802
Views
5
CrossRef citations to date
0
Altmetric
Review

Mediated curing strategy: An overview of salt reduction for dry-cured meat products

, , , , ORCID Icon, , , , & show all

References

  • Fraqueza, M. J.; Laranjo, M.; Alves, S.; Fernandes, M. H.; Agulheiro-Santos, A. C.; Fernandes, M. J.; Potes, M. E.; Elias, M. Dry-Cured Meat Products according to the Smoking Regime: Process Optimization to Control Polycyclic Aromatic Hydrocarbons. Foods. 2020, 9. DOI: 10.3390/foods9010091.
  • Zhou, G.-H.; Zhao, G.-M. Biochemical Changes during Processing of Traditional Jinhua Ham. Meat. Sci. 2007, 77, 114–120. DOI: 10.1016/j.meatsci.2007.03.028.
  • Zhou, C.-Y.; Pan, -D.-D.; Bai, Y.; Li, C.-B.; Xu, X.-L.; Zhou, G.-H.; Cao, J.-X. Evaluating Endogenous Protease of Salting Exudates during the Salting Process of Jinhua Ham. Lwt-Food. Sci. Technol. 2019, 101, 76–82. DOI: 10.1016/j.lwt.2018.11.026.
  • Wang, Y.; Jiang, Y.-T.; Cao, J.-X.; Chen, Y.-J.; Sun, -Y.-Y.; Zeng, X.-Q.; Pan, -D.-D.; Ou, C.-R.; Gan, N. Study on Lipolysis-oxidation and Volatile Flavour Compounds of Dry-cured Goose with Different Curing Salt Content during Production. Food. Chem. 2016, 190, 33–40. DOI: 10.1016/j.foodchem.2015.05.048.
  • Stanley, R. E.; Bower, C. G.; Sullivan, G. A. Influence of Sodium Chloride Reduction and Replacement with Potassium Chloride Based Salts on the Sensory and Physico-chemical Characteristics of Pork Sausage Patties. Meat. Sci. 2017, 133, 36–42. DOI: 10.1016/j.meatsci.2017.05.021.
  • Leyvraz, M.; Chatelan, A.; Da Costa, B. R.; Taffe, P.; Paradis, G.; Bovet, P.; Bochud, M.; Chiolero, A. Sodium Intake and Blood Pressure in Children and Adolescents: A Systematic Review and Meta-analysis of Experimental and Observational Studies. Int. J. Epidemiol. 2018, 47, 1796–1810. DOI: 10.1093/ije/dyy121.
  • Allison, A.; Fouladkhah, A. Adoptable Interventions, Human Health, and Food Safety Considerations for Reducing Sodium Content of Processed Food Products. Foods. 2018, 7. DOI: 10.3390/foods7020016.
  • Verma, A. K.; Banerjee, R. Low-sodium Meat Products: Retaining Salty Taste for Sweet Health. Crit. Rev. Food. Sci. 2012, 52, 72–84. DOI: 10.1080/10408398.2010.498064.
  • Du, S.-F.; Wang, H.-J.; Zhang, B.; Popkin, B. M. Dietary Potassium Intake Remains Low and Sodium Intake Remains High, and Most Sodium Is Derived from Home Food Preparation for Chinese Adults, 1991–2015. J. Nutr. 2020, 150, 1230–1239. DOI: 10.1093/jn/nxz332.
  • Fouladkhah, A.; Berlin, D.; Bruntz, D. High-Sodium Processed Foods: Public Health Burden and Sodium Reduction Strategies for Industry Practitioners. Food. Rev. Int. 2015, 31, 341–354. DOI: 10.1080/87559129.2015.1022829.
  • He, F.-J.; MacGregor, G. A. Role of Salt Intake in Prevention of Cardiovascular Disease: Controversies and Challenges. Nat. Rev. Cardiol. 2018, 15, 371–377. DOI: 10.1038/s41569-018-0004-1.
  • Bernabe-Ortiz, A.; Sal Y Rosas, V. G.; Ponce-Lucero, V.; Cardenas, M. K.; Carrillo-Larco, R. M.; Diez-Canseco, F.; Pesantes, M. A.; Sacksteder, K. A.; Gilman, R. H.; Miranda, J. J. Effect of Salt Substitution on Community-wide Blood Pressure and Hypertension Incidence. Nat. Med. 2020, 26, 374–378. DOI: 10.1038/s41591-020-0754-2.
  • WHO. Guideline: Sodium Intake for Adults and Children. Geneva, World Health Organization (WHO) 1–8 , 2011.
  • Schivazappa, C.; Virgili, R. Impact of Salt Levels on the Sensory Profile and Consumer Acceptance of Italian Dry-cured Ham. J. Sci. Food. Agr. 2020, 100, 3370–3377. DOI: 10.1002/jsfa.10370.
  • Taylor, C.; Doyle, M.; Webb, D. “The Safety of Sodium Reduction in the Food Supply: A Cross-discipline Balancing act”—Workshop Proceedings. Crit. Rev. Food. Sci. 2018, 58, 1650–1659. DOI: 10.1080/10408398.2016.1276431.
  • Bosse Nee Danz, R.; Muller, A.; Gibis, M.; Weiss, A.; Schmidt, H.; Weiss, J. Recent Advances in Cured Raw Ham Manufacture. Crit. Rev. Food. Sci. 2018, 58, 610–630. DOI: 10.1080/10408398.2016.1208634.
  • Petrova, I.; Aasen, I. M.; Rustad, T.; Eikevik, T. M. Trygve Magne Eikevik Manufacture of Dry-cured Ham: A Review. Part 1. Biochemical Changes during the Technological Process. Eur. Food. Res. Technol. 2015, 241, 587–599. DOI: 10.1007/s00217-015-2490-2.
  • Van Pamel, P.; Cnops, G.; Van Droogenbroeck, B.; Delezie, E. C.; Van Royen, G.; Vlaemynck, G. M.; Bekaert, K. M.; Roldan-Ruiz, I.; Crivits, M.; Bernaert, N., et al. Opportunities within the Agri-food System to Encourage a Nutritionally Balanced Diet-Part II. Food. Rev. Int. 2021, 37, 573–600. DOI: 10.1080/87559129.2020.1717518.
  • Laranjo, M.; Gomes, A.; Agulheiro-Santos, A. C.; Potes, M. E.; Cabrita, M. J.; Garcia, R.; Rocha, J. M.; Roseiro, L. C.; Fernandes, M. J.; Fraqueza, M. J., et al. Impact of Salt Reduction on Biogenic Amines, Fatty Acids, Microbiota, Texture and Sensory Profile in Traditional Blood Dry-cured Sausages. Food. Chem. 2017, 218, 129–136. DOI: 10.1016/j.foodchem.2016.09.056.
  • Montiel, R.; Peiroten, A.; Ortiz, S.; Bravo, D.; Gaya, P.; Martinez-Suarez, J. V.; Tapiador, J.; Nunez, M.; Medina, M. Inactivation of Listeria Monocytogenes during Dry-cured Ham Processing. Int. J. Food. Microbiol. 2020, 318, 108469. DOI: 10.1016/j.ijfoodmicro.2019.108469.
  • Laranjo, M.; Agulheiro-Santos, A. C.; Potes, M. E.; Cabrita, M. J.; Garcia, R.; Fraqueza, M. J.; Elias, M. Effects of Genotype, Salt Content and Calibre on Quality of Traditional Dry-fermented Sausages. Food. Control. 2015, 56, 119–127. DOI: 10.1016/j.foodchem.2016.09.056.
  • Sabine, L.; Aurore, V.; Geoffrey, R.; Regine, T. Insight into the Genome of Staphylococcus Xylosus, a Ubiquitous Species Well Adapted to Meat Products. Microorganisms. 2017, 5. DOI: 10.3390/microorganisms5030052.
  • Hu, M.-Z.; Yu, J.-S.; Yu, J.-P.; Pan, Y.-T.; Ou, Y.-X. Isolation and Screening of Staphylococcus Xylosus P2 from Chinese Bacon: A Novel Starter Culture in Fermented Meat Products. Int. J. Food. Eng. 2018, 15. DOI: 10.1515/ijfe-2018-0021.
  • Vermassen, A.; Dordet-Frisoni, E.; De La Foye, A.; Micheau, P.; Laroute, V.; Leroy, S.; Talon, R. Adaptation of Staphylococcus Xylosus to Nutrients and Osmotic Stress in a Salted Meat Model. Front. Microbiol. 2016, 7, 87. DOI: 10.3389/fmicb.2016.00087.
  • Flores, M.; Corral, S.; Cano-Garcia, L.; Salvador, A.; Belloch, C. Yeast Strains as Potential Aroma Enhancers in Dry Fermented Sausages. Int. J. Food. Microbiol. 2015, 212, 16–24. DOI: 10.1016/j.ijfoodmicro.2015.02.028.
  • Sun, F.-D.; Kong, B.-H.; Chen, Q.; Han, Q.; Diao, X.-P. N-nitrosoamine Inhibition and Quality Preservation of Harbin Dry Sausages by Inoculated with Lactobacillus Pentosus, Lactobacillus Curvatus and Lactobacillus Sake. Food. Control. 2017, 73, 1514–1521. DOI: 10.1016/j.foodcont.2016.11.018.
  • Coelho, S. R.; Lima, I. A.; Martins, M. L.; Benevenuto Junior, A. A.; Torres Filho, R. D. A.; Ramos, A. D. L. S.; Ramos, E. M. Application of Lactobacillus Paracasei LPC02 and Lactulose as a Potential Symbiotic System in the Manufacture of Dry-fermented Sausage. Lwt-Food. Sci. Technol. 2019, 102, 254–259. DOI: 10.1016/j.lwt.2018.12.045.
  • Hu, -Y.-Y.; Zhang, L.; Zhang, H.; Wang, Y.; Chen, Q.; Kong, B.-H. Physicochemical Properties and Flavour Profile of Fermented Dry Sausages with a Reduction of Sodium Chloride. Lwt-Food. Sci. Technol. 2020, 124. DOI: 10.1016/j.lwt.2020.109061.
  • Chen, J.-X.; Hu, -Y.-Y.; Wen, R.-G.; Liu, Q.; Chen, Q.; Kong, B.-H. Effect of NaCl Substitutes on the Physical, Microbial and Sensory Characteristics of Harbin Dry Sausage. Meat. Sci. 2019, 156, 205–213. DOI: 10.1016/j.meatsci.2019.05.035.
  • Montanari, C.; Veronica, G.; Torriani, S.; Barbieri, F.; Bargossi, E.; Lanciotti, R.; Grazia, L.; Magnani, R.; Tabanelli, G.; Gardini, F. Effects of the Diameter on Physico-chemical, Microbiological and Volatile Profile in Dry Fermented Sausages Produced with Two Different Starter Cultures. Food. Biosci. 2018, 22, 9–18. DOI: 10.1016/j.fbio.2017.12.013.
  • Johnson, M. E.; Kapoor, R.; Mcmahon, D. J.; Mccoy, D. R.; Narasimmon, R. G. Reduction of Sodium and Fat Levels in Natural and Processed Cheeses: Scientific and Technological Aspects. Compr. Rev. Food. Sci. F. 2009, 8, 252–268. DOI: 10.1111/j.1541-4337.2009.00080x.
  • Wang, J.-M.; Jin, G.-F.; Zhang, W.-G.; Ahn, D. U.; Zhang, J.-H. Effect of Curing Salt Content on Lipid Oxidation and Volatile Flavour Compounds of Dry-cured Turkey Ham. Lwt-Food. Sci. Technol. 2012, 48, 102–106. DOI: 10.1016/j.lwt.2012.02.020.
  • Kong, F.-B.; Oliveira, A.; Tang, G.-M.; Rasco, B.; Crapo, C. Salt Effect on Heat-induced Physical and Chemical Changes of Salmon Fillet (O-gorbuscha). Food. Chem. 2008, 106, 957–966. DOI: 10.1016/j.foodchem.2007.07.008.
  • Flores, M. Understanding the Implications of Current Health Trends on the Aroma of Wet and Dry Cured Meat Products. Meat. Sci. 2018, 144, 53–61. DOI: 10.1016/j.meatsci.2018.04.016.
  • Mariutti, L. R. B.; Bragagnolo, N. Influence of Salt on Lipid Oxidation in Meat and Seafood Products: A Review. Food. Res. Int. 2017, 94, 90–100. DOI: 10.1016/j.foodres.2017.02.003.
  • Bess, K. N.; Boler, D. D.; Tavarez, M. A.; Johnson, H. K.; Mckeith, F. K.; Killefer, J.; Dilger, A. C. Texture, Lipid Oxidation and Sensory Characteristics of Ground Pork Patties Prepared with Commercially Available Salts. Lwt-Food. Sci. Technol. 2013, 50, 408–413. DOI: 10.1016/j.lwt.2012.09.004.
  • Roseiro, L. C.; Santos, C.; Sol, M.; Borges, M. J.; Anjos, M.; Goncalves, H.; Carvalho, A. S. Proteolysis in Painho de Portalegre Dry Fermented Sausage in Relation to Ripening Time and Salt Content. Meat. Sci. 2008, 79, 784–794. DOI: 10.1016/j.meatsci.2007.11.012.
  • Zhou, Y.; Zhou, C.-Y.; Pan, -D.-D.; Wang, Y.; Cao, J.-X. The Effect of Sodium Chloride Levels on the Taste and Texture of Dry-cured Ham. J. Food. Meas. Charact. 2020, 14, 2646–2655. DOI: 10.1007/s11694-020-00511-3.
  • Lorido, L.; Estevez, M.; Ventanas, J.; Ventanas, S. Salt and Intramuscular Fat Modulate Dynamic Perception of Flavour and Texture in Dry-cured Hams. Meat. Sci. 2015, 107, 39–48. DOI: 10.1016/j.meatsci.2015.03.025.
  • Çarkcioglu, E.; Rosenthal, A. J.; Candogan, K. Rheological and Textural Properties of Sodium Reduced Salt Soluble Myofibrillar Protein Gels Containing Sodium Tri-Polyphosphate. J. Texture. Stud. 2016, 47, 181–187. DOI: 10.1111/jtxs.12169.
  • Dos Santos, B. A.; Campagnol, P. C. B.; Fagundes, M. B.; Wagner, R.; Pollonio, M. A. R., and Monaco, R. D. Adding Blends of NaCl, KCl, and CaCl2to Low-Sodium Dry Fermented Sausages: Effects on Lipid Oxidation on Curing Process and Shelf Life. J. Food. Quality. 2017, 2017, 1–8. DOI: 10.1155/2017/7085798.
  • Zhang, -Y.-Y.; Wu, H.-Z.; Tang, J.;.; Huang, -M.-M.; Zhao, J.-Y.; Zhang, J.-H. Influence of Partial Replacement of NaCl with KCl on Formation of Volatile Compounds in Jinhua Ham during Processing. Food. Sci. Biotechnol. 2016, 25, 379–391. DOI: 10.1007/s10068-016-0053-3.
  • Lorenzo, J. M.; Cittadini, A.; Bermudez, R.; Munekata, P. E.; Dominguez, R. Influence of Partial Replacement of NaCl with KCl, CaCl2 and MgCl2 on Proteolysis, Lipolysis and Sensory Properties during the Manufacture of Dry-cured Lacon. Food. Control. 2015, 55, 90–96. DOI: 10.1016/j.foodcont.2015.02.035.
  • Gan, X.; Zhao, L.; Li, J.-G.; Tu, J.-C.; Wang, Z.-M. Effects of Partial Replacement of NaCl with KCl on Bacterial Communities and Physicochemical Characteristics of Typical Chinese Bacon. Food. Microbiol. 2021, 93, 103605. DOI: 10.1016/j.fm.2020.103605.
  • Devlieghere, F.; Vermeiren, L.; Bontenbal, E.; Lamers, P. P.; Debevere, J. Reducing Salt Intake from Meat Products by Combined Use of Lactate and Diacetate Salts without Affecting Microbial Stability. Int. J. Food. Sci. Tech. 2009, 44, 337–341. DOI: 10.1111/j.1365-2621.2008.01724.x.
  • Dos Santos Alves, L. A. A.; Lorenzo, J. M.; Goncalves, C. A. A.; Dos Santos, B. A.; Heck, R. T.; Cichoski, A. J.; Campagnol, P. C. B. Impact of Lysine and Liquid Smoke as Flavor Enhancers on the Quality of Low-fat Bologna-type Sausages with 50% Replacement of NaCl by KCl. Meat. Sci. 2017, 123, 50–56. DOI: 10.1016/j.meatsci.2016.09.001.
  • Gaudette, N. J.; Pietrasik, Z. The Sensory Impact of Salt Replacers and Flavor Enhancer in Reduced Sodium Processed Meats Is Matrix Dependent. J. Sens. Stud. 2017, 32. DOI: 10.1111/joss.12247.
  • Rios-Mera, J. D.; Saldana, E.; Cruzado-Bravo, M. L. M.; Patinho, I.; Selani, M. M.; Valentin, D.; Contreras-Castillo, C. J. Reducing the Sodium Content without Modifying the Quality of Beef Burgers by Adding Micronized Salt. Food. Res. Int. 2019, 121, 288–295. DOI: 10.1016/j.foodres.2019.03.044.
  • Rios-Mera, J. D.; Selani, M. M.; Patinho, I.; Saldan, E.; Contreras-Castillo, C. J. Modification of NaCl Structure as a Sodium Reduction Strategy in Meat Products: An Overview. Meat. Sci. 2021, 174, 108417. DOI: 10.1016/j.meatsci.2020.108417.
  • Raybaudi-Massilia, R.; Mosqueda-Melgar, J.; Rosales-Oballos, Y.; Citti de Petricone, R.; Fragenas, N. N.; Zambrano-Duran, A.; Sayago, K.; Lara, M.; Urbina, G. New Alternative to Reduce Sodium Chloride in Meat Products: Sensory and Microbiological Evaluation. Lwt-Food. Sci. Technol. 2019, 108, 253–260. DOI: 10.1016/j.lwt.2019.03.057.
  • Pottier, L.; Villamonte, G.; Lamballerie, M. D. Applications of High Pressure for Healthier Foods. Curr. Opin. Food. Sci. 2017, 16, 21–27. DOI: 10.1016/j.cofs.2017.06.009.
  • Han, G.; Qin, Z.-Y.; Zhang, H.; Kong, B.-H. Mechanisms through Which High-Pressure Treatment Reduces the Use of Salt in Low-Salt Meat Products and Its Application in Quality Improvement: A Review. Food. Sci. 2019, 40, 312–319. DOI: 10.7506/spkx1002-6630-20180521-303.
  • Garcia-Gil, N.; Santos-Garces, E.; Fulladosa, E.; Laverse, J.; Del Nobile, M. D.; Gou, P. High Pressure Induces Changes in Texture and Microstructure of Muscles in Dry-cured Hams. Innov. Food. Sci. Emerg. 2014, 22, 63–69. DOI: 10.1016/j.ifset.2014.01.004.
  • Kang, D.-C.; Zhang, -W.-W.; Lorenzo, J. M.; Chen, X. Structural and Functional Modification of Food Proteins by High Power Ultrasound and Its Application in Meat Processing. Crit. Rev. Food. Sci. 2021, 61, 1914–1933. DOI: 10.1080/10408398.2020.1767538.
  • Kang, D.-C.; Wang, A.-R.; Zhou, G.-H.; Zhang, W.-G.; Xu, S.-M.; Guo, G.-P. Power Ultrasonic on Mass Transport of Beef: Effects of Ultrasound Intensity and Nacl Concentration. Innov. Food. Sci. Emerg. 2016, 35, 36–44. DOI: 10.1016/j.ifset.2016.03.009.
  • Mcdonnell, C. K.; Lyng, J. G.; Allen, P. The Use of Power Ultrasound for Accelerating the Curing of Pork. Meat. Sci. 2014, 98, 142–149. DOI: 10.1016/j.meatsci.2014.04.008.
  • Pinna, A.; Saccani, G.; Schivazappa, C.; Simoncini, N.; Virgili, R. Revision of the Cold Processing Phases to Obtain a Targeted Salt Reduction in Typical Italian Dry-cured Ham. Meat. Sci. 2020, 161, 107994. DOI: 10.1016/j.meatsci.2019.107994.
  • Vidal, V. A. S.; Biachi, J. P.; Paglarini, C. S.; Pinton, M. B.; Campagnol, P. C. B.; Esmerino, E. A.; Da Cruz, A. G.; Cruz, D.; Morgano, M. A.; Pollonio, M. A. R. Reducing 50% Sodium Chloride in Healthier Jerked Beef: An Efficient Design to Ensure Suitable Stability, Technological and Sensory Properties. Meat. Sci. 2019, 152, 49–57. DOI: 10.1016/j.meatsci.2019.02.005.
  • Vidal, V. A. S.; Bernardinelli, O. D.; Paglarini, C. S.; Sabadini, E.; Pollonio, M. A. R. Understanding the Effect of Different Chloride Salts on the Water Behavior in the Salted Meat Matrix along 180days of Shelf Life. Food. Res. Int. 2019, 125, 108634. DOI: 10.1016/j.foodres.2019.108634.
  • Vidal, V. A. S.; Lorenzo, J. M.; Munekata, P. E. S.; Pollonio, M. A. R. Challenges to Reduce or Replace NaCl by Chloride Salts in Meat Products Made from Whole Pieces - a Review. Crit. Rev. Food. Sci. 2020, 61, 1–13. DOI: 10.1080/10408398.2020.1774495.
  • Desmond, E. Reducing Salt: A Challenge for the Meat Industry. Meat. Sci. 2006, 74, 188–196. DOI: 10.1016/j.meatsci.2006.04.014.
  • Zheng, J.-B.; Han, Y.-R.; Ge, G.; Zhao, -M.-M.; Sun, W.-Z. Partial Substitution of NaCl with Chloride Salt Mixtures: Impact on Oxidative Characteristics of Meat Myofibrillar Protein and Their Rheological Properties. Food. Hydrocolloid. 2019, 96, 36–42. DOI: 10.1016/j.foodhyd.2019.05.003.
  • Liu, S.-X.; Zhang, Y.-W.; Zhou, G.-H.; Ren, X.-P.; Bao, Y.-J.; Zhu, Y.-X.; Zeng, X.-F.; Peng, Z.-Q. Lipolytic Degradation, Water and Flavor Properties of Low Sodium Dry Cured Beef. Int. J. Food. Prop. 2019, 22, 1322–1339. DOI: 10.1080/10942912.2019.1642354.
  • Kumari, S. O.; Keenan, D. F.; Bright, A.; Kerry, J. P.; Brijesh, K. T. Ultrasound Assisted Diffusion of Sodium Salt Replacer and Effect on Physicochemical Properties of Pork Meat. Int. J. Food. Sci. Tech. 2016, 51, 37–45. DOI: 10.1111/ijfs.13001.
  • Xu, H., Zhang, X.-K. , Wang, X., and Liu, D.-H. The effects of high pressure on the myofibrillar structure and meat quality of marinating Tan mutton. J Food Process Eng. 2019, 42. DOI:10.1111/JFPE.13138.
  • Morton, J. D.; Pearson, R. G.; Lee, H. Y. Y.; Smithson, S.; Mason, S. L.; Bickerstaffe, R. High Pressure Processing Improves the Tenderness and Quality of Hot-boned Beef. Meat. Sci. 2017, 133, 69–74. DOI: 10.1016/j.meatsci.2017.06.005.
  • Villacis, M. F.; Rastogi, N. K.; Balasubramaniam, V. M. Effect of High Pressure on Moisture and NaCl Diffusion into Turkey Breast. Lwt-Food. Sci. Technol. 2008, 41, 836–844. DOI: 10.1016/j.lwt.2007.05.018.
  • Martinez-Onandi, N.; Sanchez, C.; Nunez, M.; Picon, A. Microbiota of Iberian Dry-cured Ham as Influenced by Chemical Composition, High Pressure Processing and Prolonged Refrigerated Storage. Food. Microbiol. 2019, 80, 62–69. DOI: 10.1016/j.fm.2019.01.002.
  • O’Flynn, C. C.; Cruz-Romero, M. C.; Troy, D.; Mullen, A. M.; Kerry, J. P. The Application of High-pressure Treatment in the Reduction of Salt Levels in Reduced-phosphate Breakfast Sausages. Meat. Sci. 2014, 96, 1266–1274. DOI: 10.1016/j.meatsci.2013.11.010.
  • Cando, D.; Herranz, B.; Javier Borderias, A.; Moreno, H. M. Effect of High Pressure on Reduced Sodium Chloride Surimi Gels. Food Hydrocolloid. 2015, 51, 176–187. DOI: 10.1016/j.foodhyd.2015.05.016.
  • Zhang, Z.-Y.; Yang, Y.-L.; Zhou, P.; Zhang, X.; Wang, J.-Y. Effects of High Pressure Modification on Conformation and Gelation Properties of Myofibrillar Protein. Food. Chem. 2017, 217, 678–686. DOI: 10.1016/j.foodchem.2016.09.040.
  • Picouet, P. A.; Sala, X.; Garcia-Gil, N.; Nolis, P.; Colleo, M.; Parella, T.; Arnau, J. High Pressure Processing of Dry-cured Ham: Ultrastructural and Molecular Changes Affecting Sodium and Water Dynamics. Innove. Food. Sci. Emerg. 2012, 16, 335–340. DOI: 10.1016/j.ifset.2012.07.008.
  • Alarcon-Rojo, D.; Janacua, H.; Rodriguez, J. C.; Paniwnyk, L.; Mason, T. J. Power Ultrasound in Meat Processing. Meat. Sci. 2015, 107, 86–93. DOI: 10.1016/j.meatsci.2015.04.015.
  • Awada, T. S.; Moharram, H. A.; Shaltoutc, O. E.; Askerd, D.; Youssef, M. M. Applications of Ultrasound in Analysis, Processing and Quality Control of Food: A Review. Food. Res. Int. 2012, 48, 410–427. DOI: 10.1016/j.foodres.2012.05.004.
  • Carcel, J. A.; Benedito, J.; Bon, J.; Mulet, A. High Intensity Ultrasound Effects on Meat Brining. Meat. Sci. 2007, 76, 611–619. DOI: 10.1016/j.meatsci.2007.01.022.
  • Inguglia, E. S.; Zhang, Z.-H.; Tiwari, B. K.; Kerry, J. P.; Burgess, C. M. Salt Reduction Strategies in Processed Meat products-A Review. Trends. Food. Sci. Tech. 2017, 59, 70–78. DOI: 10.1016/j.tifs.2016.10.016.
  • Mcdonnell, C. K.; Lyng, J. G.; Arimi, J. M.; Allen, P. The Acceleration of Pork Curing by Power Ultrasound: A Pilot-scale Production. Innov. Food. Sci. Emerg. 2014, 26, 191–198. DOI: 10.1016/j.ifset.2014.05.004.
  • Inguglia, E. S.; Zhang, Z.-H.; Burgess, C.; Kerry, J. P.; Tiwari, B. K. Influence of Extrinsic Operational Parameters on Salt Diffusion during Ultrasound Assisted Meat Curing. Ultrasonics. 2018, 83, 164–170. DOI: 10.1016/j.ultras.2017.03.017.
  • Pan, Q.; Yang, G.-H.; Wang, Y.; Wang, -X.-X.; Zhou, Y.; Li, P.-J.; Chen, C.-G. Application of Ultrasound-assisted and Tumbling Dry-curing Techniques for Reduced-sodium Bacon. J. Food. Process. Pres. 2020, 44. DOI: 10.1111/jfpp.14607.
  • Gianluca, P.; Roberto, B.; Giovanni, P.; Luca, R.; Adam, D.; David, A.; Jerry, T.; Giovanni, S.; Roberta, V.; Andrea, M. Proteomics of Parma Dry-Cured Ham: Analysis of Salting Exudates. J. Agr. Food. Chem. 2017, 65, 6307–6316. DOI: 10.1021/acs.jafc.7b01293.
  • Perez-Santaescolastica, C.; Fraeye, I.; Barba, F. J.; Gomez, B.; Tomasevic, I.; Romero, A.; Toldra, F.; Lorenzo, J. M. Application of Non-invasive Technologies in Dry-cured Ham: An Overview. Trends. Food. Sci. Tech. 2019, 86, 360–374. DOI: 10.1016/j.tifs.2019.02.011.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, E. A. The Application of Pulsed Electric Field as a Sodium Reducing Strategy for Meat Products. Food. Chem. 2020, 306, 125622. DOI: 10.1016/j.foodchem.2019.125622.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, E. A. Current and Future Prospects for the Use of Pulsed Electric Field in the Meat Industry. Crit. Rev. Food. Sci. 2019, 59, 1660–1674. DOI: 10.1080/10408398.2018.1425825.
  • Sharedeh, D.; Mirade, P. S.; Venien, A.; Daudin, J. D. Analysis of Salt Penetration Enhancement in Meat Tissue by Mechanical Treatment Using a Tumbling Simulator. J. Food. Eng. 2015, 166, 377–383. DOI: 10.1016/j.jfoodeng.2015.06.023.
  • Vladimir, F.; Ljubinko, L.; Biljana, C.; Milica, N.; Lato, P.; Nevena, M. Optimisation of Mass Transfer Kinetics during Osmotic Dehydration of Pork Meat Cubes in Complex Osmotic Solution. Chem. Ind. Chem. Eng. Q. 2014, 20, 305–314. DOI: 10.2298/CICEQ120511012F.
  • Dimakopoulou-Papazoglou, D.; Katsanidis, E. Diffusion Coefficients and Volume Changes of Beef Meat during Osmotic Dehydration in Binary and Ternary Solutions. Food. Bioprod. Process. 2019, 116, 10–19. DOI: 10.1016/j.fbp.2019.04.007.
  • Dimakopoulou-Papazoglou, D.; Katsanidis, E. Mass Transfer Kinetics during Osmotic Processing of Beef Meat Using Ternary Solutions. Food. Bioprod. Process. 2016, 100, 560–569. DOI: 10.1016/j.fbp.2016.09.001.
  • Chenlo, F.; Moreira, R.; Pereira, G.; Bello, B. Kinematic Viscosity and Water Activity of Aqueous Solutions of Glycerol and Sodium Chloride. Eur. Food. Res. Technol. 2004, 4, 403–408. DOI: 10.1007/s00217-004-0974-6.
  • Tsironi, T. N.; Taoukis, P. S. Shelf-life Extension of Gilthead Seabream Fillets by Osmotic Treatment and Antimicrobial Agents. J. Appl. Microbiol. 2012, 112, 316–328. DOI: 10.1111/j.1365-2672.201105207.x.
  • Andreou, V.; Tsironi, T.; Dermesonlouoglou, E.; Katsaros, G.; Taoukis, P. Combinatory Effect of Osmotic and High Pressure Processing on Shelf Life Extension of Animal Origin Products-application to Chilled Chicken Breast Fillets. Food. Packaging. Shelf. 2018, 15, 43–51. DOI: 10.1016/j.fpsl.2017.11.002.
  • Semenoglou, I.; Dimopoulos, G.; Tsironi, T.; Taoukis, P. Mathematical Modelling of the Effect of Solution Concentration and the Combined Application of Pulsed Electric Fields on Mass Transfer during Osmotic Dehydration of Sea Bass Fillets. Food. Bioprod. Process. 2020, 121, 186–192. DOI: 10.1016/j.fbp.2020.02.007.
  • Yi, C.-P.; Zhong, C.-M. Application of Water Activity Lowering Agents in Cured Elopichthys Bambusa. Food. Sci. 2013, 34, 358–361.
  • Liu, C.-L. Effect of New Curing on Quality and Proteomics of Fermented Loin Ham; Master Dissertation, Guizhou Uninversity, Guiyang: C.H.N. 2020. DOI:10.27047/d.cnki.ggudu.2020.000451.
  • Tsironi, T.; Salapa, I.; Taoukis, P. Shelf Life Modelling of Osmotically Treated Chilled Gilthead Seabream Fillets. Innov. Food. Sci. Emerg. 2007, 10, 23–31. DOI: 10.1016/j.ifset.2008.09.004.
  • Chen, C.; Li, W.-Z.; Song, Y.-C.; Weng, L.-D.; Zhang, N. Concentration Dependence of Water Self-diffusion Coefficients in Dilute Glycerol-water Binary and Glycerol-water-sodium Chloride Ternary Solutions and the Insights from Hydrogen Bonds. Mol. Phys. 2012, 110, 283–291. DOI: 10.1080/00268976.2011.641602.
  • Chen, X.; Zhang, H.; Hemar, Y.; Zhou, P. Glycerol Induced Stability Enhancement and Conformational Changes of β-lactoglobulin. Food. Chem. 2019, 308, 125596. DOI: 10.1016/j.foodchem.2019.125596.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.