1,483
Views
10
CrossRef citations to date
0
Altmetric
Review

Bioactive Components and Health Functions of Oat

, , , , , , , , & show all

References

  • Gangopadhyay, N.; Hossain, M. B.; Rai, D. K.; Brunton, N. P. A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies. Molecules. 2015, 20(6), 10884–10909. DOI: 10.3390/molecules200610884.
  • Yan, H.; Zhou, P.; Peng, Y.; Bekele, W. A.; Ren, C.; Tinker, N. A.; Peng, Y. Genetic Diversity and Genome-wide Association Analysis in Chinese Hulless Oat Germplasm. Theor. Appl. Genet. 2020, 133(12), 3365–3380. DOI: 10.1007/s00122-020-03674-1.
  • Admassu-Yimer, B.; Gordon, T.; Harrison, S.; Kianian, S.; Bockelman, H.; Bonman, J. M.; Esvelt Klos, K. New Sources of Adult Plant and Seedling Resistance to Puccinia Coronata F. Sp. Avenae Identified among Avena Sativa Accessions from the National Small Grains Collection. Plant Dis. 2018, 102(11), 2180–2186. DOI: 10.1094/PDIS-04-18-0566-RE.
  • Xu, Z.; Chen, X.; Lu, X.; Zhao, B.; Yang, Y.; Liu, J. Integrative Analysis of Transcriptome and Metabolome Reveal Mechanism of Tolerance to Salt Stress in Oat (Avena Sativa L.). Plant Physiol. Biochem. 2021, 160, 315–328. DOI: 10.1016/j.plaphy.2021.01.027.
  • Żebrowska, E.; Milewska, M.; Ciereszko, I. Mechanisms of Oat (Avena Sativa L.) Acclimation to Phosphate Deficiency. PeerJ. 2017, 1(5), e3989. DOI: 10.7717/peerj.3989.
  • Rasane, P.; Jha, A.; Sabikhi, L.; Kumar, A.; Unnikrishnan, V. S. Nutritional Advantages of Oats and Opportunities for Its Processing as Value Added Foods - a Review. J. Food Sci. Technol. 2015, 52(2), 662–675. DOI: 10.1007/s13197-013-1072-1.
  • Wilde, P. J.; Garcia-Llatas, G.; Lagarda, M. J.; Haslam, R. P.; Grundy, M. M. L. Oat and Lipolysis: Food Matrix Effect. Food Chem. 2019, 278, 683–691. DOI: 10.1016/j.foodchem.2018.11.113.
  • Günther-Jordanland, K.; Dawid, C.; Hofmann, T. Quantitation and Taste Contribution of Sensory Active Molecules in Oat (Avena Sativa L.). J. Agric. Food Chem. 2020, 68(37), 10097–10108. DOI: 10.1021/acs.jafc.0c04022.
  • van den Broeck, H. C.; Londono, D. M.; Timmer, R.; Smulders, M. J.; Gilissen, L. J.; van der Meer, I. M. Profiling of Nutritional and Health-Related Compounds in Oat Varieties. Foods. 2015, 5(1), 2. DOI: 10.3390/foods5010002.
  • Maughan, P. J.; Lee, R.; Walstead, R.; Vickerstaff, R. J.; Fogarty, M. C.; Brouwer, C. R.; Reid, R. R.; Jay, J. J.; Bekele, W. A.; Jackson, E. W., et al. Genomic Insights from the First Chromosome-scale Assemblies of Oat (Avena Spp.) Diploid Species. BMC Biol. 2019, 17(1), 92. DOI: 10.1186/s12915-019-0712-y.
  • Schmitz, E.; Nordberg Karlsson, E.; Adlercreutz, P. Warming Weather Changes the Chemical Composition of Oat Hulls. Plant Biol (Stuttg). 2020, 6(6), 1086–1091. DOI: 10.1111/plb.13171.
  • Li, R.; Xiong, Y. L. Sensitivity of Oat Protein Solubility to Changing Ionic Strength and pH. J. Food Sci. 2021, 86(1), 78–85. DOI: 10.1111/1750-3841.15544.
  • Ren, N.; Ma, Z.; Xu, J.; Hu, X. Insights into the Supramolecular Structure and Techno-functional Properties of Starch Isolated from Oat Rice Kernels Subjected to Different Processing Treatments. Food Chem. 2020, 317, 126464. DOI: 10.1016/j.foodchem.2020.126464.
  • Ekman, A.; Hayden, D. M.; Dehesh, K.; Bülow, L.; Stymne, S. Carbon Partitioning between Oil and Carbohydrates in Developing Oat (Avena Sativa L.) Seeds. J. Exp. Bot. 2008, 59(15), 4247–4257. DOI: 10.1093/jxb/ern266.
  • Ding, J.; Johnson, J.; Chu, Y. F.; Feng, H. Enhancement of γ-aminobutyric Acid, Avenanthramides, and Other Health-promoting Metabolites in Germinating Oats (Avena Sativa L.) Treated with and without Power Ultrasound. Food Chem. 2019, 283, 239–247. DOI: 10.1016/j.foodchem.2018.12.136.
  • de Bruijn, W. J. C.; van Dinteren, S.; Gruppen, H.; Vincken, J. P. Mass Spectrometric Characterisation of Avenanthramides and Enhancing Their Production by Germination of Oat (Avena Sativa). Food Chem. 2019, 277, 682–690. DOI: 10.1016/j.foodchem.2018.11.013.
  • Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Peñas, E. Sprouted Oat as a Potential Gluten-free Ingredient with Enhanced Nutritional and Bioactive Properties. Food Chem. 2021, 338, 127972. DOI: 10.1016/j.foodchem.2020.127972.
  • Kennedy, D. O.; Bonnländer, B.; Lang, S. C.; Pischel, I.; Forster, J.; Khan, J.; Jackson, P. A.; Wightman, E. L. Acute and Chronic Effects of Green Oat (Avena Sativa) Extract on Cognitive Function and Mood during A Laboratory Stressor in Healthy Adults: A Randomised, Double-Blind, Placebo-Controlled Study in Healthy Humans. Nutrients. 2020 29, 12(6), 1598. DOI:10.3390/nu12061598.
  • Daou, C.; Zhang, H. Oat Beta-Glucan: Its Role in Health Promotion and Prevention of Diseases. Compr. Rev. Food Sci. F. 2012, 11(4), 355–365. DOI: 10.1111/j.1541-4337.2012.00189.x.
  • Martín-Diana, A. B.; García-Casas, M. J.; Martínez-Villaluenga, C.; Frías, J.; Peñas, E.; Rico, D. Wheat and Oat Brans as Sources of Polyphenol Compounds for Development of Antioxidant Nutraceutical Ingredients. Foods. 2021, 10(1), 115. DOI: 10.3390/foods10010115.
  • Multari, S.; Pihlava, J. M.; Ollennu-Chuasam, P.; Hietaniemi, V.; Yang, B.; Suomela, J. P. Identification and Quantification of Avenanthramides and Free and Bound Phenolic Acids in Eight Cultivars of Husked Oat (Avena Sativa L) from Finland. J. Agric. Food Chem. 2018, 66(11), 2900–2908. DOI: 10.1021/acs.jafc.7b05726.
  • Li, Z.; Chen, Y.; Meesapyodsuk, D.; Qiu, X. The Biosynthetic Pathway of Major Avenanthramides in Oat. Metabolites. 2019, 9(8), 163. DOI: 10.3390/metabo9080163.
  • Zaynab, M.; Sharif, Y.; Abbas, S.; Afzal, M. Z.; Qasim, M.; Khalofah, A.; Ansari, M. J.; Khan, K. A.; Tao, L.; Li, S. Saponin Toxicity as Key Player in Plant Defense against Pathogens. Toxicon. 2021, 193, 21–27. DOI: 10.1016/j.toxicon.2021.01.009.
  • Hu, C.; Sang, S. Triterpenoid Saponins in Oat Bran and Their Levels in Commercial Oat Products. J. Agric. Food Chem. 2020, 68(23), 6381–6389. DOI: 10.1021/acs.jafc.0c02520.
  • Koistinen, V. M.; Hanhineva, K. Mass Spectrometry-based Analysis of Whole-grain Phytochemicals. Crit. Rev. Food Sci. Nutr. 2017, 57(8), 1688–1709. DOI: 10.1080/10408398.2015.1016477.
  • Woo, S. Y.; Lee, K. S.; Shin, H. L.; Kim, S. H.; Lee, M. J.; Young Kim, H.; Ham, H.; Lee, D. J.; Choi, S. W.; Seo, W. D. Two New Secondary Metabolites Isolated from Avena Sativa L. (Oat) Seedlings and Their Effects on Osteoblast Differentiation. Bioorg. Med. Chem. Lett. 2020, 30(14), 127250. DOI: 10.1016/j.bmcl.2020.127250.
  • Fu, Y. B. Oat Evolution Revealed in the Maternal Lineages of 25 Avena Species 9. Sci. Rep. 2018, 8(1), 4252. DOI: 10.1038/s41598-018-22478-4.
  • Brückner-Gühmann, M.; Vasil’eva, E.; Culetu, A.; Duta, D.; Sozer, N.; Drusch, S. Oat Protein Concentrate as Alternative Ingredient for Non-dairy Yoghurt-type Product. J. Sci. Food Agric. 2019, 99(13), 5852–5857. DOI: 10.1002/jsfa.9858.
  • Nałęcz, D.; Dziuba, M.; Szerszunowicz, I. Isolation of Oat (Avena Sativa L.) Total Proteins and Their Prolamin Fractions for 2D Electrophoresis. Methods Mol. Biol. 2017, 1536, 225–234.
  • Shotwell, M. A.; Afonso, C.; Davies, E.; Chesnut, R. S.; Larkins, B. A. Molecular Characterization of Oat Seed Globulins. Plant Physiol. 1988, 87(3), 698–704. DOI: 10.1104/pp.87.3.698.
  • Yang, C.; Wang, Y.; Lu, L.; Unsworth, L. D.; Guan, L. L.; Chen, L. Oat Protein-shellac Beads: Superior Protection and Delivery Carriers for Sensitive Bioactive Compounds. Food Hydrocolloids. 2017, 754–763.
  • Tanner, G.; Juhász, A.; Florides, C. G.; Nye-Wood, M.; Békés, F.; Colgrave, M. L.; Russell, A. K.; Hardy, M. Y.; Tye-Din, J. A. Preparation and Characterization of Avenin-Enriched Oat Protein by Chill Precipitation for Feeding Trials in Celiac Disease. Front Nutr. 2019, 6, 162. DOI: 10.3389/fnut.2019.00162.
  • Jing, X.; Yang, C.; Zhang, L. Characterization and Analysis of Protein Structures in Oat Bran. J. Food Sci. 2016, 81(10), C2337–C2343. DOI: 10.1111/1750-3841.13445.
  • Zheng, Z.; Li, J.; Liu, Y. Effects of Partial Hydrolysis on the Structural, Functional and Antioxidant Properties of Oat Protein Isolate. Food Funct. 2020, 11(4), 3144–3155. DOI: 10.1039/C9FO01783F.
  • Bleakley, S.; Hayes, M.; Shea, O.; Gallagher, N.; Lafarga, T, E. Predicted Release and Analysis of Novel ACE-I, Renin, and DPP-IV Inhibitory Peptides from Common Oat (Avena Sativa) Protein Hydrolysates Using in Silico Analysis. Foods. 2017, 6(12), 108. DOI: 10.3390/foods6120108.
  • Gorissen, S. H. M.; Crombag, J. J. R.; Senden, J. M. G.; Waterval, W. A. H.; Bierau, J.; Verdijk, L. B.; van Loon, L. J. C. Protein Content and Amino Acid Composition of Commercially Available Plant-based Protein Isolates. Amino Acids. 2018, 50(12), 1685–1695. DOI: 10.1007/s00726-018-2640-5.
  • Xu, C.; Lv, J.; You, S.; Zhao, Q.; Chen, X.; Hu, X. Supplementation with Oat Protein Ameliorates Exercise-induced Fatigue in Mice. Food Funct. 2013, 4(2), 303–309. DOI: 10.1039/C2FO30255A.
  • Walters, M. E.; Willmore, W. G.; Tsopmo, A. A. Physicochemical, and Cellular Secretion of Glucagon-Like Peptide-1 Properties of Oat Bran Protein Hydrolysates. Antioxidants (Basel). 2020, 9(6), 557. DOI: 10.3390/antiox9060557.
  • Bonke, A.; Sieuwerts, S.; Petersen, I. L. Amino Acid Composition of Novel Plant Drinks from Oat, Lentil and Pea. Foods. 2020, 9(4), 429. DOI: 10.3390/foods9040429.
  • Zhang, J.; Yan, L.; Liu, M.; Guo, G.; Wu, B. Analysis of β-d-glucan Biosynthetic Genes in Oat Reveals Glucan Synthesis Regulation by Light. Ann. Bot. 2021, 127(3), 371–380. DOI: 10.1093/aob/mcaa185.
  • Bai, J.; Li, T.; Zhang, W.; Fan, M.; Qian, H.; Li, Y.; Wang, L. Systematic Assessment of Oat β-glucan Catabolism during in Vitro Digestion and Fermentation. Food Chem. 2021, 348, 129116. DOI: 10.1016/j.foodchem.2021.129116.
  • Joyce, S. A.; Kamil, A.; Fleige, L.; Gahan, C. G. M. The Cholesterol-Lowering Effect of Oats and Oat Beta Glucan: Modes of Action and Potential Role of Bile Acids and the Microbiome. Front Nutr. 2019, 6, 171. DOI: 10.3389/fnut.2019.00171.
  • Ullah, S.; Khalil, A. A.; Shaukat, F.; Song, Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods. 2019, 8(8), 304. DOI: 10.3390/foods8080304.
  • Punia, S.; Sandhu, K. S.; Dhull, S. B.; Siroha, A. K.; Purewal, S. S.; Kaur, M.; Kidwai, M. K. Oat Starch: Physico-chemical, Morphological, Rheological Characteristics and Its Applications - A Review. Int. J. Biol. Macromol. 2020, 154, 493–498. DOI: 10.1016/j.ijbiomac.2020.03.083.
  • Kaur, M.; Singh, S. Influence of Heat-moisture Treatment (HMT) on Physicochemical and Functional Properties of Starches from Different Indian Oat (Avena Sativa L.) Cultivars. Int. J. Biol. Macromol. 2019, 122, 312–319. DOI: 10.1016/j.ijbiomac.2018.10.197.
  • Zhang, M.; Liang, Y.; Pei, Y.; Gao, W.; Zhang, Z. Effect of Process on Physicochemical Properties of Oat Bran Soluble Dietary Fiber. J. Food Sci. 2009, 74(8), C628–36. DOI: 10.1111/j.1750-3841.2009.01324.x.
  • Kundi, Z. M.; Lee, J. C.; Pihlajamäki, J.; Chan, C. B.; Leung, K. S.; So, S. S. Y.; Nordlund, E.; Kolehmainen, M.; El-Nezami, H. Dietary Fiber from Oat and Rye Brans Ameliorate Western Diet-Induced Body Weight Gain and Hepatic Inflammation by the Modulation of Short-Chain Fatty Acids, Bile Acids, and Tryptophan Metabolism. Mol. Nutr. Food Res. 2021, 65(1), e1900580. DOI: 10.1002/mnfr.201900580.
  • Rosa-Sibakov, N.; Mäkelä, N.; Aura, A. M.; Sontag-Strohm, T.; Nordlund, E. In Vitro Study for Investigating the Impact of Decreasing the Molecular Weight of Oat Bran Dietary Fibre Components on the Behaviour in Small and Large Intestine. Food Funct. 2020, 11(7), 6680–6691. DOI: 10.1039/D0FO00367K.
  • Gao, H.; Song, R.; Li, Y.; Zhang, W.; Wan, Z.; Wang, Y.; Zhang, H.; Han, S. Effects of Oat Fiber Intervention on Cognitive Behavior in LDLR−/− Mice Modeling Atherosclerosis by Targeting the Microbiome-Gut-Brain Axis. J. Agric. Food Chem. 2020, 68(49), 14480–14491. DOI: 10.1021/acs.jafc.0c05677.
  • Janssen, F.; Wouters, A. G. B.; Linclau, L.; Waelkens, E.; Derua, R.; Dehairs, J.; Moldenaers, P.; Vermant, J.; Delcour, J. A. The Role of Lipids in Determining the Air-water Interfacial Properties of Wheat, Rye, and Oat Dough Liquor Constituents. Food Chem. 2020, 319, 126565. DOI: 10.1016/j.foodchem.2020.126565.
  • Sahasrabudhe, M. R. Lipid Composition of Oats (Avena Sativa L.). J. Am. Oil Chem. Soc. 1979, 56(2), 80–84. DOI: 10.1007/BF02914274.
  • Yang, Z.; Liu, X.; Li, N.; Du, C.; Wang, K.; Zhao, C.; Wang, Z.; Hu, Y.; Zhang, M. WRINKLED1 Homologs Highly and Functionally Express in Oil-rich Endosperms of Oat and Castor. Plant Sci. 2019, 287, 110193. DOI: 10.1016/j.plantsci.2019.110193.
  • Ben Halima, N.; Ben Saad, R.; Khemakhem, B.; Fendri, I.; Abdelkafi, S. Oat (Avena Sativa L.): Oil and Nutriment Compounds Valorization for Potential Use in Industrial Applications. J. Oleo Sci. 2015, 64(9), 915–932. DOI: 10.5650/jos.ess15074.
  • Kolar, M. J.; Konduri, S.; Chang, T.; Wang, H.; McNerlin, C.; Ohlsson, L.; Härröd, M.; Siegel, D.; Saghatelian, A. Linoleic Acid Esters of Hydroxy Linoleic Acids are Anti-inflammatory Lipids Found in Plants and Mammals. J. Biol. Chem. 2019, 294(27), 10698–10707. DOI: 10.1074/jbc.RA118.006956.
  • Dach, A.; Schieberle, P. Changes in the Concentrations of Key Aroma Compounds in Oat (Avena Sativa) Flour during Manufacturing of Oat Pastry. J. Agric. Food Chem. 2021, 69(5), 1589–1597. DOI: 10.1021/acs.jafc.0c07499.
  • Tong, L. T.; Zhong, K.; Liu, L.; Guo, L.; Cao, L.; Zhou, S. Oat Oil Lowers the Plasma and Liver Cholesterol Concentrations by Promoting the Excretion of Faecal Lipids in Hypercholesterolemic Rats. Food Chem. 2014, 142, 129–134. DOI: 10.1016/j.foodchem.2013.07.028.
  • Heneen, W. K.; Banas, A.; Leonova, S.; Carlsson, A. S.; Marttila, S.; Debski, H.; Stymne, S. The Distribution of Oil in the Oat Grain. Plant Signal. Behav. 2009, 4(1), 55–56. DOI: 10.4161/psb.4.1.7313.
  • Ben Halima, N.; Ben Slima, A.; Moalla, I.; Fetoui, H.; Pichon, C.; Gdoura, R.; Abdelkafi, S. Protective Effects of Oat Oil on Deltamethrin-induced Reprotoxicity in Male Mice. Food Funct. 2014, 5(9), 2070–2077. DOI: 10.1039/C4FO00190G.
  • Tian, P.; Niu, D.; Zuo, S.; Jiang, D.; Li, R.; Xu, C. Vitamin A and E in the Total Mixed Ration as Influenced by Ensiling and the Type of Herbage. Sci Total Environ. 2020, 746:141239. 32745864.
  • Chen, H.; Qiu, S.; Gan, J.; Li, Z.; Nirasawa, S.; Yin, L. New Insights into the Antioxidant Activity and Components in Crude Oat Oil and Soybean Oil. J. Food Sci. Technol. 2016, 53(1), 808–815. DOI: 10.1007/s13197-015-1991-0.
  • Torbica, A.; Belović, M.; Popović, L.; Čakarević, J.; Jovičić, M.; Pavličević, J. Comparative Study of Nutritional and Technological Quality Aspects of Minor Cereals. J. Food Sci. Technol. 2021, 58(1), 311–322. DOI: 10.1007/s13197-020-04544-w.
  • Kosiorek, M.; Wyszkowski, M. Content of Macronutrients in Oat (Avena Sativa L.) After Remediation of Soil Polluted with Cobalt. Environ. Monit. Assess. 2019, 191(6), 389. DOI: 10.1007/s10661-019-7529-6.
  • de Oliveira Maximino, J. V.; Barros, L. M.; Pereira, R. M.; de Santi, I. I. A.; Busanello, B. C.; Viana, C.; Freitag, V. E.; Batista, R. A.; Costa de Oliveira, B. L.; Pegoraro, C, A. Mineral and Fatty Acid Content Variation in White Oat Genotypes Grown in Brazil. Biol. Trace Elem. Res. 2021, 199(3), 1194–1206. DOI: 10.1007/s12011-020-02229-1.
  • Tian, P.; Niu, D.; Zuo, S.; Jiang, D.; Li, R.; Xu, C. Vitamin A and E in the Total Mixed Ration as Influenced by Ensiling and the Type of Herbage. Sci. Total Environ. 2020, 746, 141239. 32745864. DOI: 10.1016/j.scitotenv.2020.141239.
  • Nogala-Kałucka, M.; Kawka, A.; Dwiecki, K.; Siger, A. Evaluation of Bioactive Compounds in Cereals. Study of Wheat, Barley, Oat and Selected Grain Products. Acta Sci. Pol. Technol. Aliment. 2020, 19(4), 405–423. DOI: 10.17306/J.AFS.0858.
  • Warchoł, M.; Juzoń, K.; Dziurka, K.; Czyczyło-Mysza, I.; Kapłoniak, K.; Marcińska, I.; Skrzypek, E. The Effect of Zinc, Copper, and Silver Ions on Oat (Avena Sativa L.) Androgenesis. Plants (Basel). 2021, 10(2), 248. DOI: 10.3390/plants10020248.
  • Soycan, G.; Schär, M. Y.; Kristek, A.; Boberska, J.; Alsharif, S. N. S.; Corona, G.; Shewry, P. R.; Spencer, J. P. E. Composition and Content of Phenolic Acids and Avenanthramides in Commercial Oat Products: Are Oats an Important Polyphenol Source for Consumers? Food Chem. 2019, 3, 100047.
  • Bratt, K.; Sunnerheim, K.; Bryngelsson, S.; Fagerlund, A.; Engman, L.; Andersson, R. E.; Dimberg, L. H. Avenanthramides in Oats (Avena Sativa L.) And Structure-antioxidant Activity Relationships. J. Agric. Food Chem. 2003, 51(3), 594–600. DOI: 10.1021/jf020544f.
  • Thomas, M.; Kim, S.; Guo, W.; Collins, F. W.; Wise, M. L.; Meydani, M. High Levels of Avenanthramides in Oat-Based Diet Further Suppress High Fat Diet-Induced Atherosclerosis in Ldlr−/− Mice. J. Agric. Food Chem. 2018, 66(2), 498–504. DOI: 10.1021/acs.jafc.7b04860.
  • Jágr, M.; Dvořáček, V.; Čepková, P. H.; Doležalová, J. Comprehensive Analysis of Oat Avenanthramides Using Hybrid quadrupole-Orbitrap Mass Spectrometry: Possible Detection of New Compounds. Rapid Commun. Mass Spectrom. 2020, 34(10), e8718. 1. DOI: 10.1002/rcm.8718.
  • Schär, M. Y.; Corona, G.; Soycan, G.; Dine, C.; Kristek, A.; Alsharif, S. N. S.; Behrends, V.; Lovegrove, A.; Shewry, P. R.; Spencer, J. P. E. Excretion of Avenanthramides, Phenolic Acids and Their Major Metabolites following Intake of Oat Bran. Mol. Nutr. Food Res. 2018, 62(2), 1700499. DOI: 10.1002/mnfr.201700499.
  • Wang, P.; Zhang, S.; Yerke, A.; Ohland, C. L.; Gharaibeh, R. Z.; Fouladi, F.; Fodor, A. A.; Jobin, C.; Sang, S. Avenanthramide Metabotype from Whole-Grain Oat Intake Is Influenced by Faecalibacterium Prausnitzii in Healthy Adults. J. Nutr. 2021, 9, nxab006.
  • Hernandez-Hernandez, O.; Pereira-Caro, G.; Borges, G.; Crozier, A.; Olsson, O. Characterization and Antioxidant Activity of Avenanthramides from Selected Oat Lines Developed by Mutagenesis Technique. Food Chem. 2021, 343, 128408. DOI: 10.1016/j.foodchem.2020.128408.
  • Turrini, E.; Maffei, F.; Milelli, A.; Calcabrini, C.; Fimognari, C. Overview of the Anticancer Profile of Avenanthramides from Oat. Int. J. Mol. Sci. 2019, 20(18), 4536. DOI: 10.3390/ijms20184536.
  • Määttä, K.; Lampi, A.; Petterson, J.; Fogelfors, B. M.; Piironen, V.; Kamal-Eldin, A. Phytosterol Content in Seven Oat Cultivars Grown at Three Locations in Sweden. J. Sci. Food Agr. 1999, 5, 79.
  • White, P. J.; Armstrong, L. S. Effect of Selected Oat Sterols on the Deterioration of Heated Soybean Oil. J. Am. Oil Chem. Soc. 1986, 63(4), 525–529. DOI: 10.1007/BF02645743.
  • Kopiasz, Ł.; Dziendzikowska, K.; Gajewska, M.; Wilczak, J.; Harasym, J.; Żyła, E.; Kamola, D.; Oczkowski, M.; Królikowski, T.; Gromadzka-Ostrowska, J. Time-Dependent Indirect Antioxidative Effects of Oat Beta-Glucans on Peripheral Blood Parameters in the Animal Model of Colon Inflammation. Antioxidants (Basel). 2020, 9(5), 375. DOI: 10.3390/antiox9050375.
  • Carbonellcapella, J. M.; Buniowska, M.; Esteve, M. J.; Frigola, A. Effect of Stevia Rebaudiana Addition on Bioaccessibility of Bioactive Compounds and Antioxidant Activity of Beverages Based on Exotic Fruits Mixed with Oat following Simulated Human Digestion. Food Chem. 2015, 184, 122–130. DOI: 10.1016/j.foodchem.2015.03.095.
  • Yan, H.; Jia, S.; Mao, P. Melatonin Priming Alleviates Aging-Induced Germination Inhibition by Regulating β-oxidation, Protein Translation, and Antioxidant Metabolism in Oat (Avena Sativa L.) Seeds. Int. J. Mol. Sci. 2020, 21(5), 1898. DOI: 10.3390/ijms21051898.
  • Szerszunowicz, I.; Kłobukowski, J. Characteristics of Potential Protein Nutraceuticals of Plant Origin with Antioxidant Activity. Molecules. 2020, 25(7), 1621. DOI: 10.3390/molecules25071621.
  • Esfandi, R.; Willmore, W. G.; Tsopmo, A. Antioxidant and Anti-Apoptotic Properties of Oat Bran Protein Hydrolysates in Stressed Hepatic Cells. Foods. 2019, 8(5), 160. DOI: 10.3390/foods8050160.
  • Ratnasari, N.; Walters, M.; Tsopmo, A. Antioxidant and Lipoxygenase Activities of Polyphenol Extracts from Oat Brans Treated with Polysaccharide Degrading Enzymes. Heliyon. 2017, 3(7), e00351. DOI: 10.1016/j.heliyon.2017.e00351.
  • Li, D.; Ren, J.; Du, Q.; Liu, P.; Li, Y. The Anti-hypoxic Effects of Oat (Avena Sativa L.) Oligopeptides in Mice. Am. J. Transl. Res. 2021, 13(3), 1657–1666.
  • Hou, Y.; Peng, S.; Song, Z.; Bai, F.; Li, X.; Fang, J. Oat Polyphenol Avenanthramide-2c Confers Protection from Oxidative Stress by Regulating the Nrf2-ARE Signaling Pathway in PC12 cells. Arch. Biochem. Biophys. 2021, 26, 108857. DOI: 10.1016/j.abb.2021.108857.
  • Sumayya, P. C.; Babu, G. M.; Muraleedharan, K. Quantum Chemical Investigation of the Antiradical Property of Avenanthramides, Oat Phenolics. Heliyon. 2021, 7(2), e06125. DOI: 10.1016/j.heliyon.2021.e06125.
  • Harasym, J.; Olędzki, R. Comparison of Conventional and Microwave Assisted Heating on Carbohydrate Content, Antioxidant Capacity and Postprandial Glycemic Response in Oat Meals. Nutrients. 2018, 10(2), 207. DOI: 10.3390/nu10020207.
  • Chen, C.; Wang, L.; Chen, Z.; Luo, X.; Li, Y.; Wang, R.; Li, J.; Li, Y.; Wang, T.; Wu, J. Effects of Milk Proteins on the Bioaccessibility and Antioxidant Activity of Oat Phenolics during in Vitro Digestion. J. Food Sci. 2019, 84(4), 895–903. DOI: 10.1111/1750-3841.14499.
  • Marmouzi, I.; Karym, E. M.; Saidi, N.; Meddah, B.; Kharbach, M.; Masrar, A.; Bouabdellah, M.; Chabraoui, L.; El Allali, K.; Cherrah, Y., et al. In Vitro and in Vivo Antioxidant and Anti-Hyperglycemic Activities of Moroccan Oat Cultivars. Antioxidants (Basel). 2017, 6(4), 102. DOI: 10.3390/antiox6040102.
  • Wang, J. B.; Liu, X. R.; Liu, S. Q.; Mao, R. X.; Hou, C.; Zhu, N.; Liu, R.; Ma, H. J.; Li, Y. Hypoglycemic Effects of Oat Oligopeptides in High-Calorie Diet/STZ-Induced Diabetic Rats. Molecules. 2019, 24(3), 558. DOI: 10.3390/molecules24030558.
  • Ganesan, K.; Xu, B. Anti-Diabetic Effects and Mechanisms of Dietary Polysaccharides. Molecules. 2019, 24(14), 2556. DOI: 10.3390/molecules24142556.
  • Shen, X. L.; Zhao, T.; Zhou, Y.; Shi, X.; Zou, Y.; Zhao, G. Effect of Oat β-Glucan Intake on Glycaemic Control and Insulin Sensitivity of Diabetic Patients: A Meta-Analysis of Randomized Controlled Trials. Nutrients. 2016, 8(1), 39. DOI: 10.3390/nu8010039.
  • Wolever, T. M. S.; Mattila, O.; Rosa-Sibakov, N.; Tosh, S. M.; Jenkins, A. L.; Ezatagha, A.; Duss, R.; Steinert, R. E. Effect of Varying Molecular Weight of Oat β-Glucan Taken Just before Eating on Postprandial Glycemic Response in Healthy Humans. Nutrients. 2020, 12(8), 2275. DOI: 10.3390/nu12082275.
  • Zheng, J.; Shen, N.; Wang, S.; Zhao, G. Oat Beta-glucan Ameliorates Insulin Resistance in Mice Fed on High-fat and High-fructose Diet. Food Nutr. Res. 2013, 57(1), 1–8. DOI: 10.3402/fnr.v57i0.22754.
  • Long, N. T.; Anh, N. T. N.; Giang, B. L.; Son, H. N.; Luan, L. Q. Radiation Degradation of β-Glucan with a Potential for Reduction of Lipids and Glucose in the Blood of Mice. Polymers (Basel). 2019, 11(6), 955. DOI: 10.3390/polym11060955.
  • Liu, M.; Zhang, Y.; Zhang, H.; Hu, B.; Wang, L.; Qian, H.; Qi, X. The Anti-diabetic Activity of Oat β-d-glucan in Streptozotocin-nicotinamide Induced Diabetic Mice. Int. J. Biol. Macromol. 2016, 91, 1170–1176. DOI: 10.1016/j.ijbiomac.2016.06.083.
  • Bozbulut, R.; Şanlıer, N.; Döğer, E.; Bideci, A.; Çamurdan, O.; Cinaz, P. The Effect of Beta-glucan Supplementation on Glycemic Control and Variability in Adolescents with Type 1 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2020, 169, 108464.
  • AlFaris, N. A.; Ba-Jaber, A. S. Effects of A Low-energy Diet with and without Oat Bran and Olive Oil Supplements on Body Mass Index, Blood Pressure, and Serum Lipids in Diabetic Women: A Randomized Controlled Trial. Food Sci. Nutr. 2020, 8(7), 3602–3609. DOI: 10.1002/fsn3.1642.
  • Havrlentová, M.; Gregusová, V.; Šliková, S.; Nemeček, P.; Hudcovicová, M.; Kuzmová, D. Relationship between the Content of β-D-Glucans and Infection with Fusarium Pathogens in Oat (Avena Sativa L.) Plants. Plants (Basel). 2020, 9(12), 1776. DOI: 10.3390/plants9121776.
  • Orme, A.; Louveau, T.; Stephenson, M. J.; Appelhagen, I.; Melton, R.; Cheema, J.; Li, Y.; Zhao, Q.; Zhang, L.; Fan, D., et al. A Noncanonical Vacuolar Sugar Transferase Required for Biosynthesis of Antimicrobial Defense Compounds in Oat. Proc. Natl. Acad. Sci. U. S. A. 2019, 116(52), 27105–27114. DOI: 10.1073/pnas.1914652116.
  • Van den Abbeele, P.; Kamil, A.; Fleige, L.; Chung, Y.; De Chavez, P.; Marzorati, M. Different Oat Ingredients Stimulate Specific Microbial Metabolites in the Gut Microbiome of Three Human Individuals in Vitro. ACS Omega. 2018, 3(10), 12446–12456. DOI: 10.1021/acsomega.8b01360.
  • Emamifar, S.; Abolmaali, S.; Mohsen Sohrabi, S.; Mohammadi, M.; Shahmohammadi, M. Molecular Characterization and Evaluation of the Antibacterial Activity of a Plant Defensin Peptide Derived from a Gene of Oat (Avena Sativa L.). Phytochemistry. 2021, 181, 112586. DOI: 10.1016/j.phytochem.2020.112586.
  • Mugford, S. T.; Qi, X.; Bakht, S.; Hill, L.; Wegel, E.; Hughes, R. K.; Papadopoulou, K.; Melton, R.; Philo, M.; Sainsbury, F., et al. A Serine Carboxypeptidase-like Acyltransferase Is Required for Synthesis of Antimicrobial Compounds and Disease Resistance in Oats. Plant Cell. 2009, 21(8), 2473–2484. DOI: 10.1105/tpc.109.065870.
  • Pan, W.; Hao, S.; Zheng, M.; Lin, D.; Jiang, P.; Zhao, J.; Shi, H.; Yang, X.; Li, X.; Yu, Y. Oat-Derived β-Glucans Induced Trained Immunity through Metabolic Reprogramming. Inflammation. 2020, 43(4), 1323–1336. DOI: 10.1007/s10753-020-01211-2.
  • Pham, V. T.; Seifert, N.; Richard, N.; Raederstorff, D.; Steinert, R. E.; Prudence, K.; Mohajeri, M. H. The Effects of Fermentation Products of Prebiotic Fibres on Gut Barrier and Immune Functions in Vitro. PeerJ. 2018, 6, e5288. DOI: 10.7717/peerj.5288.
  • Real, A.; Comino, I.; de Lorenzo, L.; Merchán, F.; Gil-Humanes, J.; Giménez, M. J.; López-Casado, M. Á.; Torres, M. I.; Cebolla, Á.; Sousa, C., et al. Molecular and Immunological Characterization of Gluten Proteins Isolated from Oat Cultivars that Differ in Toxicity for Celiac Disease. PLoS One. 2012, 7(12), e48365. DOI: 10.1371/journal.pone.0048365.
  • Mao, R.; Wu, L.; Zhu, N.; Liu, X.; Liu, R.; Li, Y. Naked Oat (Avena Nuda L.) Oligopeptides: Immunomodulatory Effects on Innate and Adaptive Immunity in Mice via Cytokine Secretion, Antibody Production, and Th Cells Stimulation. Nutrients. 2019, 11(4), 927. DOI: 10.3390/nu11040927.
  • Estrada, A.; van Kessel, A.; Laarveld, B. Effect of Administration of Oat Beta-glucan on Immune Parameters of Healthy and Immunosuppressed Beef Steers. Can. J. Vet. Res. 1999, 63(4), 261–268.
  • Ho, H. V.; Sievenpiper, J. L.; Zurbau, A.; Blanco Mejia, S.; Jovanovski, E.; Au-Yeung, F.; Jenkins, A. L.; Vuksan, V. The Effect of Oat β-glucan on LDL-cholesterol, non-HDL -cholesterol and apoB for CVD Risk Reduction: A Systematic Review and Meta-analysis of Randomised-controlled Trials. Br. J. Nutr. 2016, 116(8), 1369–1382. DOI: 10.1017/S000711451600341X.
  • Mathews, R.; Kamil, A.; Chu, Y. Global Review of Heart Health Claims for Oat Beta-glucan Products. Nutr. Rev. 2020, 78(Suppl 1), 78–97. DOI: 10.1093/nutrit/nuz069.
  • Aleixandre, A.; Miguel, M. Dietary Fiber and Blood Pressure Control. Food Funct. 2016, 7(4), 1864–1871. DOI: 10.1039/C5FO00950B.
  • Raj, P.; Ames, N.; Joseph Thandapilly, S.; Yu, L.; Netticadan, T. The Effects of Oat Ingredients on Blood Pressure in Spontaneously Hypertensive Rats. J. Food Biochem. 2020, 26, e13402.
  • Zheng, Y.; Wang, X.; Zhuang, Y.; Li, Y.; Shi, P.; Tian, H.; Li, X.; Chen, X. Isolation of Novel ACE-inhibitory Peptide from Naked Oat Globulin Hydrolysates in Silico Approach: Molecular Docking, in Vivo Antihypertension and Effects on Renin and Intracellular Endothelin-1. J. Food Sci. 2020, 85(4), 1328–1337. DOI: 10.1111/1750-3841.15115.
  • Grundy, M. M. L.; McClements, D. J.; Balance, S.; Wilde, P. J. Influence of Oat Components on Lipid Digestion Using an in Vitro Model: Impact of Viscosity and Depletion Flocculation Mechanism. Food Hydrocoll. 2018, 83, 253–264. DOI: 10.1016/j.foodhyd.2018.05.018.
  • Zhang, R.; Jiao, J.; Zhang, W.; Zhang, Z.; Zhang, W.; Qin, L. Q.; Han, S. F. Effects of Cereal Fiber on Leptin Resistance and Sensitivity in C57BL/6J Mice Fed a High-fat/cholesterol Diet. Food Nutr. Res. 2016, 60(1), 31690. DOI: 10.3402/fnr.v60.31690.
  • Dubois, C.; Armand, M.; Senft, M.; Portugal, H.; Pauli, A. M.; Bernard, P. M.; Lafont, H.; Lairon, D. Chronic Oat Bran Intake Alters Postprandial Lipemia and Lipoproteins in Healthy Adults. Am. J. Clin. Nutr. 1995, 61(2), 325–333. DOI: 10.1093/ajcn/61.2.325.
  • Raimondi de Souza, S.; Moraes de Oliveira, G. M.; Raggio Luiz, R.; Rosa, G. Effects of Oat Bran and Nutrition Counseling on the Lipid and Glucose Profile and Anthropometric Parameters of Hypercholesterolemia Patients. Nutr. Hosp. 2016, 33(1), 123–130. DOI: 10.20960/nh.40.
  • Korolenko, T. A.; Bgatova, N. P.; Ovsyukova, M. V.; Shintyapina, A.; Vetvicka, V. Hypolipidemic Effects of β-Glucans, Mannans, and Fucoidans: Mechanism of Action and Their Prospects for Clinical Application. Molecules. 2020, 25(8), 1819. DOI: 10.3390/molecules25081819.
  • Grundy, M. M. L.; Quint, J.; Rieder, A.; Balance, S.; Dreiss, C. A.; Cross, K. L.; Gray, R.; Bajka, B. H.; Butterworth, P. J.; Ellis, P. R., et al. The Impact of Oat Structure and β-glucan on in Vitro Lipid Digestion. J. Funct. Foods. 2017, 38(Pt A), 378–388. DOI: 10.1016/j.jff.2017.09.011.
  • Ferguson, J. J.; Stojanovski, E.; MacDonald-Wicks, L.; Garg, M. L. High Molecular Weight Oat β-glucan Enhances Lipid-lowering Effects of Phytosterols. A Randomised Controlled Trial. Clin. Nutr. 2020, 39(1), 80–89. DOI: 10.1016/j.clnu.2019.02.007.
  • Yau, Y. F.; El-Nezami, H.; Galano, J. M.; Kundi, Z. M.; Durand, T.; Lee, J. C. Lactobacillus Rhamnosus GG and Oat Beta-Glucan Regulated Fatty Acid Profiles along the Gut-Liver-Brain Axis of Mice Fed with High Fat Diet and Demonstrated Antioxidant and Anti-Inflammatory Potentials. Mol. Nutr. Food Res. 2020, 64(18), e2000566. DOI: 10.1002/mnfr.202000566.
  • Guo, L.; Tong, L. T.; Liu, L.; Zhong, K.; Qiu, J.; Zhou, S. The Cholesterol-lowering Effects of Oat Varieties Based on Their Difference in the Composition of Proteins and Lipids. Lipids Health Dis. 2014, 13(1), 182. DOI: 10.1186/1476-511X-13-182.
  • Whitehead, A.; Beck, E. J.; Tosh, S.; Wolever, T. M. Cholesterol-lowering Effects of Oat β-glucan: A Meta-analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2014, 100(6), 1413–1421. DOI: 10.3945/ajcn.114.086108.
  • Connolly, M. L.; Tzounis, X.; Tuohy, K. M.; Lovegrove, J. A. Hypocholesterolemic and Prebiotic Effects of a Whole-Grain Oat-Based Granola Breakfast Cereal in a Cardio-Metabolic “At Risk” Population. Front Microbiol. 2016, 7(7), 1675. DOI: 10.3389/fmicb.2016.01675.
  • Han, S.; Zhang, W.; Zhang, R.; Jiao, J.; Fu, C.; Tong, X.; Zhang, W.; Qin, L. Cereal Fiber Improves Blood Cholesterol Profiles and Modulates Intestinal Cholesterol Metabolism in C57BL/6 Mice Fed a High-fat, High-cholesterol Diet. Food Nutr. Res. 2019, 63, 1591. DOI: 10.29219/fnr.v63.1591.
  • Grundy, M. M.; Fardet, A.; Tosh, S. M.; Rich, G. T.; Wilde, P. J. Processing of Oat: The Impact on Oat’s Cholesterol Lowering Effect. Food Funct. 2018, 9(3), 1328–1343. DOI: 10.1039/C7FO02006F.
  • Chen, J.; Raymond, K. Beta-glucans in the Treatment of Diabetes and Associated Cardiovascular Risks. Vasc Health Risk Manag. 2008, 4(6), 1265–1272. DOI: 10.2147/VHRM.S3803.
  • Wu, J. R.; Leu, H. B.; Yin, W. H.; Tseng, W. K.; Wu, Y. W.; Lin, T. H.; Yeh, H. I.; Chang, K. C.; Wang, J. H.; Wu, C. C., et al. The Benefit of Secondary Prevention with Oat Fiber in Reducing Future Cardiovascular Event among CAD Patients after Coronary Intervention. Sci. Rep. 2019, 9(1), 3091. DOI: 10.1038/s41598-019-39310-2.
  • Xie, M.; Liu, J.; Tsao, R.; Wang, Z.; Sun, B.; Wang, J. Whole Grain Consumption for the Prevention and Treatment of Breast Cancer. Nutrients. 2019, 11(8), 1769. DOI: 10.3390/nu11081769.
  • Zhang, M.; Chun, L.; Sandoval, V.; Graor, H.; Myers, J.; Nthale, J.; Rauhe, P.; Senders, Z.; Choong, K.; Huang, A. Y., et al. Systemic Administration of β-glucan of 200 kDa Modulates Melanoma Microenvironment and Suppresses Metastatic Cancer. Oncoimmunology. 2017, 7(2), e1387347. DOI: 10.1080/2162402X.2017.1387347.
  • Schlörmann, W.; Atanasov, J.; Lorkowski, S.; Dawczynski, C.; Glei, M. Thermal Processing Has No Impact on Chemopreventive Effects of Oat and Barley Kernels in LT97 Colon Adenoma Cells. Nutr. Cancer. 2020, 11, 1–12.
  • Vetvicka, V.; Vetvickova, J. Anti-infectious and Anti-tumor Activities of β-glucans. Anticancer Res. 2020, 40(6), 3139–3145. DOI: 10.21873/anticanres.14295.
  • Kopiasz, Ł.; Dziendzikowska, K.; Gajewska, M.; Oczkowski, M.; Majchrzak- Kuligowska, K.; Królikowski, T.; Gromadzka-Ostrowska, J. Effects of Dietary Oat Beta-Glucans on Colon Apoptosis and Autophagy through TLRs and Dectin-1 Signaling Pathways-Crohn’s Disease Model Study. Nutrients. 2021, 13(2), 321. DOI: 10.3390/nu13020321.
  • Lin, K. W.; Huang, A. M.; Lin, C. C.; Chang, C. C.; Hsu, W. C.; Hour, T. C.; Pu, Y. S.; Lin, C. N. Anti-cancer Effects of Ursane Triterpenoid as a Single Agent and in Combination with Cisplatin in Bladder Cancer. Eur. J. Pharmacol. 2014, 740, 742–751. DOI: 10.1016/j.ejphar.2014.05.051.
  • Zhang, N.; Zhao, L.; Cai, S.; Zeng, X.; Wu, W.; Ji, B.; Zhou, F. Ethyl Acetate Subfractions from Ethanol Extracts of Fermented Oats (Avena Sativa L.) Exert Anti-cancer Properties in Vitro and in Vivo through G2/M and S Phase Arrest and Apoptosis. J. Cancer. 2021, 12(7), 1853–1866. DOI: 10.7150/jca.48993.
  • Scarpa, E. S.; Antonini, E.; Palma, F. M.; Ninfali, M.; Ninfali, P. Antiproliferative Activity of vitexin-2-O-xyloside and Avenanthramides on CaCo-2 and HepG2 Cancer Cells Occurs through Apoptosis Induction and Reduction of Pro-survival Mechanisms. Eur. J. Nutr. 2018, 57(4), 1381–1395. DOI: 10.1007/s00394-017-1418-y.
  • Choromanska, A.; Kulbacka, J.; Harasym, J.; Oledzki, R.; Szewczyk, A.; Saczko, J. High- and low-Molecular Weight Oat Beta-Glucan Reveals Antitumor Activity in Human Epithelial Lung Cancer. Pathol. Oncol. Res. 2018, 24(3), 583–592. DOI: 10.1007/s12253-017-0278-3.
  • Damazo-Lima, M.; Rosas-Pérez, G.; Reynoso-Camacho, R.; Pérez-Ramírez, I. F.; Rocha- Guzmán, N. E.; de Los Ríos, E. A.; Ramos-Gomez, M. Chemopreventive Effect of the Germinated Oat and Its Phenolic-AVA Extract in Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) Model of Colon Carcinogenesis in Mice. Foods. 2020, 9(2), 169. DOI: 10.3390/foods9020169.
  • Terry, P.; Lagergren, J.; Ye, W.; Wolk, A.; Nyrén, O. Inverse Association between Intake of Cereal Fiber and Risk of Gastric Cardia Cancer. Gastroenterology. 2001, 120(2), 387–391. DOI: 10.1053/gast.2001.21171.
  • Fu, R.; Yang, P.; Sajid, A.; Li, Z. Avenanthramide A Induces Cellular Senescence via miR-129–3p/Pirh2/p53 Signaling Pathway to Suppress Colon Cancer Growth. J. Agric. Food Chem. 2019, 67(17), 4808–4816. DOI: 10.1021/acs.jafc.9b00833.
  • Rebello, C. J.; O’Neil, C. E.; Greenway, F. L. Dietary Fiber and Satiety: The Effects of Oats on Satiety. Nutr. Rev. 2016, 74(2), 131–147. DOI: 10.1093/nutrit/nuv063.
  • Silano, M.; Pozo, E. P.; Uberti, F.; Manferdelli, S.; Del Pinto, T.; Felli, C.; Budelli, A.; Vincentini, O.; Restani, P. Diversity of Oat Varieties in Eliciting the Early Inflammatory Events in Celiac Disease. Eur. J. Nutr. 2014, 53(5), 1177–1186. DOI: 10.1007/s00394-013-0617-4.
  • Ohlsson, L.; Rosenquist, A.; Rehfeld, J. F.; Härröd, M. Postprandial Effects on Plasma Lipids and Satiety Hormones from Intake of Liposomes Made from Fractionated Oat Oil: Two Randomized Crossover Studies. Food Nutr. Res. 2014, 6, 58.
  • Li, X.; Cai, X.; Ma, X.; Jing, L.; Gu, J.; Bao, L.; Li, J.; Xu, M.; Zhang, Z.; Li, Y. Short- and Long-Term Effects of Wholegrain Oat Intake on Weight Management and Glucolipid Metabolism in Overweight Type-2 Diabetics: A Randomized Control Trial. Nutrients. 2016, 8(9), 549. DOI: 10.3390/nu8090549.
  • Shi, H.; Yu, Y.; Lin, D.; Zheng, P.; Zhang, P.; Hu, M.; Wang, Q.; Pan, W.; Yang, X.; Hu, T., et al. XF. β-glucan Attenuates Cognitive Impairment via the Gut-brain Axis in Diet-induced Obese Mice. Microbiome. 2020, 8(1), 143. DOI: 10.1186/s40168-020-00920-y.
  • Patel, P.; Malipatlolla, D. K.; Devarakonda, S.; Bull, C.; Rascón, A.; Nyman, M.; Stringer, A.; Tremaroli, V.; Steineck, G.; Sjöberg, F. Dietary Oat Bran Reduces Systemic Inflammation in Mice Subjected to Pelvic Irradiation. Nutrients. 2020, 12(8), 2172. DOI: 10.3390/nu12082172.
  • Akkerman, R.; Logtenberg, M. J.; An, R.; Van Den Berg, M. A.; de Haan, B. J.; Faas, M. M.; Zoetendal, E.; de Vos, P.; Schols, H. A. Endo-1,3(4)-β-Glucanase-Treatment of Oat β-Glucan Enhances Fermentability by Infant Fecal Microbiota, Stimulates Dectin-1 Activation and Attenuates Inflammatory Responses in Immature Dendritic Cells. Nutrients. 2020, 12(6), 1660. DOI: 10.3390/nu12061660.
  • Hu, C.; Tang, Y.; Zhao, Y.; Sang, S. Quantitative Analysis and Anti-inflammatory Activity Evaluation of the A-Type Avenanthramides in Commercial Sprouted Oat Products. J. Agric. Food Chem. 2020, 68(46), 13068–13075. DOI: 10.1021/acs.jafc.9b06812.
  • El Hosary, R.; El-Mancy, S. M. S.; El Deeb, K. S.; Eid, H. H.; El Tantawy, M. E.; Shams, M. M.; Samir, R.; Assar, N. H.; Sleem, A. A. Efficient Wound Healing Composite Hydrogel Using Egyptian Avena Sativa L. Polysaccharide Containing β-glucan. Int. J. Biol. Macromol. 2020, 149, 1331–1338. DOI: 10.1016/j.ijbiomac.2019.11.046.
  • Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Peñas, E. Production and Characterization of a Novel Gluten-Free Fermented Beverage Based on Sprouted Oat Flour. Foods. 2021, 10(1), 139. DOI: 10.3390/foods10010139.
  • Bei, Q.; Liu, Y.; Wang, L.; Chen, G.; Wu, Z. Improving Free, Conjugated, and Bound Phenolic Fractions in Fermented Oats (Avena Sativa L.) With Monascus Anka and Their Antioxidant Activity. J. Funct. Foods. 2017, 32, 185–194. DOI: 10.1016/j.jff.2017.02.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.