analysis. Biopolymers. 2010, 77(4), 212–221. DOI: 10.1002/bip.20215.
  • Akpolat, H.; Barineau, M.; Jackson, K. A.; Akpolat, M. Z.; Francis, D. M.; Chen, Y. J.; Rodriguez-Saona, L. E. High-throughput Phenotyping Approach for Screening Major Carotenoids of Tomato by Handheld Raman Spectroscopy Using Chemometric Methods. Sensors. 2020, 20(13), 3723. DOI: 10.3390/s20133723.
  • Li, B.; George, E. W.; Rognon, G. T.; Gorusupudi, A.; Bernstein, P. S. Imaging Lutein and Zeaxanthin in the Human Retina with Confocal Resonance Raman Microscopy. Proc. Natl. Acad. Sci. USA. 2020, 117(22), 201922793. DOI: 10.1073/pnas.1922793117.
  • Ruiz, D.; Reich, M.; Bureau, S.; Renard, C. A. G. C.; Audergon, J. M. Application of Reflectance Colorimeter Measurements and Infrared Spectroscopy Methods to Rapid and Nondestructive Evaluation of Carotenoids Content in Apricot (Prunus Armeniaca L.). J. Agr. Food Chem. 2008, 56(13), 4916–4922. DOI: 10.1021/jf7036032.
  • Negash, G.; Grausgruber, H.; Vollmann, J. Near-infrared Spectroscopy of Yellow Endosperm Pigments in Wheat. Int. J. Agric. For. 2014, 4(6), 446–450. DOI: 10.5923/j.ijaf.20140406.05.
  • Dvoracek, V.; Sterbova, L.; Matejova, E.; Bradova, J.; Hermuth, J. Reflectance Spectrometry as a Screening Tool for Prediction of Lutein Content in Diverse Wheat Species (Triticum Spp.). Food Anal. Method. 2018, 11(9), 2579–2589. DOI: 10.1007/s12161-018-1215-0.
  • Kahrman, F.; Sutal, A.; Topakl, M.; Gezer, O. Prototype Near-infrared (Nir) Reflectance Spectrometer for the Analysis of Maize Flour. Instrum. Sci. Technol. 2021, 49(5), 521–531. DOI: 10.1080/10739149.2021.1890611.
  • Berardo, N.; Brenna, O. V.; Amato, A.; Valoti, P.; Pisacane, V.; Motto, M. Carotenoids Concentration among Maize Genotypes Measured by near Infrared Reflectance Spectroscopy (NIRS). Innov. Food Sci. Emerg. Technol. 2004, 5(3), 393–398. DOI: 10.1016/j.ifset.2004.03.001.
  • Pedro, A. M. K.; Ferreira, M. M. C. Nondestructive Determination of Solids and Carotenoids in Tomato Products by Near-infrared Spectroscopy and Multivariate Calibration. Anal. Chem. 2005, 77(8), 2505–2511. DOI: 10.1021/ac048651r.
  • Chen, X. J.; Wu, J. G.; Zhou, S. J.; Yang, Y. J.; Ni, X.; Yang, J.; Zhu, Z.; Shi, C. Application of Near-infrared Reflectance Spectroscopy to Evaluate the Lutein and Beta-carotene in Chinese Kale. J. Food Compos. Anal. 2009, 22(2), 148–153. DOI: 10.1016/j.jfca.2008.10.007.
  • Humphries, J. M.; Graham, R. D.; Mares, D. J. Application of Reflectance Colour Measurement to the Estimation of Carotene and Lutein Content in Wheat and Triticale. J. Cereal Sci. 2004, 40(2), 151–159. DOI: 10.1016/j.jcs.2004.07.005.
  • Kljak, K.; Grbesa, D.; Karolyi, D. Estimation of Carotenoid Content from Colour Analysis of Corn Grains. Stocarstvo. 2009, 63, 103–111.
  • Lozano-Alejo, N.; Carrillo, G. V.; Pixley, K.; Palacios-Rojas, N. Physical Properties and Carotenoid Content of Maize Kernels and Its Nixtamalized Snacks. Innov. Food Sci. Emerg. 2007, 8(3), 385–389. DOI: 10.1016/j.ifset.2007.03.015.
  • Kljak, K.; Grbesa, D.; Karolyi, D. Reflectance Colorimetry as a Simple Method for Estimating Carotenoid Content in Maize Grain. J. Cereal Sci. 2014, 59(2), 109–111. DOI: 10.1016/j.jcs.2013.12.004.
  • Fratianni, A.; Irano, M.; Panfili, G.; Acquistucci, R. Estimation of Color of Durum Wheat. Comparison of Wsb, Hplc, and Reflectance Colorimeter Measurements. J. Agr. Food Chem. 2005, 53(7), 2373–2378. DOI: 10.1021/jf040351n.
  • Meléndez-Martínez, A. J.; Gomez-Robledo, L.; Melgosa, M.; Vicario, I. M.; Heredia, F. J. Color of Orange Juices in Relation to Their Carotenoid Contents as Assessed from Different Spectroscopic Data. J. Food Compos. Anal. 2011, 24(6), 837–844. DOI: 10.1016/j.jfca.2011.05.001.
  • Moreau, R. A.; Harron, A. F.; Powell, M. J.; Hoyt, J. L. A Comparison of the Levels of Oil, Carotenoids, and Lipolytic Enzyme Activities in Modern Lines and Hybrids of Grain Sorghum. J. Am. Oil Chem. Soc. 2016, 93(4), 569–573. DOI: 10.1007/s11746-016-2799-4.
  • Hossain, A.; Jayadeep, P. A. Comparison of Total Carotenoids, Lutein, Zeaxanthin, and Beta-carotene Content in Maize Employing Solvent Extraction and in Vitro Physiological Methods. J. Food Biochem. 2018, 42(6), e12653. DOI: 10.1111/jfbc.12653.
  • Ortiz, D.; Ferruzzi, M. G. Identification and Quantification of Carotenoids and Tocochromanols in Sorghum Grain by High-performance Liquid Chromatography. Methods Mol. Biol. 2019, 1931, 141–151. DOI: 10.1007/978-1-4939-9039-9_10.
  • Yang, Q. Q.; Liu, X. M.; Wang, B.; Zhang, Q.; Ding, S. L. Optimization of Ultrasonic-assisted Extraction of Tannin from Persimmon Veneer and Their Antioxidation Activity. Fine Chem. 2015, 32(11), 1236–1242.
  • Wang, L. T.; Lu, W. H.; Li, J. L.; Hu, J. X.; Ding, R. F.; Lv, M.; Wang, Q. B. Optimization of Ultrasonic-Assisted Extraction and Purification of Zeaxanthin and Lutein in Corn Gluten Meal. Molecules. 2019, 24(16), 2994. DOI: 10.3390/molecules24162994.
  • Mattera, M. G.; Hornero-Mendez, D.; Atienza, S. G. Carotenoid Content in Tritordeum Is Not Primarily Associated with Esterification during Grain Development. Food Chem. 2019, 310(25), 125847. DOI: 10.1016/j.foodchem.2019.125847.
  • Liu, M. X.; Zhang, Z. W.; Ren, G. X.; Zhang, Q.; Wang, Y. Y.; Lu, P. Evaluation of Selenium and Carotenoid Concentrations of 200 Foxtail Millet Accessions from China and Their Correlations with Agronomic Performance. J. Integr. Agr. 2016, 15(7), 1449–1457. DOI: 10.1016/S2095-3119(15)61160-1.
  • Kim, Y. B.; Kim, J. K.; Uddin, M. R.; Park, C. H.; Kim, H. H.; Chung, E.; Lee, J. H.; Park, S. U. Carotenoid Contents in Different Millets Cultivars Collected from China and Korea. Asian J. Chem. 2014, 26(2), 464–466. DOI: 10.14233/ajchem.2014.15446A.
  • Menkir, A.; Liu, W. P.; White, W. S.; Mazlya-Dixon, B.; Rocheford, T. Carotenoid Diversity in Tropical-adapted Yellow Maize Inbred Lines. Food Chem. 2008, 109(3), 521–529. DOI: 10.1016/j.foodchem.2008.01.002.
  • Song, J. F.; Li, D. J.; He, M. J.; Chen, J. Q.; Liu, C. Q. Comparsion of Carotenoid Composition in Immature and Mature Grains of Corn (Zea Mays L.) Varieties. Int. J. Food Prop. 2016, 19(2), 351–358. DOI: 10.1080/10942912.2015.1031245.
  • Howe, J. A.; Tanumihardjo, S. A. Evaluation of Analytical Methods for Carotenoid Extraction from Biofortified Maize (Zea Mays Sp.). J. Agr. Food Chem. 2006, 54(21), 7992–7997. DOI: 10.1021/jf062256f.
  • Burt, A. J.; Grainger, C. M.; Young, J. C.; Shelp, B. J.; Lee, E. A. Impact of Postharvest Handling on Carotenoid Concentration and Composition in High-carotenoid Maize (Zea Mays L.) Kernels. J. Agr. Food Chem. 2010, 58(14), 8286–8292. DOI: 10.1021/jf100161r.
  • Mellado-Ortega, E.; Hornero-Mendez, D. Effect of Long-term Storage on the Free and Esterified Carotenoids in Durum Wheat (Triticum Turgidum Conv. Durum) and Tritordeum (×tritordeum Ascherson Et Graebner) Grains. Food Res. Int. 2016, 99, 877–890. DOI: 10.1016/j.foodres.2016.05.012.
  • Mellado-Ortega, E.; Hornero-Mendez, D. Lutein Esterification in Wheat Flour Increases the Carotenoid Retention and Is Induced by Storage Temperatures. Foods. 2017, 6(12), 111. DOI: 10.3390/foods6120111.
  • Niro, S.; D’Agostino, A.; Fratianni, A.; Cinquanta, L.; Panfili, G. Gluten-free Alternative Grains: Nutritional Evaluation and Bioactive Compounds. Foods. 2019, 8(6), 208. DOI: 10.3390/foods8060208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.