18,700
Views
27
CrossRef citations to date
0
Altmetric
Review

Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development

, , , , , , , , & ORCID Icon show all

References

  • Burton-Freeman, B.; Brzeziński, M.; Park, E.; Sandhu, A.; Xiao, D.; Edirisinghe, I. A Selective Role of Dietary Anthocyanins and Flavan-3-Ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence. Nutrients. 2019, 11, 841. DOI: 10.3390/nu11040841.
  • Gowd, V.; Jia, Z.-Q.; Chen, W. Anthocyanins as Promising Molecules and Dietary Bioactive Components against Diabetes–A Review of Recent Advances. Trends Food Sci. Tech. 2017, 68, 1–13. DOI: 10.1016/j.tifs.2017.07.015.
  • Castañeda-Ovando, A.; de Lourdespacheco-hernández, M.; Páez-Hernández, M.-E.; Rodríguez, J.-A. Galán-Vidal, C. A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. DOI: 10.1016/j.foodchem.2008.09.001.
  • You, Q.; Wang, B.; Chen, F.; Huang, Z.; Wang, X.; Luo, P.-G. Comparison of Anthocyanins and Phenolics in Organically and Conventionally Grown Blueberries in Selected Cultivars. Food Chem. 2015, 125, 201–208. DOI: 10.1016/j.foodchem.2010.08.063.
  • Reis, J.-F.; Monteiro, -V.-V.-S.; de Souza Gomes, R.; Do Carmo, -M.-M.; Da Costa, G.-V.; Ribera, P.-C.; Monteiro, M.-C. Action Mechanism and Cardiovascular Effect of Anthocyanins: A Systematic Review of Animal and Human Studies. J. Transl. Med. 2016, 14, 315. DOI: 10.1186/s12967-016-1076-5.
  • Ou, K.; Gu, L. Absorption and Metabolism of Proanthocyanidins. J. Funct. Foods 2014, 7, 43–53. DOI: 10.1016/j.jff.2013.08.004.
  • Ma, Z.-F.; Zhang, H. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review. Antioxidants. 2017, 6, 71. DOI: 10.3390/antiox6030071.
  • Rauf, A.; Imran, M.; Abu-Izneid, T.; Ul-Haq, I.; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.-A. Proanthocyanidins: A Comprehensive Review. Biomed. Pharmacother. 2019, 116, 108999. DOI: 10.1016/j.biopha.2019.108999.
  • Manolescu, B.-N.; Oprea, E.; Mititelu, M.; Ruta, -L.-L. Farcasanu, I.-C. Dietary Anthocyanins and Stroke: A Review of Pharmacokinetic and Pharmacodynamic Studies. Nutrients 2019, 11, 1479. DOI: 10.3390/nu11071479.
  • Fernandes, I.; Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Bioavailability of Anthocyanins and Derivatives. J. Funct. Foods. 2014, 7, 54–66. DOI: 10.1016/j.jff.2013.05.010.
  • Zhao, C.-L.; Yu, Y.-Q.; Chen, Z.-J.; Wen, G.-S.; Wei, F.-G.; Zheng, Q.; Wang, C.-D.; Xiao, X.-L. Stability-Increasing Effects of Anthocyanin Glycosyl Acylation. Food Chem. 2017, 214, 119–128. DOI: 10.1016/j.foodchem.2016.07.073.
  • Shi, J.; Simal-Gandara, J.; Mei, J.; Ma, W.; Peng, Q.; Shi, Y.; Xu, Q.; Lin, Z.; Lv, H. Insight into the Pigmented Anthocyanins and the Major Potential Co-Pigmented Flavonoids in Purple-Coloured Leaf Teas. Food Chem. 2021, 363, 130278. DOI: 10.1016/j.foodchem.2021.130278.
  • Unusan, N. Proanthocyanidins in Grape Seeds: An Updated Review of their Health Benefits and Potential Uses in the Food Industry. J. Funct. Foods. 2020, 67, 103861. DOI: 10.1016/j.jff.2020.103861.
  • González-Quilen, C.; Rodríguez-Gallego, E.; Beltrán-Debón, R.; Pinent, M.; Ardévol, A.; Blay, M.-T.; Terra, X. Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients. 2020, 12, 130. DOI: 10.3390/nu12010130.
  • Alejo-Armijo, A.; Salido, S.; Altarejos, J. Synthesis of A-type Proanthocyanidins and their Analogues: A Comprehensive Review. J. Agric. Food Chem. 2020, 68, 8104–8118. DOI: 10.1021/acs.jafc.0c03380.
  • Lu, Y.; Foo, L.-Y. Antioxidant and Radical Scavenging Activities of Polyphenols from Apple Pomace. Food Chem. 2000, 68, 81–85. DOI: 10.1016/S0308-8146(99)00167-3.
  • Rao, L.-J.-M.; Yada, H.; Ono, H.; Ohnishi-Kameyama, M.; Yoshida, M. Occurrence of Antioxidant and Radical Scavenging Proanthocyanidins from the Indian Minor Spice Nagkesar (Mammea longifolia planch and triana syn). Bioorg. Med. Chem. 2004, 12, 31–36. DOI: 10.1016/j.bmc.2003.10.052.
  • Hellström, J.-K.; Törrönen, A.-R.; Mattila, P.-H. Proanthocyanidins in Common Food Products of Plant Origin. J. Agric. Food Chem. 2009, 57, 7899–7906. DOI: 10.1021/jf901434d.
  • Wang, X.; Tong, H.; Chen, F.; Gangemi, J.-D. Chemical Characterization and Antioxidant Evaluation of Muscadine Grape Pomace Extract. Food Chem. 2010, 123, 1156–1162. DOI: 10.1016/j.foodchem.2010.05.080.
  • Martín-Gómez, J.; Varo, M.-A.; Mérida, J.; Serratosa, M.-P. Influence of Drying Processes on Anthocyanin Profiles, Total Phenolic Compounds and Antioxidant Activities of Blueberry (Vaccinium corymbosum). LWT-Food Sci. Technol. 2020, 120, 108931. DOI: 10.1016/j.lwt.2019.108931.
  • Zhou, L.; Xie, M.; Yang, F.; Liu, J. Antioxidant Activity of High Purity Blueberry Anthocyanins and the Effects on Human Intestinal Microbiota. LWT-Food Sci. Technol. 2020, 117, 108621. DOI: 10.1016/j.lwt.2019.10862.
  • Zafra-Stone, S.; Yasmin, T.; Bagchi, M.; Chatterjee, A.; Vinson, J.-A.; Bagchi, D. Berry Anthocyanins as Novel Antioxidants in Human Health and Disease Prevention. Mol. Nutr. Food Res. 2007, 51, 675–683. DOI: 10.1002/mnfr.200700002.
  • Kong, J.-M.; Chia, L.-S.; Goh, N.-K.; Chia, T.-F.; Brouillard, R. Analysis and Biological Activities of Anthocyanins. Phytochemistry. 2003, 64, 923–933. DOI: 10.1016/S0031-9422(03)00438-2.
  • Zhang, Q.; Chen, W.; Zhao, J.; Xi, W. Functional Constituents and Antioxidant Activities of Eight Chinese Native Goji Genotypes. Food Chem. 2016, 200, 230–236. DOI: 10.1016/j.foodchem.2016.01.046.
  • Zheng, J.; Ding, C.; Wang, L.; Li, G.; Shi, J.; Li, H.; Wang, H.; Suo, Y. Anthocyanins Composition and Antioxidant Activity of Wild Lycium Ruthenicum Murr. from Qinghai-Tibet Plateau. Food Chem. 2011, 126, 859–865. DOI: 10.1016/j.foodchem.2010.11.052.
  • Zhang, Y.; Liao, X.; Chen, F.; Wu, J.; Hu, X. Isolation, Identification, and Color Characterization of Cyanidin-3-Glucoside and Cyanidin-3-Sophoroside from Red Raspberry. Eur. Food Res. Technol. 2008, 226, 395–403. DOI: 10.1007/s00217-006-0550-3.
  • Tian, Z.; Aizezijiang, A.; Pang, H.; Du, S.; Feng, M.; Ma, K.; Gao, S.; Bai, G.; Ma, C. Constituent Analysis and Quality Control of Anthocyanin Constituents of Dried Lycium Ruthenicum Murray Fruits by HPLC-MS and HPLC-DAD. J. Liq. Chromatogr. R. T. 2016, 39, 453–458. DOI: 10.1080/10826076.2016.1179201.
  • Jiang, Y.; Nie, W.-J. Chemical Properties in Fruits of Mulberry Species from the Xinjiang Province of China. Food Chem. 2015, 174, 460–466. DOI: 10.1016/j.foodchem.2014.11.083.
  • Lin, J.-Y.; Tang, C.-Y. Determination of Total Phenolic and Flavonoid Contents in Selected Fruits and Vegetables, as well as their Stimulatory Effects on Mouse Splenocyte Proliferation. Food Chem. 2007, 101, 140–147. DOI: 10.1016/j.foodchem.2006.01.014.
  • Özgen, M.; Serçe, S.; Kaya, C. Phytochemical and Antioxidant Properties of Anthocyanin-Rich Morus Nigra and Morus Rubra Fruits. Sci. Hortic. 2009, 119, 275–279. DOI: 10.1016/j.scienta.2008.08.007.
  • Krishna, P.-G.-A.; Sivakumar, T.-R.; Jin, C.; Li, S.-H.; Weng, Y.-J.; Yin, J.; Gui, -Z.-Z. Antioxidant and Hemolysis Protective Effects of Polyphenol-Rich Extract from Mulberry Fruits. Pharmacogn. Mag. 2018, 14, 103. DOI: 10.4103/pm.pm_491_16.
  • Raman, S.-T.; Ganeshan, A.-K.-P.-G.; Chen, C.; Jin, C.; Li, S.-H.; Chen, H.-J.; Gui, Z. In Vitro and in Vivo Antioxidant Activity of Flavonoid Extracted from Mulberry Fruit (Morus alba L.). Pharmacogn. Mag. 2016, 12, 128. DOI: 10.4103/0973-1296.177910.
  • Huang, H.-P.; Chang, Y.-C.; Wu, C.-H.; Hung, C.-N.; Wang, C.-J. Anthocyanin-Rich Mulberry Extract Inhibit the Gastric Cancer Cell Growth in Vitro and Xenograft Mice by Inducing Signals of p38/p53 and c-jun. Food Chem. 2011, 129, 1703–1709. DOI: 10.1016/j.foodchem.2011.06.035.
  • Chang, -J.-J.; Hsu, M.-J.; Huang, H.-P.; Chung, D.-J.; Chang, Y.-C.; Wang, C.-J. Mulberry Anthocyanins Inhibit Oleic Acid Induced Lipid Accumulation by Reduction of Lipogenesis and Promotion of Hepatic Lipid Clearance. J. Agric. Food Chem. 2013, 61, 6069–6076. DOI: 10.1021/jf401171k.
  • Suh, H.-J.; Noh, D.-O.; Kang, C.-S.; Kim, J.-M.; Lee, S.-W. Thermal Kinetics of Color Degradation of Mulberry Fruit Extract. Mol. Nutr. Food Res. 2010, 47, 132–135. DOI: 10.1002/food.200390024.
  • Kabi, F.; Bareeba, F.-B. Herbage Biomass Production and Nutritive Value of Mulberry (Morus alba) and Calliandra Calothyrsus Harvested at Different Cutting Frequencies. Anim. Feed Sci. Tech. 2008, 140, 178–190. DOI: 10.1016/j.anifeedsci.2007.02.011.
  • Wu, X.; Liang, L.; Zou, Y.; Zhao, T.; Zhao, J.; Li, F.; Yang, L. Aqueous Two-Phase Extraction, Identification and Antioxidant Activity of Anthocyanins from Mulberry (Morus atropurpurea Roxb.). Food Chem. 2011, 129, 443–453. DOI: 10.1016/j.foodchem.2011.04.097.
  • Liang, L.; Wu, X.; Zhu, M.; Zhao, W.; Li, F.; Zou, Y.; Yang, L. Chemical Composition, Nutritional Value, and Antioxidant Activities of Eight Mulberry Cultivars from China. Pharmacogn. Mag. 2012, 8, 215. DOI: 10.4103/0973-1296.99287.
  • Jia, S.-J.; Tang, M.-S.; Wu, J.-M. The Determination of Flavonoid Contents in Mulberry and their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. DOI: 10.1016/S0308-8146(98)00102-2.
  • Dastmalchi, K.; Dorman, H.-D.; Koşar, M.; Hiltunen, R. Chemical Composition and in Vitro Antioxidant Evaluation of A Water-Soluble Moldavian Balm (Dracocephalum moldavica L.) Extract. LWT-Food Sci. Technol. 2007, 40, 239–248. DOI: 10.1016/j.lwt.2005.09.019.
  • Chen, K.-S.; Xu, C.-J.; Zhang, B.; Ferguson, I.-B. Red Bayberry: Botany and Horticulture. Hortic. Rev. 2004, 30, 83–114. DOI: 10.1002/9780470650837.ch3.
  • Cheng, H.; Chen, J.; Chen, S.; Wu, D.; Liu, D.; Ye, X. Characterization of Aroma-Active Volatiles in Three Chinese Bayberry (Myrica rubra) Cultivars Using GC–MS–Olfactometry and an Electronic Nose Combined with Principal Component Analysis. Food Res. Int. 2015, 72, 8–15. DOI: 10.1016/j.foodres.2015.03.006.
  • Bao, J.; Cai, Y.; Sun, M.; Wang, G.; Corke, H. A. Flavonols, and Free Radical Scavenging Activity of Chinese Bayberry (Myrica rubra) Extracts and their Color Properties and Stability. J. Agric. Food Chem. 2005, 53, 2327–2332. DOI: 10.1021/jf048312z.
  • Fang, Z.; Zhang, M.; Wang, L. HPLC-DAD-ESIMS Analysis of Phenolic Compounds in Bayberries (Myrica rubra Sieb. et Zucc.). Food Chem. 2007, 100, 845–852. DOI: 10.1016/j.foodchem.2005.09.024.
  • Sun, C.; Huang, H.; Xu, C.; Li, X.; Chen, K. Biological Activities of Extracts from Chinese Bayberry (Myrica rubra Sieb. et Zucc.): A Review. Plant Foods Hum. Nutr. 2013, 68, 97–106. DOI: 10.1007/s11130-013-0349-x.
  • Sun, C.-D.; Zhang, B.; Zhang, J.-K.; Xu, C.-J.; Wu, Y.-L.; Li, X.; Chen, K.-S. Cyanidin-3-Glucoside-rich Extract from Chinese Bayberry Fruit Protects Pancreatic β Cells and Ameliorates Hyperglycemia in Streptozotocin-Induced Diabetic Mice. J. Med. Food. 2012, 15, 288–298. DOI: 10.1089/jmf.2011.1806.
  • Zhang, W.-S.; Li, X.; Zheng, J.-T.; Wang, G.-Y.; Sun, C.-D.; Ferguson, I.-B.; Chen, K.-S. Bioactive Components and Antioxidant Capacity of Chinese Bayberry (Myrica rubra Sieb. and Zucc.) Fruit in Relation to Fruit Maturity and Postharvest Storage. Eur. Food Res. Technol. 2008, 227, 1091–1097. DOI: 10.1074/jbc.M301930200.
  • Bao, J.-S.; Cai, Y.-Z.; Sun, M.; Wang, G.-Y.; Corke, H. Anthocyanins, Flavonols, and Free Radical Scavenging Activity of Chinese Bayberry(Myrica rubra) Extracts and their Color Properties and Stability. J. Agric. Food Chem. 2005, 53, 2327–2332. DOI: 10.1021/jf048312z.
  • Zhang, Y.; Chen, S.; Wei, C.; Gong, H.; Li, L.; Ye, X. Chemical and Cellular Assays Combined with In Vitro Digestion to Determine the Antioxidant Activity of Flavonoids from Chinese Bayberry (Myrica rubra Sieb. et Zucc.) Leaves. PLoS ONE. 2016, 11, 0167484. DOI: 10.1371/journal.pone.0167484.
  • Xu, Y.; Xie, L.; Xie, J.; Liu, Y.; Chen, W. Pelargonidin-3-O-rutinoside as a Novel Α-Glucosidase Inhibitor for Improving Postprandial Hyperglycemia. Chem. Commun. 2019, 55, 39–42. DOI: 10.1039/c8cc07985d.
  • He, Q.; Ren, Y.; Zhao, W.; Li, R.; Zhang, L. Low Temperature Promotes Anthocyanin Biosynthesis and Related Gene Expression in the Seedlings of Purple Head Chinese Cabbage (Brassica rapa L.). Genes. 2020, 11, 81. DOI: 10.3390/genes11010081.
  • Lila, M.-A. Anthocyanins and Human Health: An In Vitro Investigative Approach. J. Biomed. Biotechnol. 2004, 2004, 306–313. DOI: 10.1155/S111072430440401X.
  • Terahara, N.; Shimizu, T.; Takashige, K.; Nakamura, M.; Maitani, T.; Yamaguchi, M.-A.; Goda, Y. Six Diacylated Anthocyanins from the Storage Roots of Purple Sweet Potato, Ipomoea Batatas. Biosci. Biotechnol. Biochem. 1999, 63, 1420–1424. DOI: 10.1271/bbb.63.1420.
  • Hwang, Y.-P.; Choi, J.-H.; Han, E.-H.; Kim, H.-G.; Wee, J.-H.; Jung, K.-O.; Jeong, H.-G.; Kwon, K.-I.; Jeong, T.-C.; Chung, Y.-C. Purple Sweet Potato Anthocyanins Attenuate Hepatic Lipid Accumulation Through Activating Adenosine Monophosphate–Activated Protein Kinase in Human Hepg2 Cells and Obese Mice. Nutr. Res. 2011, 31, 896–906. DOI: 10.1016/j.nutres.2011.09.026.
  • Jansen, G.; Flamme, W. Coloured Potatoes (Solanum tuberosum L.) —Anthocyanin Content and Tuber Quality. Genet. Resour. Crop Evol. 2006, 53, 1321–1331. DOI: 10.1007/s10722-005-3880-2.
  • Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial Phytochemicals in Potato—A Review. Food Res. Int. 2013, 50, 487–496. DOI: 10.1016/j.foodres.2011.04.025.
  • Reddivari, L.; Vanamala, J.; Safe, S.-H.; Miller, J.-C., Jr. The Bioactive Compounds Αlpha-Chaconine and Gallic Acid in Potato Extracts Decrease Survival and Induce Apoptosis in LNCaP and PC3 Prostate Cancer Cells. Nutr. Cancer. 2010, 62, 601–610. DOI: 10.1080/01635580903532358.
  • Chu, M.-J.; Du, Y.-M.; Liu, X.-M.; Yan, N.; Wang, F.-Z.; Zhang, Z.-F. Extraction of Proanthocyanidins from Chinese Wild Rice (Zizania latifolia) and Analyses of Structural Composition and Potential Bioactivities of Different Fractions. Molecules. 2019, 24, 1681. DOI: 10.3390/molecules24091681.
  • Yan, N.; Du, Y.-M.; Liu, X.-M.; Chu, C.; Shi, J.; Zhang, H.-B.; Liu, Y.-H.; Zhang, Z.-F. Morphological Characteristics, Nutrients, and Bioactive Compounds of Zizania latifolia, and Health Benefits of Its Seeds. Molecules. 2018, 23, 1561. DOI: 10.3390/molecules23071561.
  • Sumczynski, D.; Kotásková, E.; Orsavová, J.; Valášek, P. Contribution of Individual Phenolics to Antioxidant Activity and in Vitro Digestibility of Wild Rices (Zizania aquatica L.). Food Chem. 2017, 218, 107–115. DOI: 10.1016/j.foodchem.2016.09.060.
  • Chu, M.-J.; Liu, X.-M.; Yan, N.; Wang, F.-Z.; Du, Y.-M.; Zhang, Z.-F. Partial Purification, Identification, and Quantitation of Antioxidants from Wild Rice (Zizania latifolia). Molecules. 2018, 23, 2782. DOI: 10.3390/molecules23112782.
  • Yu, X.-T.; Yang, T.; Qi, -Q.-Q.; Du, Y.-M.; Shi, J.; Liu, X.-M.; Liu, Y.-H.; Zhang, H.-B.; Zhang, Z.-F.; Yan, N. Comparison of the Contents of Phenolic Compounds Including Flavonoids and Antioxidant Activity of Rice (Oryza sativa) and Chinese Wild Rice (Zizania latifolia). Food Chem. 2021, 344, 128600. DOI: 10.1016/j.foodchem.2020.128600.
  • Teng, H.; Fang, T.; Lin, Q.; Song, H.; Liu, B.; Chen, L. Red Raspberry and Its Anthocyanins: Bioactivity Beyond Antioxidant Capacity. Trends Food Sci. Technol. 2017, 66, 153–165. DOI: 10.1016/j.tifs.2017.05.015.
  • Duan, Y.; Chen, F.; Yao, X.; Zhu, J.; Wang, C.; Zhang, J.; Li, X. Protective Effect of Lycium Ruthenicum Murr. against Radiation Injury in Mice. Int. J. Environ. Res. Public Health. 2015, 12, 8332–8347. DOI: 10.3390/ijerph120708332.
  • Tsuda, T.; Horio, F.; Osawa, T. The Role of Anthocyanins as an Antioxidant under Oxidative Stress in Rats. Biofactors. 2000, 13, 133–139. DOI: 10.1002/biof.5520130122.
  • Thoppil, R.-J.; Bhatia, D.; Barnes, K.-F.; Haznagy-Radnai, E.; Hohmann, J.; Darvesh, A.-S.; Bishayee, A. Black Currant Anthocyanins Abrogate Oxidative Stress through NRF2-mediated Antioxidant Mechanisms in a Rat Model of Hepatocellsular Carcinoma. Curr. Cancer Drug Tar. 2012, 12, 1244–1257. DOI: 10.2174/156800912803987968.
  • Wei, T.; Ji, X.; Xue, J.; Yan, G.; Zhu, X.; Xiao, G. Cyanidin-3-O-Glucoside Represses Tumor Growth and Invasion in Vivo by Suppressing Autophagy via Inhibition of the JNK Signaling Pathways. Food Funct. 2021, 12, 387–396. DOI: 10.1039/D0FO02107E.
  • Shi, N.; Riedl, K.-M.; Schwartz, S.-J.; Zhang, X.; Clinton, S.-K.; Chen, T. Efficacy Comparison of Lyophilised Black Raspberries and Combination of Celecoxib and PBIT in Prevention of Carcinogen-induced Oesophageal Cancer in Rats. J. Funct. Foods. 2016, 27, 84–94. DOI: 10.1016/j.jff.2016.08.044.
  • Cassidy, A.; Mukamal, K.-J.; Liu, L.; Franz, M.; Eliassen, A.-H.; Rimm, E.-B. High Anthocyanin Intake is Associated with a Reduced Risk of Myocardial Infarction in Young and Middle-Aged Women. Circulation 2013, 127, 188–196. DOI: 10.1161/CIRCULATIONAHA.112.122408.
  • Seeram, N.-P.; Zhang, Y.; Nair, M.-G. Inhibition of Proliferation of Human Cancer Cells and Cyclooxygenase Enzymes by Anthocyanidins and Catechins. Nutr. Cancer. 2003, 46, 101–106. DOI: 10.1207/S15327914NC4601_13.
  • Mauray, A.; Milenkovic, D.; Besson, C.; Caccia, N.; Morand, C.; Michel, F.; Mazur, A.; Scalbert, A.; Felgines, C. Atheroprotective Effects of Bilberry Extracts in Apo E-Deficient Mice. J. Agric. Food Chem. 2009, 57, 11106–11111. DOI: 10.1021/jf9035468.
  • Winter, A.-N.; Ross, E.-K.; Wilkins, H.-M.; Stankiewicz, T.-R.; Wallace, T.; Miller, K.; Linseman, D.-A. An Anthocyanin-Enriched Extract from Strawberries Delays Disease Onset and Extends Survival in the hSOD1G93A Mice Model of Amyotrophic Lateral Sclerosis. Nutr. Neurosci. 2018, 21, 414–426. DOI: 10.1080/1028415X.2017.1297023.
  • Zhang, G.; Chen, S.; Zhou, W.; Meng, J.; Deng, K.; Zhou, H.; Hu, N.; Suo, Y. Anthocyanin Composition of Fruit Extracts from Lycium ruthenicum and their Protective Effect for Gouty Arthritis. Ind. Crop Prod. 2019, 129, 414–423. DOI: 10.1016/j.indcrop.2018.12.026.
  • Xu, W.; Zhou, Q.; Yao, Y.; Li, X.; Zhang, J.-L.; Su, G.-H.; Deng, A.-P. Inhibitory Effect of Gardanblue Bluberry Anthocyanin Extracts on Liposaccharide-Stimulated Inflammation Response in RAW 264. 7 cells. J. Zheinjiang Uni-Sci. B 2016, 17, 425–436. DOI: 10.1631/jzus.B1500213.
  • Zuo, Y.; Peng, C.; Liang, Y.; Ma, K.-Y.; Yu, H.; Chan, E. H.-Y.; Chen, Z.-Y. Black Rice Extract Extends the Lifespan of Fruit Flies. Food Funct. 2012, 3, 1271–1279. DOI: 10.1039/c2fo30135k.
  • Ali, T.; Kim, T.; Rehman, S.-U.; Khan, M.-S.; Amin, F.-U.; Khan, M.; Ikram, M.; Kim, M.-O. Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mice Model of Alzheimer’s Disease. Mol. Neurobiol. 2018, 7, 6076–6093. DOI: 10.1007/s12035-017-0798-6.
  • Papandreou, M.-A.; Dimakopoulou, A.; Linardaki, Z.-I.; Cordopatis, P.; Klimis-Zacas, D.; Margarity, M.; Lamari, F.-N. Effect of a Polyphenol-Rich Wild Blueberry Extract on cognitive Performance of Mice, Brain Antioxidant Markers and acetylcholinesterase Activity. Behav. Brain Res. 2009, 198, 352–358. DOI: 10.1016/j.bbr.2008.11.013.
  • Kent, K.; Charlton, K.; Roodenrys, S.; Batterham, M.; Potter, J.; Traynor, V.; Gilbert, H.; Morgan, O.; Richards, R. Consumption of Anthocyanin-Rich Cherry Juice for 12 Weeks Improves Memory and Cognition in Older Adults with Mild-to-Moderate Dementia. Eur. J. Nutr. 2017, 56, 333–341. DOI: 10.1007/s00394-015-1083-y.
  • Boespflug, E.-L.; Eliassen, J.-C.; Dudley, J.-A.; Shidler, M.-D.; Kalt, W.; Summer, -S.-S.; Stein, A.-L.; Stover, A.-N.; Krikorian, R. Enhanced Neural Activation with Blueberry Supplementation in Mild Cognitive Impairment. Nutr. Neurosci. 2018, 21, 297–305. DOI: 10.1080/1028415X.2017.1287833.
  • Grace, M.-H.; Ribnicky, D.-M.; Kuhn, P.; Poulev, A.; Logendra, S.; Yousef, -G.-G.; Raskin, I.; Lila, M.-A. Hypoglycemic Activity of a Novel Anthocyanin-Rich Formulation from Lowbush Blueberry, Vaccinium angustifolium Aiton. Phytomedicine. 2009, 16, 406–415. DOI: 10.1016/j.phymed.2009.02.018.
  • Pranprawit, A.; Heyes, J.-A.; Molan, A.-L.; Kruger, M.-C. Antioxidant Activity and Inhibitory Potential of Blueberry Extracts against Key Enzymes Relevant for Hyperglycemia. J. Food Biochem. 2015, 39, 109–118. DOI: 10.1111/jfbc.12094.
  • Johnson, M.-H.; Lucius, A.; Meyer, T.; Gonzalez de Mejia, E. Cultivar Evaluation and Effect of Fermentation on Antioxidant Capacity and in Vitro Inhibition of α-Amylase and α-Glucosidase by Highbush Blueberry (Vaccinium corombosum). J. Agric. Food Chem. 2011, 59, 8923–8930. DOI: 10.1021/jf201720z.
  • Kurimoto, Y.; Shibayama, Y.; Inoue, S.; Soga, M.; Takikawa, M.; Ito, C.; Nanba, F.; Yoshida, T.; Yamashita, Y.; Ashida, H. Black Soybean Seed Coat Extract Ameliorates Hyperglycemia and Insulin Sensitivity via the Activation of AMP-Activated Protein Kinase in Diabetic Mice. J. Agric. Food Chem. 2013, 61, 5558–5564. DOI: 10.1021/jf401190y.
  • Yan, F.; Dai, G.; Zheng, X. Mulberry Anthocyanin Extract Ameliorates Insulin Resistance by Regulating PI3K/AKT Pathway in HepG2 Cells and db/db Mice. J. Nutr. Biochem. 2016, 36, 68–80. DOI: 10.1016/j.jnutbio.2016.07.004.
  • Zhu, Y.; Sun, H.; He, S.-D.; Lou, Q.-Y.; Yu, M.; Tang, -M.-M.; Tu, L.-J. Metabolism and Prebiotics Activity of Anthocyanins from Black Rice (Oryza sativa L.) in Vitro. PLoS ONE. 2018, 13, 0195754. DOI: 10.1371/journal.pone.0195754.
  • Chen, L.; Jiang, B.; Zhong, C.; Guo, J.; Zhang, L.; Mu, T.; Zhang, Q.; Bi, X. Chemoprevention of Colorectal Cancer by Black Raspberry Anthocyanins Involved the Modulation of Gut Microbiota and SFRP2 Demethylation. Carcinogenesis. 2018, 39, 471–481. DOI: 10.1093/carcin/bgy009.
  • Zhang, X.; Yang, Y.; Wu, Z.; Weng, P. The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro. J. Agric. Food Chem. 2016, 64, 2582–2590. DOI: 10.1021/acs.jafc.6b00586.
  • Lee, S.; Keirsey, K.-I.; Kirkland, R.; Grunewald, Z.-I.; Fischer, J.-G.; de La Serre, C.-B. Blueberry Supplementation Influences the Gut Microbiota, Inflammation, and Insulin Resistance in High-Fat-Diet-Fed Rats. J. Nutr. 2018, 148, 209–219. DOI: 10.1093/jn/nxx027.
  • Marko, D.; Puppel, N.; Tjaden, Z.; Jakobs, S.; Pahlke, G. The Substitution Pattern of Anthocyanidins Affects Different Cellsular Signaling Cascades Regulating Cells Proliferation. Mol. Nutr. Food Res. 2004, 4, 318–325. DOI: 10.1002/mnfr.200400034.
  • Wallace, T.-C.; Slavin, M.; Frankenfeld, C.-L. Systematic Review of Anthocyanins and Markers of Cardiovascular Disease. Nutrients. 2016, 8, 32. DOI: 10.3390/nu8010032.
  • Juránek, I.; Bezek, S. Controversy of Free Radical Hypothesis: Reactive Oxygen Species-Cause or Consequence of Tissue Injury?. Gen. Physiol. Biophys. 2005, 24, 263–278. DOI: 10.1016/j.colsurfb.2005.04.016.
  • Hori, M.; Nishida, K. Oxidative Stress and Left Ventricular Remodelling after Myocardial Infarction. Cardiovasc. Res. 2009, 81, 457–464. DOI: 10.1093/cvr/cvn335.
  • Cutler, B.-R.; Petersen, C.; Anandh Babu, P.-V. Mechanistic Insights into the Vascular Effects of Blueberries: Evidence from Recent Studies. Mol. Nutr. Food Res. 2017, 61, 1600271. DOI: 10.1002/mnfr.201600271.
  • Muñoz-Espada, A.-C.; Watkins, B.-A. Cyanidin Attenuates PGE2 Production and Cyclooxygenase-2 Expression in LNCaP Human Prostate Cancer Cells. J. Nutr. Biochem. 2006, 17, 589–596. DOI: 10.1016/j.jnutbio.2005.10.007.
  • Mulabagal, V.; Lang, G.-A.; DeWitt, D.-L.; Dalavoy, -S.-S.; Nair, M.-G. Anthocyanin Content, Lipid Peroxidation and Cyclooxygenase Enzyme Inhibitory Activities of Sweet and Sour Cherries. J. Agric. Food Chem. 2009, 57, 1239–1246. DOI: 10.1021/jf8032039.
  • Graf, D.; Seifert, S.; Jaudszus, A.; Bub, A.; Watzl, B.; Gaetani, S. Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats. PLoS ONE. 2013, 8, 66690. DOI: 10.1371/journal.pone.0066690.
  • Cassidy, A.; O’Reilly, É.-J.; Kay, C.; Sampson, L.; Franz, M.; Forman, J.-P.; Curhan, G.; Rimm, E.-B. Habitual Intake of Flavonoid Subclasses and Incident Hypertension in Adults. Am. J. Clin. Nutr. 2011, 93, 338–347. DOI: 10.3945/ajcn.110.006783.
  • Shaughnessy, K.-S.; Boswall, I.-A.; Scanlan, A.-P.; Gottschall-Pass, K.-T.; Sweeney, M.-I. Diets Containing Blueberry Extract Lower Blood Pressure in Spontaneously Hypertensive Stroke-Prone Rats. Nutr. Res. 2009, 29, 130–138. DOI: 10.1016/j.nutres.2009.01.001.
  • Yoshimoto, M.; Okuno, S.; Yamaguchi, M.; Osamu, Y. Antimutagenicity of Deacylated Anthocyanins in Purple-Fleshed Sweet potato. Biosci. Biotechnol. Biochem. 2011, 65, 1652–1655. DOI: 10.1271/bbb.65.1652.
  • Li, P.; Feng, D.; Yang, D.; Li, X.; Sun, J.; Wang, G.; Tian, L.; Jiang, X.; Bai, W. Protective Effects of Anthocyanins on Neurodegenerative Diseases. Trends Food Sci. Technol. 2021, 117, 205–217. DOI: 10.1016/j.tifs.2021.05.005.
  • Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules. 2020, 25, 3809. DOI: 10.3390/molecules25173809.
  • Shishtar, E.; Rogers, G.-T.; Blumberg, J.-B.; Au, R.; Jacques, P.-F. Long-term Dietary Flavonoid Intake and Change in Cognitive Function in the Framingham Offspring Cohort. Public. Health. Nutr. 2020, 23, 1576–1588. DOI: 10.1017/S136898001900394X.
  • Ramirez, M.-R.; Izquierdo, I.; Do Carmo Bassols Raseira, M.; Zuanazzi, J.-A.; Barros, D.; Henriques, A.-T. Effect of Lyophilised Vaccinium Berries on Memory, Anxiety and Locomotion in Adult Rats. Pharmacol. Res. 2005, 52, 457–462. DOI: 10.1016/j.phrs.2005.07.003.
  • Zhang, C.; Lu, X.; Tan, Y.; Li, B.; Miao, X.; Jin, L.; Shi, X.; Zhang, X.; Miao, L.; Li, X.-K.; et al. Diabetes-induced Hepatic Pathogenic Damage, Inflammation, Oxidative Stress, and Insulin Resistance was Exacerbated in Zinc Deficient Mice Model. PLoS ONE. 2017, 7, 49257. DOI: 10.1371/journal.pone.0049257.
  • Manna, P.; Das, J.; Ghosh, J.; Sil, P.-C. Contribution of Type 1 Diabetes to Rat Liver Dysfunction and Cellsular Damage Via Activation of NOS, PARP, IκBα/NF-κB, MAPKs, and Mitochondria-Dependent Pathways: Prophylactic Role of Arjunolic Acid. Free Radical Biol. Med. 2010, 48, 1465–1484. DOI: 10.1016/j.freeradbiomed.2010.02.025.
  • Kam, J.; Puranik, S.; Yadav, R.; Manwaring, H.-R.; Pierre, S.; Srivastava, R.-K.; Yadav, R.-S. Dietary Interventions for Type 2 Diabetes: How Millet Comes to Help. Front. Plant Sci. 2016, 7, 1454. DOI: 10.3389/fpls.2016.01454.
  • Sui, X.; Zhang, Y.; Zhou, W. In Vitro and in Silico Studies of the Inhibition Activity of Anthocyanins against Porcine Pancreatic Alpha-Amylase. J. Funct. Foods. 2016, 21, 50–57. DOI: 10.1016/j.jff.2015.11.042.
  • Adisakwattana, S.; Ngamrojanavanich, N.; Kalampakorn, K.; Tiravanit, W.; Roengsumran, S.; Yibchok-Anun, S. Inhibitory Activity of Cyanidin-3-Rutinoside on Alpha-Glucosidase. J. Enzyme Inhib. Med. Chem. 2004, 19, 313–316. DOI: 10.1080/14756360409162443.
  • Staudacher, H.-M.; Loughman, A. Gut health: Definitions and Determinants. Lancet Gastroenterol. Hepatol. 2021, 6, 269. DOI: 10.1016/S2468-1253(21)00071-6.
  • Gan, Y.; Fu, Y.; Yang, L.; Chen, J.; Lei, H.; Liu, Q. Cyanidin-3-O-Glucoside and Cyanidin Protect against Intestinal Barrier Damage and 2, 4, 6-Trinitrobenzenesulfonic Acid-Induced Colitis. J. Med. Food. 2019, 23, 90–99. DOI: 10.1089/jmf.2019.4524.
  • Xia, Y.; Tian, L.-M.; Liu, Y.; Guo, K.-S.; Lv, M.; Li, Q.-T.; Hao, S.-Y.; Ma, C.-H.; Chen, Y.-X.; Tanaka, M. Low Dose of Cyanidin-3-O-Glucoside Alleviated Dextran Sulfate Sodium–Induced Colitis, Mediated by CD169+ Macrophage Pathway. Inflammatory Bowel Dis. 2019, 25, 1510–1521. DOI: 10.1093/ibd/izz090.
  • Ferrari, D.; Cimino, F.; Fratantonio, D.; Molonia, M.-S.; Bashllari, R.; Busà, R.; Saija, A.; Speciale, A. Cyanidin-3-O-Glucoside Modulates the in Vitro Inflammatory Crosstalk between Intestinal Epithelial and Endothelial Cells. Mediators Inflamm. 2017, 2017, 1–8. DOI: 10.1155/2017/3454023.
  • Cheng, Z.; Si, X.; Tan, H.; Zang, Z.; Tian, J.; Shu, C.; Sun, X.; Li, Z.; Jiang, Q.; Meng, X. Cyanidin-3-O-Glucoside and Its Phenolic Metabolites Ameliorate Intestinal Diseases via Modulating Intestinal Mucosal Immune System: Potential Mechanisms and Therapeutic Strategies. Crit. Rev. Food Sci. Nutr. 2021, Online early access]. DOI: 10.1080/10408398.2021.1966381. Published Online: August 23, 2021.
  • Rodríguez-Pérez, C.; García-Villanova, B.; Guerra-Hernández, E.; Verardo, V. Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients. 2019, 11, 2435. DOI: 10.3390/nu11102435.
  • Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects. Brit. J. Pharmacol. 2017, 174, 1244–1262. DOI: 10.1111/bph.13630.
  • Thiruchenduran, M.; Vijayan, N.-A.; Sawaminathan, J.-K.; Devaraj, S.-N. Protective Effect of Grape Seed Proanthocyanidins against Cholesterol Cholic Acid Diet-Induced Hypercholesterolemia in Rats. Cardiovasc. Pathol. 2011, 20, 361–368. DOI: 10.1016/j.carpath.2010.09.002.
  • Larrauri, M.; Zunino, M.-P.; Zygadlo, J.-A.; Grosso, N.-R.; Nepote, V. Chemical Characterization and Antioxidant Properties of Fractions Separated from Extract of Peanut Skin Derived from Different Industrial Processes. Ind. Crop Prod. 2016, 94, 964–971. DOI: 10.1016/j.indcrop.2016.09.066.
  • Pajuelo, D.; Quesada, H.; Díaz, S.; Fernández-Iglesias, A.; Arola-Arnal, A.; Bladé, C.; Salvadó, J.; Arola, L. Chronic Dietary Supplementation of Proanthocyanidins Corrects the Mitochondrial Dysfunction of Brown Adipose Tissue Caused by Diet-Induced Obesity in Wistar Rats. Brit. J. Nutr. 2012, 107, 170–178. DOI: 10.1017/S0007114511002728.
  • Puiggròs, F.; Llópiz, N.; Ardévol, A.; Bladé, C.; Arola, L.; Salvadó, M.-J. Grape Seed Procyanidins Prevent Oxidative Injury by Modulating the Expression of Antioxidant Enzyme Systems. J. Agric. Food Chem. 2005, 53, 6080–6086. DOI: 10.1021/jf050343m.
  • Shirataki, Y.; Kawase, M.; Saito, S.; Kurihara, T.; Tanaka, W.; Satoh, K.; Sakagami, H.; Motohashi, N. Selective Cytotoxic Activity of Grape Peel and Seed Extracts against Oral Tumor Cells Lines. Anticancer Res. 2000, 20, 423–426. DOI: 10.1016/S0010-2180(00)00136-X.
  • Kresty, L.-A.; Howell, A.-B.; Baird, M. Cranberry Proanthocyanidins Induce Apoptosis and Inhibit Acid-Induced Proliferation of Human Esophageal Adenocarcinoma Cells. J. Agric. Food Chem. 2008, 56, 676–680. DOI: 10.1021/jf071997t.
  • Kresty, L.-A.; Howell, A.-B.; Baird, M. Cranberry Proanthocyanidins Mediate Growth Arrest of Lung Cancer Cells through Modulation of Gene Expression and Rapid Induction of Apoptosis. Molecules. 2011, 16, 2375–2390. DOI: 10.3390/molecules16032375.
  • Minker, C.; Duban, L.; Karas, D.; Järvinen, P.; Lobstein, A.; Muller, C.-D.; Vauzour, D. Impact of Procyanidins from Different Berries on Caspase 8 Activation in Colon Cancer. Oxid. Med. Cell. Longev. 2015, 2015, 1–13. DOI: 10.1155/2015/154164.
  • Chen, Q.; Liu, X.-F.; Zheng, P.-S.; Yang, B.-B. Grape Seed Proanthocyanidins (GSPs) Inhibit the Growth of Cervical Cancer by Inducing Apoptosis Mediated by the Mitochondrial Pathway. PLoS ONE. 2014, 9, 107045. DOI: 10.1371/journal.pone.0107045.
  • Huang, -L.-L.; Pan, C.; Wang, L.; Ding, L.; Guo, K.; Wang, H.-Z.; Xu, A.-M.; Gao, S. Protective Effects of Grape Seed Proanthocyanidins on Cardiovascular Remodeling in DOCA-salt Hypertension Rats. J. Nutr. Biochem. 2015, 26, 841–849. DOI: 10.1016/j.jnutbio.2015.03.007.
  • Razavi, S. -M.; Gholamin, S.; Eskandari, A.; Mohsenian, N.; Ghorbanihaghjo, A.; Delazar, A.; Rashtchizdeh, N.; Keshtkar-Jahromi, M.; Argani, H. Red Grape Seed Extract Improves Lipid Profiles and Decreases Oxidized Low-Density Lipoprotein in Patients with Mild Hyperlipidemia. J. Med. Food. 2013, 16, 255–258. DOI: 10.1089/jmf.2012.2408.
  • Vinson, J.-A.; Mandarano, M.-A.; Shuta, D.-L.; Bagchi, M.; Bagchi, D. Beneficial Effects of a Novel IH636 Grape Seed Proanthocyanidin Extract and Aniacin-Bound Chromium in a Hamster Atherosclerosis Model. Mol. Cell. Biochem. 2002, 240, 99–103. DOI: 10.1023/A:1020611925819.
  • Baiges, I.; Palmfeldt, J.; Bladé, C.; Gregersen, N.; Arola, L. Lipogenesis is Decreased by Grape Seed Proanthocyanidins According to Liver Proteomics of Rats Fed a High Fat Diet. Mol. Cell. Proteomics. 2010, 9, 1499–1513. DOI: 10.1074/mcp.M000055-MCP201.
  • Toomer, O.-T.; Vu, T.; Pereira, M.; Williams, K. Dietary Supplementation with Peanut Skin Polyphenolic Extracts (PSPE) Reduces Hepatic Lipid and Glycogen Stores in Mice Fed an Atherogenic Diet. J. Funct. Foods. 2019, 55, 362–370. DOI: 10.1016/j.jff.2019.02.041.
  • Gonzalez-Albuin, N.; Pinent, M.; Casanova-Marti, A.; Arola, L.; Blay, M.; Ardevol, A. Procyanidins and their Healthy Protective Effects Against Type 2 Diabetes. Curr. Med. Chem. 2015, 22, 39–50. DOI: 10.2174/0929867321666140916115519.
  • Tsujita, T.; Shintani, T.; Sato, H. Preparation and Characterisation of Peanut Seed Skin Polyphenols. Food Chem. 2014, 151, 15–20. DOI: 10.1016/j.foodchem.2013.11.072.
  • Liu, X.; Qiu, J.; Zhao, S.; You, B.; Ji, X.; Wang, Y.; Cui, X.; Wang, Q.; Gao, H. Grape Seed Proanthocyanidin Extract Alleviates Ouabain-Induced Vascular Remodeling through Regulation of Endothelial Function. Mol. Med. Rep. 2012, 6, 949–954. DOI: 10.3892/mmr.2012.1026.
  • Terra, X.; Pallarés, V.; Ardèvol, A.; Bladé, C.; Fernández-Larrea, J.; Pujadas, G.; Salvadó, J.; Arola, L.; Blay, M. Modulatory Effect of Grape-Seed Procyanidins on Local and Systemic Inflammation in Diet-Induced Obesity Rats. J. Nutr. Biochem. 2011, 22, 380–387. DOI: 10.1016/j.jnutbio.2010.03.006.
  • La, V.-D.; Howell, A.-B.; Grenier, D. Cranberry Proanthocyanidins Inhibit MMP Production and Activity. J. Dent. Res. 2009, 88, 627–632. DOI: 10.1177/0022034509339487.
  • Feldman, M.; Tanabe, S.; Howell, A.; Grenier, D. Cranberry Proanthocyanidins Inhibit the Adherence Properties of Candida albicans and Cytokine Secretion by Oral Epithelial Cells. BMC Complem. Altern. M. 2012, 12, 6. DOI: 10.1186/1472-6882-12-6.
  • Lee, T.; Kwon, H.-S.; Bang, B.-R.; Lee, Y.-S.; Park, M.-Y.; Moon, K.-A.; Kim, T.-B.; Lee, K.-Y.; Moon, H.-B.; Cho, Y.-S. Grape Seed Proanthocyanidin Extract Attenuates Allergic Inflammation in Murine Models of Asthma. J. Clin. Immunol. 2012, 32, 1292–1304. DOI: 10.1007/s10875-012-9742-8.
  • Jiang, X.; Liu, J.; Lin, Q.; Mao, K.; Tian, F.; Jing, C.; Wang, C.; Ding, L.; Pang, C. Proanthocyanidin Prevents Lipopolysaccharide-Induced Depressive-Like Behavior in Mice Via Neuroinflammatory Pathway. Brain Res. Bull. 2017, 135, 40–46. DOI: 10.1016/j.brainresbull.2017.09.010.
  • Han, M.; Song, P.; Huang, C.; Rezaei, A.; Farrar, S.; Brown, M.-A.; Ma, X. Dietary Grape Seed Proanthocyanidins (Gsps) Improve Weaned Intestinal Microbiota and Mucosal Barrier Using a Piglet Model. Oncotarget. 2016, 7, 80313–80326. DOI: 10.18632/oncotarget.13450.
  • Rupasinghe, H.-P.-V.; Parmar, I.; Neir, S.-V. Biotransformation of Cranberry Proanthocyanidins to Probiotic Metabolites by Lactobacillus rhamnosus Enhances their Anticancer Activity in HepG2 Cells in Vitro. Oxid. Med. Cell. Longev. 2019, 2019, 1–14. DOI: 10.1155/2019/4750795.
  • Casanova-Martí, À.; Serrano, J.; Portune, K.-J.; Sanz, Y.; Blay, M.-T.; Terra, X.; Ardévol, A.; Pinent, M. Grape Seed Proanthocyanidins Influence Gut Microbiota and Enteroendocrine Secretions in Rats. Food Funct. 2018, 9, 1672–1682. DOI: 10.1039/c7fo02028g.
  • Lai, R.; Xia, D.; Xiong, X.; Yang, L.; Song, J.; Zhong, J. Proanthocyanidins: Novel Treatment for Psoriasis that Reduces Oxidative Stress and Modulates Th17 and Treg Cells. Redox Rep. 2018, 23, 130–135. DOI: 10.1080/13510002.2018.1462027.
  • Bagchi, D.; Bagchi, M.; Stohs, S.-J.; Das, D.-K.; Ray, S.-D.; Kusszynski, C.-A.; Joshi, -S.-S.; Pruess, H.-G. Free radicals and Grape Seed Proanthocyanidin Extract: Importance in Human Health and disease Prevention. Toxicology. 2000, 148, 187–197. DOI: 10.1016/S0300-483X(00)00210-9.
  • Bagchi, D.; Swaroop, A.; Preuss, H.-G.; Bagchi, M. Free radicals Scavenging, Antioxidant and Cancer Chemoprevention by Grape Seed Proanthocyanidin: An Overview. Mutat. Res. 2014, 768, 69–73. DOI: 10.1016/j.mrfmmm.2014.04.004.
  • Maldonado, P.-D.; Rivero-Cruz, I.; Mata, R.; Pedraza-Chaverrí, J. Antioxidant Activity of A-type Proanthocyanidins from Geranium niveum (Geraniaceae). J. Agric. Food Chem. 2005, 53, 1996–2001. DOI: 10.1021/jf0483725.
  • Weh, K.-M.; Salzman, N.-H.; Howell, A.-B.; Clarke, J.-L.; Tripp, B.-A.; Kresty, L.-A. Cranberry Proanthocyanidins Reverse Microbial Dysbiosis and inhibit Bile Acid Metabolism in Association with Esophageal Cancer Prevention. Cancer Res. 2017, 77, 5250. DOI: 10.1158/1538-7445.AM2017-5250.
  • Vaid, M.; Katiyar, S.-K. Grape Seed Proanthocyanidins Inhibit Cigarette Smoke Condensate–Induced Lung Cancer Cells Migration through Inhibition of NADPH Oxidase and Reduction in the Binding of p22phox and p47phox Proteins. Mol. Carcinog. 2015, 54, 61–71. DOI: 10.1002/mc.22173.
  • Ramljak, D.; Romanczyk, L.-J.; Metheny-Barlow, L.-J.; Thompson, N.; Knezevic, V.; Galperin, M.; Ramesh, A.; Dickson, R.-B. Pentameric Procyanidin from Theobroma Cacao Selectively Inhibits Growth of Human Breast Cancer Cells. Mol. Cancer Ther. 2005, 4, 537–546. DOI: 10.1158/1535-7163.MCT-04-0286.
  • Liu, J.; Bai, J.; Jiang, G.; Li, X.; Wang, J.; Wu, D.; Owusu, L.; Zhang, E.; Li, W. Anti-tumor Effect of Pinus massoniana Bark Proanthocyanidins on Ovarian Cancer through Induction of Cells Apoptosis and Inhibition of Cells Migration. PLoS ONE. 2015, 10, 0142157. DOI: 10.1371/journal.pone.0142157.
  • Nie, C.; Zhou, J.; Qin, X.; Shi, X.; Zeng, Q.; Liu, J.; Yan, S.; Zhang, L. Reduction of Apoptosis by Proanthocyanidin-Induced Autophagy in Thehuman Gastric Cancer Cells Line MGC-803. Oncol. Rep. 2016, 35, 649–658. DOI: 10.3892/or.2015.4419.
  • Luan, -Y.-Y.; Liu, Z.-M.; Zhong, J.-Y.; Yao, R.-Y.; Yu, H.-S. Effect of Grape Seed Proanthocyanidins on Tumor Vasculogenic Mimicry in Human Triple-Negative Breast Cancer Cells. Asian Pac. J. Cancer P. 2015, 16, 531–535. DOI: 10.7314/APJCP.2015.16.2.531.
  • Al-Mallah, M.-H.; Sakr, S.; Al-Qunaibet, A. Cardiorespiratory Fitness and Cardiovascular Disease Prevention: An Update. Curr. Atheroscler. Rep. 2018, 20, 1–9. DOI: 10.1007/s11883-018-0711-4.
  • Bladé, C.; Arola, L.; Salvadó, M.-J. Hypolipidemic Effects of Proanthocyanidins and their Underlying Biochemical and Molecular Mechanisms. Mol. Nutr. Food Res. 2010, 54, 37–59. DOI: 10.1002/mnfr.200900476.
  • Shi, J.; Yu, J.; Pohorly, J.-E.; Kakuda, Y. Polyphenolics in Grape Seeds-Biochemistry and Functionality. J. Med. Food. 2003, 6, 291–299. DOI: 10.1089/109662003772519831.
  • Kruger, M.-J.; Davies, N.; Myburgh, K.-H.; Lecour, S. Proanthocyanidins, Anthocyanins and Cardiovascular Diseases. Food Res. Int. 2014, 59, 41–52. DOI: 10.1016/j.foodres.2014.01.046.
  • Lee, -C.-C.; Kim, J.-H.; Kim, J.-S.; Oh, Y.-S.; Han, S.-M.; Park, J. H.-Y.; Lee, K.-W.; Lee, C.-Y. 5-(3′, 4′-Dihydroxyphenyl-γ-Valerolactone), A Major Microbial Metabolite of Proanthocyanidin, Attenuates THP-1 Monocyte-Endothelial Adhesion. Int. J. Mol. Sci. 2017, 18, 1363. DOI: 10.3390/ijms18071363.
  • Liu, T.; Song, L.; Wang, H.; Huang, D. A High-Throughput Assay for Quantification of Starch Hydrolase Inhibition Based on Tuidity Measurement. J. Agric. Food Chem. 2011, 59, 9756–9762. DOI: 10.1021/jf202939d.
  • Cui, X.; Liu, X.; Feng, H.; Zhao, S.; Gao, H. Grape Seed Proanthocyanidin Extracts Enhance Endothelial Nitric Oxide Synthase Expression through 5’-AMP Activated Protein Kinase/Surtuin 1-Krupple like Factor 2 Pathway and Modulate Blood Pressure in Ouabain Induced Hypertensive Rats. Biol. Pharm. Bull. 2012, 35, 2192–2197. DOI: 10.1248/bpb.b12-00598.
  • Tamura, T.; Ozawa, M.; Tanaka, N.; Arai, S.; Mura, K. Bacillus cereus Response to a Proanthocyanidin Trimer, A Transcriptional and Functional Analysis. Curr. Microbiol. 2016, 73, 115–123. DOI: 10.1007/s00284-016-1032-x.
  • Salinas-Sánchez, D.-O.; Jiménez-Ferrer, E.; Sánchez-Sánchez, V.; Zamilpa, A.; González-Cortazar, M.; Tortoriello, J.; Herrera-Ruiz, M. Anti-Inflammatory Activity of a Polymeric Proanthocyanidin from Serjania schiedeana. Molecules. 2017, 22, 863. DOI: 10.3390/molecules22060863.
  • Poorniammal, R.; Prabhu, S.; Dufossé, L.; Kannan, J. Safety Evaluation of Fungal Pigments for Food Applications. J. Fungi. 2021, 7, 692. DOI: 10.3390/jof7090692.
  • Huang, X.-D.; Liang, J.-B.; Tan, H.-Y.; Rosiyah, Y.; Long, R.-J.; Ho, Y.-W. Protein-Binding Affinity of Leucaena Condensed Tannins of Differing Molecular Weights. J. Agric. Food Chem. 2011, 59, 10677–100682. DOI: 10.1021/jf201925g.
  • Taverniti, V.; Fracassetti, D.; Del Bo’, C.; Lanti, C.; Minuzzo, M.; Klimis-Zacas, D.; Riso, P.; Guglielmetti, S. Immunomodulatory Effect of a Wild Blueberry Anthocyanin-Rich Extract in Human Caco-2 Intestinal Cells. J. Agric. Food Chem. 2014, 62, 8346–8351. DOI: 10.1021/jf502180j.
  • Gomes, J.-V.-P.; Rigolon, T.-C.-B.; Da Silveira Souza, M.-S.; Alvarez-Leite, J.-I.; Lucia, C.-M.-D.; Martino, H.-S.-D.; Rosa, C. D. O. B. Antiobesity Effects of Anthocyanins on Mitochondrial Biogenesis, Inflammation, and Oxidative Stress: A Systematic Review. Nutrition. 2019, 66, 192–202. DOI: 10.1016/j.nut.2019.05.005.