2,616
Views
14
CrossRef citations to date
0
Altmetric
Review

Impact of processing and storage on protein digestibility and bioavailability of legumes

, , , , ORCID Icon, , & ORCID Icon show all

References

  • Singh, R. J.; Chung, G. H.; Nelson, R. L. Landmark Research in Legumes. Genome. 2007, 50(6), 525–537. DOI: 10.1139/G07-037.
  • Gepts, P.; Beavis, W. D.; Brummer, E. C.; Shoemaker, R. C.; Stalker, H. T.; Weeden, N. F.; Young, N. D. Legumes as a Model Plant Family. Genomics for Food and Feed Report of the Cross-Legume Advances Through Genomics Conference. Plant Physiol. 2005, 137(4), 1228–1235. DOI: 10.1104/pp.105.060871.
  • Abbas, Y.; Ahmad, A. Impact of Processing on Nutritional and Antinutritional Factors of Legumes: A Review. Annals Food Sci. Technol. 2018, 19, 195–210.
  • Jezierny, D.; Mosenthin, R.; Bauer, E. The Use of Grain Legumes as a Protein Source in Pig Nutrition: A Review. Anim. Feed Sci. Technol. 2010, 157(3–4), 111–128. DOI: 10.1016/j.anifeedsci.2010.03.001.
  • Martín-Cabrejas, M. Chapter 1 Legumes: An Overview. In Nutritional Quality, Processing and Potential Health Benefits; Martín-Cabrejas, M.Á., Ed.; United Kingdom: Royal Society of Chemistry . 2019, 3.
  • Oghbaei, M.; Prakash, J.; Yildiz, F. Effect of Primary Processing of Cereals and Legumes on Its Nutritional Quality: A Comprehensive Review. Cogent Food Agric. 2016, 2(1). DOI: 10.1080/23311932.2015.1136015.
  • Tharanathan, R. N.; Mahadevamma, S. Grain legumes—a Boon to Human Nutrition. Trends Food Sci. Technol. 2003, 14(12), 507–518. DOI: 10.1016/j.tifs.2003.07.002.
  • Reckling, M.; Bergkvist, G.; Watson, C. A.; Stoddard, F. L.; Zander, P. M.; Walker, R. L.; Pristeri, A.; Toncea, I.; Bachinger, J. Trade-Offs Between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems. Front. Plant Sci. 2016, 7, 669. DOI: 10.3389/fpls.2016.00669.
  • Çakir, Ö.; Uçarli, C.; Tarhan, Ç.; Pekmez, M.; Turgut-Kara, N. Nutritional and Health Benefits of Legumes and Their Distinctive Genomic Properties. Food Sci. Technol. 2019, 39(1), 1–12. DOI: 10.1590/fst.42117.
  • Duranti, M. Grain Legume Proteins and Nutraceutical Properties. Fitoterapia. 2006, 77(2), 67–82. DOI: 10.1016/j.fitote.2005.11.008.
  • Maphosa, Y.; Jideani, V. A. The Role of Legumes in Human Nutrition. Funct. Food. 2017, 1, 13.
  • Duranti, M.; Scarafoni, A. Modification of Storage Protein Content and Quality in Legume Seeds. J. New Seeds. 1999, 1(1), 17–35. DOI: 10.1300/J153v01n01_03.
  • Sá, A. G. A.; Moreno, Y. M. F.; Carciofi, B. A. M. Food Processing for the Improvement of Plant Proteins Digestibility. Crit. Rev. Food Sci. Nutr. 2020, 60(20), 3367–3386. DOI: 10.1080/10408398.2019.1688249.
  • Sha, L.; Xiong, Y. L. Plant Protein-Based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends Food Sci. Technol. 2020, 102, 51–61. DOI: 10.1016/j.tifs.2020.05.022.
  • Ismail, B. P.; Senaratne-Lenagala, L.; Stube, A.; Brackenridge, A. Protein Demand: Review of Plant and Animal Proteins Used in Alternative Protein Product Development and Production. Anim. Front. 2020, 10(4), 53–63. DOI: 10.1093/af/vfaa040.
  • Sun, M.; Mu, T.; Zhang, M.; Arogundade, L. A. Nutritional Assessment and Effects of Heat Processing on Digestibility of Chinese Sweet Potato Protein. J. Food Compost. Anal. 2012, 26(1–2), 104–110. DOI: 10.1016/j.jfca.2012.03.008.
  • Nawaz, M. A.; Tan, M.; Øiseth, S.; Buckow, R. An Emerging Segment of Functional Legume-Based Beverages: A Review. Food Rev. Int. 2020, 1–39. DOI: 10.1080/87559129.2020.1762641.
  • Joye, I. Protein Digestibility of Cereal Products. Foods. 2019, 8(6), 199. DOI: 10.3390/foods8060199.
  • Kniskern, M. A.; Johnston, C. S. Protein Dietary Reference Intakes May Be Inadequate for Vegetarians if Low Amounts of Animal Protein are Consumed. Nutrition. 2011, 27(6), 727–730. DOI: 10.1016/j.nut.2010.08.024.
  • Allen, L. H. Legumes. Encyclopedia of Human Nutrition 3rd ed. Caballero B. Academic Press Waltham, MA, USA .2013, 10, 74–79.
  • Ren, S.-C.; Liu, Z.-L.; Wang, P. Proximate Composition and Flavonoids Content and in vitro Antioxidant Activity of 10 Varieties of Legume Seeds Grown in China. J. Med. Plants Res. 2012, 6, 301–308.
  • Stevenson, D. G.; Doorenbos, R. K.; Jane, J. L.; Inglett, G. E. Structures and Functional Properties of Starch from Seeds of Three Soybean (Glycine Max (L.) Merr.) Varieties. Starch - Stärke. 2006, 58(10), 509–519. DOI: 10.1002/star.200600534.
  • Arya, S. S.; Salve, A. R.; Chauhan, S. Peanuts as Functional Food: A Review. J. Food Sci. Technol. 2016, 53(1), 31–41. DOI: 10.1007/s13197-015-2007-9.
  • de Almeida Costa, G. E.; da Silva Queiroz-Monici, K.; Pissini Machado Reis, S. M.; de Oliveira, A. C. Chemical Composition, Dietary Fibre and Resistant Starch Contents of Raw and Cooked Pea, Common Bean, Chickpea and Lentil Legumes. Food Chem. 2006, 94(3), 327–330. DOI: 10.1016/j.foodchem.2004.11.020.
  • Carvalho, A. F. U.; de Sousa, N. M.; Farias, D. F.; da Rocha-Bezerra, L. C. B.; da Silva, R. M. P.; Viana, M. P.; Gouveia, S. T.; Sampaio, S. S.; de Sousa, M. B.; de Lima, G. P. G. Nutritional Ranking of 30 Brazilian Genotypes of Cowpeas Including Determination of Antioxidant Capacity and Vitamins. J. Food Compost. Anal. 2012, 26(1–2), 81–88. DOI: 10.1016/j.jfca.2012.01.005.
  • Alajaji, S. A.; El-Adawy, T. A. Nutritional Composition of Chickpea (Cicer Arietinum L.) as Affected by Microwave Cooking and Other Traditional Cooking Methods. J. Food Compost. Anal. 2006, 19(8), 806–812. DOI: 10.1016/j.jfca.2006.03.015.
  • Martino, H. S. D.; Bigonha, S. M.; Cardoso, L. D. M.; Rosa, C. D. O. B.; Costa, N. M. B.; Cárdenas, L. D. L. Á. R., and Ribeiro, S. M. R. Nutritional and Bioactive Compounds of Bean: Benefits to Human Health. In Hispanic Foods: Chemistry and Bioactive Compounds; Michael H, Tunick , Elvira González de Mejía.,Eds. American Chemical Society: Washington, DC., 2012; pp. 233–258.
  • Ciabotti, S.; Juhász, A. C. P.; Mandarino, J. M. G.; Costa, L. L.; CorrêCorrêA, A. D.; Simão, A. A.; Santos, E. N. F. Chemical Composition and Lipoxygenase Activity of Soybean (Glycine Max L. Merrill.) Genotypes, Specific for Human Consumption, with Different Tegument Colours. Braz. J. Food Technol. 2019, 22, 1–10. DOI: 10.1590/1981-6723.00318.
  • Mubarak, A. Nutritional Composition and Antinutritional Factors of Mung Bean Seeds (Phaseolus Aureus) as Affected by Some Home Traditional Processes. Food Chem. 2005, 89(4), 489–495. DOI: 10.1016/j.foodchem.2004.01.007.
  • Wani, I. A.; Sogi, D. S.; Wani, A. A.; Gill, B. S. Physical and Cooking Characteristics of Some Indian Kidney Bean (Phaseolus Vulgaris L.) Cultivars. J. Saudi Soc. Agric. Sci. 2017, 16(1), 7–15. DOI: 10.1016/j.jssas.2014.12.002.
  • Zia-Ul-Haq, M.; Ahmad, S.; Shad, M.; Iqbal, S.; Qayum, M.; Ahmad, A.; Luthria, D.; Amarowicz, R. Compositional Studies of Lentil (Lens Culinaris Medik.) Cultivars Commonly Grown in Pakistan. Paki. J. Bot. 2011, 43, 1563–1567.
  • Tizazu, H.; Emire, S. A. Chemical Composition, Physicochemical and Functional Properties of Lupin (Lupinus albus) Seeds Grown in Ethiopia. Afr. J. Food Agric. Nutr. Dev. 2010, 10(8), 3029–3046. DOI: 10.4314/ajfand.v10i8.60895.
  • Bonku, R.; Yu, J. Health Aspects of Peanuts as an Outcome of Its Chemical Composition. Food Sci. Hum. Wellness. 2020, 9(1), 21–30. DOI: 10.1016/j.fshw.2019.12.005.
  • Kouris-Blazos, A.; Belski, R. Health Benefits of Legumes and Pulses with a Focus on Australian Sweet Lupins. Asia Pac. J. Clin. Nutr. 2016, 25(1), 1–17. DOI: 10.6133/apjcn.2016.25.1.23.
  • Klupšaitė, D.; Juodeikienė, G. Legume: Composition, Protein Extraction and Functional Properties. A Review. Chemi. Technol. 2015, 66(1), 5–12. DOI: 10.5755/j01.ct.66.1.12355.
  • Ahmed, J.; Mulla, M. Z.; Siddiq, M.; Dolan, K. D. Micromeritic, Thermal, Dielectric, and Microstructural Properties of Legume Ingredients: A Review. Legume Sci. 2021, e123. DOI: 10.1002/leg3.75.
  • Kaur, M.; Singh, N. Characterization of Protein Isolates from Different Indian Chickpea (Cicer Arietinum L.) Cultivars. Food Chem. 2007, 102(1), 366–374. DOI: 10.1016/j.foodchem.2006.05.029.
  • Xu, Y.; Obielodan, M.; Sismour, E.; Arnett, A.; Alzahrani, S.; Zhang, B. Physicochemical, Functional, Thermal and Structural Properties of Isolated Kabuli Chickpea Proteins as Affected by Processing Approaches. Int. J. Food Sci. Technol. 2017, 52(5), 1147–1154. DOI: 10.1111/ijfs.13400.
  • Rui, X.; Boye, J. I.; Ribereau, S.; Simpson, B. K.; Prasher, S. O. Comparative Study of the Composition and Thermal Properties of Protein Isolates Prepared from Nine Phaseolus Vulgaris Legume Varieties. Food Res. Int. 2011, 44(8), 2497–2504. DOI: 10.1016/j.foodres.2011.01.008.
  • Tang, C.-H.; Chen, Z.; Li, L.; Yang, X.-Q. Effects of Transglutaminase Treatment on the Thermal Properties of Soy Protein Isolates. Food Res. Int. 2006, 39(6), 704–711. DOI: 10.1016/j.foodres.2006.01.012.
  • Tang, C.-H. Thermal Denaturation and Gelation of Vicilin-Rich Protein Isolates from Three Phaseolus Legumes: A Comparative Study. LWT - Food Sci. Technol. 2008, 41(8), 1380–1388. DOI: 10.1016/j.lwt.2007.08.025.
  • Gundogan, R.; Can Karaca, A. Physicochemical and Functional Properties of Proteins Isolated from Local Beans of Turkey. Lwt. 2020, 130, 109609. DOI: 10.1016/j.lwt.2020.109609.
  • Ahmed, J.; Mulla, M.; Al‐ruwaih, N.; Arfat, Y. A. Effect of High‐pressure Treatment Prior to Enzymatic Hydrolysis on Rheological, Thermal, and Antioxidant Properties of Lentil Protein Isolate. Legume Sci. 2019, 1(1), e10. DOI: 10.1002/leg3.10.
  • Brishti, F. H.; Chay, S. Y.; Muhammad, K.; Ismail-Fitry, M. R.; Zarei, M.; Karthikeyan, S.; Saari, N. Effects of Drying Techniques on the Physicochemical, Functional, Thermal, Structural and Rheological Properties of Mung Bean (Vigna Radiata) Protein Isolate Powder. Food Res. Int. 2020, 138, 109783. DOI: 10.1016/j.foodres.2020.109783.
  • Lara-Rivera, A. H.; GarcíGarcíA-Alamilla, P.; Lagunes-Gálvez, L. M.; Rodríguez Macias, R.; GarcíGarcíA López, P. M.; Zamora Natera, J. F. Functional Properties of Lupinus Angustifolius Seed Protein Isolates. J. Food Qual. 2017, 2017, 8675814. DOI: 10.1155/2017/8675814.
  • Mohan, N.; Mellem, J. J. Functional Properties of the Protein Isolates of Hyacinth Bean [Lablab Purpureus (L.) Sweet]: An Effect of the Used Procedures. Lwt. 2020, 129, 109572. DOI: 10.1016/j.lwt.2020.109572.
  • Becerra-Tomás, N.; Díaz-López, A.; Rosique-Esteban, N.; Ros, E.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Fitó, M.; Serra-Majem, L.; Arós, F. Legume Consumption is Inversely Associated with Type 2 Diabetes Incidence in Adults: A Prospective Assessment from the PREDIMED Study. Clin. Nutr. 2018, 37(3), 906–913. DOI: 10.1016/j.clnu.2017.03.015.
  • Martín-Cabrejas, M. A.; Díaz, M. F.; Aguilera, Y.; Benítez, V.; Mollá, E.; Esteban, R. M. Influence of Germination on the Soluble Carbohydrates and Dietary Fibre Fractions in Non-Conventional Legumes. Food Chem. 2008, 107(3), 1045–1052. DOI: 10.1016/j.foodchem.2007.09.020.
  • Aguilera, Y.; Martín-Cabrejas, M. A.; Benítez, V.; Mollá, E.; López-Andréu, F. J.; Esteban, R. M. Changes in Carbohydrate Fraction During Dehydration Process of Common Legumes. J. Food Compost. Anal. 2009, 22(7–8), 678–683. DOI: 10.1016/j.jfca.2009.02.012.
  • Sebastiá, V.; Barberá, R.; Farré, R.; Lagarda, M. J. Effects of Legume Processing on Calcium, Iron and Zinc Contents and Dialysabilities. J. Sci. Food Agric. 2001, 81(12), 1180–1185. DOI: 10.1002/jsfa.927.
  • Kamboj, R.; Nanda, V. Proximate Composition, Nutritional Profile and Health Benefits of Legumes-A Review. Legume Res. an Int. J. 2018, 41, 325–332.
  • Sudha, N.; Begum, J. M.; Shambulingappa, K.; Babu, C. Nutrients and Some Anti-Nutrients in Horsegram (Macrotyloma Uniflorum (Lam.) Verdc.). Food Nutr. Bull. 1995, 16(1), 1–4. DOI: 10.1177/156482659501600114.
  • Prodanov, M.; Sierra, I.; Vidal-Valverde, C. Influence of Soaking and Cooking on the Thiamin, Riboflavin and Niacin Contents of Legumes. Food Chem. 2004, 84(2), 271–277. DOI: 10.1016/S0308-8146(03)00211-5.
  • Ang, C. D.; Alviar, M. J. M.; Dans, A. L.; Bautista‐velez, G. G. P.; Villaruz‐sulit, M. V. C.; Tan, J. J.; Bautista, M. R. M.; Roxas, A. A. Vitamin B for Treating Peripheral Neuropathy. Cochrane Database Syst. Rev. 2008. DOI: 10.1002/14651858.CD004573.pub3.
  • Amarovicz, R. Natural Antioxidants as a Subject of Research. Eur. J. Lipid Sci. Technol. 2009, 111(11), 1053–1168. DOI: 10.1002/ejlt.200900216.
  • Boudjou, S.; Oomah, B. D.; Zaidi, F.; Hosseinian, F. Phenolics Content and Antioxidant and Anti-Inflammatory Activities of Legume Fractions. Food Chem. 2013, 138(2–3), 1543–1550. DOI: 10.1016/j.foodchem.2012.11.108.
  • Gebrelibanos, M.; Tesfaye, D.; Raghavendra, Y.; Sintayeyu, B. Nutritional and Health Implications of Legumes. Int. J. Pharm. Sci. Res. 2013, 4, 1269.
  • Avilés‐gaxiola, S.; Chuck‐hernández, C.; Serna Saldivar, S. O. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. J. Food Sci. 2018, 83(1), 17–29. DOI: 10.1111/1750-3841.13985.
  • Bennetau-Pelissero, C. Plant Proteins from Legumes. In Bioactive Molecules in Food; Mérillon, J.-M., and Ramawat, K.G., Eds.; Springer : Nature Switzerland AG., 2019; p. 2370.
  • Gilani, G. S.; Xiao, C. W.; Cockell, K. A. Impact of Antinutritional Factors in Food Proteins on the Digestibility of Protein and the Bioavailability of Amino Acids and on Protein Quality. Br. J. Nutr. 2012, 108(S2), S315–S332. DOI: 10.1017/S0007114512002371.
  • Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-State Fermentation of Corn-Soybean Meal Mixed Feed with Bacillus Subtilis and Enterococcus Faecium for Degrading Antinutritional Factors and Enhancing Nutritional Value. J. Anim. Sci. Biotechnol. 2017, 8(1), 1–9. DOI: 10.1186/s40104-017-0184-2.
  • Schaafsma, G. Advantages and Limitations of the Protein Digestibility-Corrected Amino Acid Score (PDCAAS) as a Method for Evaluating Protein Quality in Human Diets. Br. J. Nutr. 2012, 108(S2), S333–S336. DOI: 10.1017/S0007114512002541.
  • Gilani, G. S.; Cockell, K. A.; Sepehr, E. Effects of Antinutritional Factors on Protein Digestibility and Amino Acid Availability in Foods. J. AOAC Int. 2005, 88(3), 967–987. DOI: 10.1093/jaoac/88.3.967.
  • Cirkovic Velickovic, T. D.; Stanic‐vucinic, D. J. The Role of Dietary Phenolic Compounds in Protein Digestion and Processing Technologies to Improve Their Antinutritive Properties. Compr. Rev. Food Sci. Food Saf. 2018, 17(1), 82–103. DOI: 10.1111/1541-4337.12320.
  • Guillamon, E.; Pedrosa, M. M.; Burbano, C.; Cuadrado, C.; de Cortes Sánchez, M.; Muzquiz, M. The Trypsin Inhibitors Present in Seed of Different Grain Legume Species and Cultivar. Food Chem. 2008, 107(1), 68–74. DOI: 10.1016/j.foodchem.2007.07.029.
  • Song, H. K.; Suh, S. W. Kunitz-Type Soybean Trypsin Inhibitor Revisited: Refined Structure of Its Complex with Porcine Trypsin Reveals an Insight into the Interaction Between a Homologous Inhibitor from Erythrina Caffra and Tissue-Type Plasminogen Activator. J. Mol. Biol. 1998, 275(2), 347–363. DOI: 10.1006/jmbi.1997.1469.
  • Cohen, I.; Coban, M.; Shahar, A.; Sankaran, B.; Hockla, A.; Lacham, S.; Caulfield, T. R.; Radisky, E. S.; Papo, N. Disulfide Engineering of Human Kunitz-Type Serine Protease Inhibitors Enhances Proteolytic Stability and Target Affinity Toward Mesotrypsin. J. Biol. Chem. 2019, 294(13), 5105–5120. DOI: 10.1074/jbc.RA118.007292.
  • Rao, K.; Suresh, C. Bowman–birk Protease Inhibitor from the Seeds of Vigna Unguiculata Forms a Highly Stable Dimeric Structure. Biochim. Biophys. Acta. 2007, 1774(10), 1264–1273. DOI: 10.1016/j.bbapap.2007.07.009.
  • Pisulewska, E.; Pisulewski, P. Trypsin Inhibitor Activity of Legume Seeds (Peas, Chickling Vetch, Lentils, and Soya Beans) as Affected by the Technique of Harvest. Anim. Feed Sci. Technol. 2000, 86(3–4), 261–265. DOI: 10.1016/S0377-8401(00)00167-X.
  • Sreerama, Y. N.; Neelam, D. A.; Sashikala, V. B.; Pratape, V. M. Distribution of Nutrients and Antinutrients in Milled Fractions of Chickpea and Horse Gram: Seed Coat Phenolics and Their Distinct Modes of Enzyme Inhibition. J. Agric. Food Chem. 2010, 58(7), 4322–4330. DOI: 10.1021/jf903101k.
  • Valdez-Anguiano, D. M.; Herrera-Cabrera, É. B.; Dávila-Ortíz, G.; Cardador-Martínez, A.; Jiménez-Martínez, C. Content and Distribution of Nutritional and Non- Nutritional Compounds During Germination of Three Mexican Faba Bean (Vicia Faba) Varieties. Int. J. Res. Agric. Food Sci. 2015, 2, 14.
  • Arai, M.; Mori, H.; Imaseki, H. Roles of Sucrose-Metabolizing Enzymes in Growth of Seedlings. Purification of Acid Invertase from Growing Hypocotyls of Mung Bean Seedlings. Plant Cell Physiol. 1991, 32, 1291–1298.
  • Devindra, S.; Sreenivasa Rao, J.; Krishnaswamy, P.; Bhaskar, V. Reduction of α-Galactoside Content in Red Gram (Cajanus Cajan L.) Upon Germination Followed by Heat Treatment. J. Sci. Food Agric. 2011, 91(10), 1829–1835. DOI: 10.1002/jsfa.4391.
  • Liener, I. E. Implications of Antinutritional Components in Soybean Foods. Crit. Rev. Food Sci. Nutr. 1994, 34(1), 31–67. DOI: 10.1080/10408399409527649.
  • da Silva Queiroz, K.; de Oliveira, A. C.; Helbig, E.; Reis, S. M. P. M.; Carraro, F. Soaking the Common Bean in a Domestic Preparation Reduced the Contents of Raffinose-Type Oligosaccharides but Did Not Interfere with Nutritive Value. J. Nutr. Sci. Vitaminol. 2002, 48(4), 283–289. DOI: 10.3177/jnsv.48.283.
  • Kumar, S.; Verma, A. K.; Das, M.; Jain, S.; Dwivedi, P. D. Clinical Complications of Kidney Bean (Phaseolus Vulgaris L.) Consumption. Nutrition. 2013, 29(6), 821–827. DOI: 10.1016/j.nut.2012.11.010.
  • Martín-Cabrejas, M. A.; Aguilera, Y.; Benítez, V.; Mollá, E.; López-Andréu, F. J.; Esteban, R. M. Effect of Industrial Dehydration on the Soluble Carbohydrates and Dietary Fiber Fractions in Legumes. J. Agric. Food Chem. 2006, 54(20), 7652–7657. DOI: 10.1021/jf061513d.
  • Trugo, L.; Farah, A.; Trugo, N. Germination and Debittering Lupin Seeds Reduce α‐galactoside and Intestinal Carbohydrate Fermentation in Humans. J. Food Sci. 1993, 58(3), 627–630. DOI: 10.1111/j.1365-2621.1993.tb04342.x.
  • Duhan, A.; Khetarpaul, N.; Bishnoi, S. Content of Phytic Acid and Hcl-Extractability of Calcium, Phosphorus and Iron as Affected by Various Domestic Processing and Cooking Methods. Food Chem. 2002, 78(1), 9–14. DOI: 10.1016/S0308-8146(01)00144-3.
  • Martín-Cabrejas, M. A.; Sanfiz, B.; Vidal, A.; Mollá, E.; Esteban, R.; López-Andréu, F. J. Effect of Fermentation and Autoclaving on Dietary Fiber Fractions and Antinutritional Factors of Beans (Phaseolus Vulgaris L.). J. Agric. Food Chem. 2004, 52(2), 261–266. DOI: 10.1021/jf034980t.
  • Camden, B.; Morel, P.; Thomas, D.; Ravindran, V.; Bedford, M. Effectiveness of Exogenous Microbial Phytase in Improving the Bioavailabilities of Phosphorus and Other Nutrients in Maize-Soya-Bean Meal Diets for Broilers. Anim. Sci. 2001, 73(2), 289–297. DOI: 10.1017/S1357729800058264.
  • Graf, E.; Empson, K. L.; Eaton, J. W. Phytic Acid. A Natural Antioxidant. J. Biol. Chem. 1987, 262(24), 11647–11650. DOI: 10.1016/S0021-9258(18)60858-0.
  • Shamsuddin, A. M. Anti‐cancer Function of Phytic Acid. Int. J. Food Sci. Technol. 2002, 37(7), 769–782. DOI: 10.1046/j.1365-2621.2002.00620.x.
  • Schaafsma, G. The Protein Digestibility-Corrected Amino Acid Score (pdcaas)—a Concept for Describing Protein Quality in Foods and Food Ingredients: A Critical Review. J. AOAC Int. 2005, 88(3), 988–994. DOI: 10.1093/jaoac/88.3.988.
  • Abd El-Hady, E.; Habiba, R. Effect of Soaking and Extrusion Conditions on Antinutrients and Protein Digestibility of Legume Seeds. LWT Food Sci. Technol. 2003, 36(3), 285–293. DOI: 10.1016/S0023-6438(02)00217-7.
  • Nkhata, S. G.; Ayua, E.; Kamau, E. H.; Shingiro, J. B. Fermentation and Germination Improve Nutritional Value of Cereals and Legumes Through Activation of Endogenous Enzymes. Food Sci. Nutr. 2018, 6(8), 2446–2458. DOI: 10.1002/fsn3.846.
  • Negi, A.; Boora, P.; Khetarpaul, N. Starch and Protein Digestibility of Newly Released Moth Bean Cultivars: Effect of Soaking, Dehulling, Germination and Pressure Cooking. Nahrung. 2001, 45(4), 251–254. DOI: 10.1002/1521-3803(20010801)45:4<251:AID-FOOD251>3.0.CO;2-V.
  • Khattab, R.; Arntfield, S.; Nyachoti, C. Nutritional Quality of Legume Seeds as Affected by Some Physical Treatments, Part 1: Protein Quality Evaluation. LWT Food Sci. Technol. 2009, 42(6), 1107–1112. DOI: 10.1016/j.lwt.2009.02.008.
  • Bressani, R.; Brenes, R. G.; GarcíGarcíA, A.; ElíElíAs, L. G. Chemical Composition, Amino Acid Content and Protein Quality ofCanavalia Spp. Seeds. J. Sci. Food Agric. 1987, 40(1), 17–23. DOI: 10.1002/jsfa.2740400104.
  • Habiba, R. Changes in Anti-Nutrients, Protein Solubility, Digestibility, and Hcl-Extractability of Ash and Phosphorus in Vegetable Peas as Affected by Cooking Methods. Food Chem. 2002, 77(2), 187–192. DOI: 10.1016/S0308-8146(01)00335-1.
  • Liener, I. E. Legume Toxins in Relation to Protein Digestibility‐a Review. J. Food Sci. 1976, 41(5), 1076–1081. DOI: 10.1111/j.1365-2621.1976.tb14391.x.
  • Embaby, H.-E.-S. Effect of Soaking, Dehulling, and Cooking Methods on Certain Antinutrients and in vitro Protein Digestibility of Bitter and Sweet Lupin Seeds. Food Sci. Biotechnol. 2010, 19(4), 1055–1062. DOI: 10.1007/s10068-010-0148-1.
  • Kamble, D. B.; Singh, R.; Kaur, B. P.; Rani, S.; Upadhyay, A. Effect of Microwave Processing on Physicothermal Properties, Antioxidant Potential, in vitro Protein Digestibility and Microstructure of Durum Wheat Semolina. J. Food Meas. Charact. 2020, 14(2), 761–769. DOI: 10.1007/s11694-019-00324-z.
  • Han, I. H.; Swanson, B. G.; Baik, B. K. Protein Digestibility of Selected Legumes Treated with Ultrasound and High Hydrostatic Pressure During Soaking. Cereal Chem. J. 2007, 84(5), 518–521. DOI: 10.1094/CCHEM-84-5-0518.
  • Drulyte, D.; Orlien, V. The Effect of Processing on Digestion of Legume Proteins. Foods. 2019, 8(6), 224. DOI: 10.3390/foods8060224.
  • Alonso, R.; Aguirre, A.; Marzo, F. Effects of Extrusion and Traditional Processing Methods on Antinutrients and in vitro Digestibility of Protein and Starch in Faba and Kidney Beans. Food Chem. 2000a, 68(2), 159–165. DOI: 10.1016/S0308-8146(99)00169-7.
  • Aw, T. L.; Swanson, B. Influence of Tannin on Phaseolus Vulgaris Protein Digestibility and Quality. J. Food Sci. 1985, 50(1), 67–71. DOI: 10.1111/j.1365-2621.1985.tb13279.x.
  • Opoku, A.; Tabil, L.; Sundaram, J.; Crerar, W.; Park, S. Conditioning and Dehulling of Pigeon Peas and Mung Beans. CSAE/SCGR Paper, 2003.
  • Blessing, I. A.; Gregory, I. O. Effect of Processing on the Proximate Composition of the Dehulled and Undehulled Mungbean [Vigna Radiata (L.) Wilczek] Flours. Pak. J. Nutr. 2010, 9(10), 1006–1016. DOI: 10.3923/pjn.2010.1006.1016.
  • Ghavidel, R. A.; Prakash, J. The Impact of Germination and Dehulling on Nutrients, Antinutrients, in vitro Iron and Calcium Bioavailability and in vitro Starch and Protein Digestibility of Some Legume Seeds. LWT Food Sci. Technol. 2007, 40(7), 1292–1299. DOI: 10.1016/j.lwt.2006.08.002.
  • Preet, K.; Punia, D. Antinutrients and Digestibility (in vitro) of Soaked, Dehulled and Germinated Cowpeas. Nutr. Health. 2000, 14(2), 109–117. DOI: 10.1177/026010600001400203.
  • Annor, G. A.; Ma, Z., and Boye, J. I. Crops-Legumes; Wiley Online Library: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK, 2014.
  • Wiesinger, J. A.; Cichy, K. A.; Tako, E.; Glahn, R. P. The Fast Cooking and Enhanced Iron Bioavailability Properties of the Manteca Yellow Bean (Phaseolus Vulgaris L.). Nutrients. 2018, 10(11), 1609. DOI: 10.3390/nu10111609.
  • Rehman, Z.-U.; Shah, W. Thermal Heat Processing Effects on Antinutrients, Protein and Starch Digestibility of Food Legumes. Food Chem. 2005, 91(2), 327–331. DOI: 10.1016/j.foodchem.2004.06.019.
  • Fabbri, A. D.; Crosby, G. A. A Review of the Impact of Preparation and Cooking on the Nutritional Quality of Vegetables and Legumes. Int. J. Gastronomy Food Sci. 2016, 3, 2–11. DOI: 10.1016/j.ijgfs.2015.11.001.
  • Piecyk, M.; Wołosiak, R.; Drużynska, B.; Worobiej, E. Chemical Composition and Starch Digestibility in Flours from Polish Processed Legume Seeds. Food Chem. 2012, 135(3), 1057–1064. DOI: 10.1016/j.foodchem.2012.05.051.
  • El-Adawy, T. A. Nutritional Composition and Antinutritional Factors of Chickpeas (Cicer Arietinum L.) Undergoing Different Cooking Methods and Germination. Plant Foods Human Nutr. 2002, 57(1), 83–97. DOI: 10.1023/A:1013189620528.
  • Amarakoon, R.; Kráčmar, S.; Hoza, I., and Budinský, P. The Effect of Cooking on in vitro Digestibility of Selected Legumes. Acta Univ. Agric. Et Silvic. Mendel. Brun., 2009, LVII, No. 5, pp. 13–18.
  • Divekar, M. T.; Karunakaran, C.; Lahlali, R.; Kumar, S.; Chelladurai, V.; Liu, X.; Borondics, F.; Shanmugasundaram, S.; Jayas, D. S. Effect of Microwave Treatment on the Cooking and Macronutrient Qualities of Pulses. Int. J. Food Prop. 2017, 20(2), 409–422. DOI: 10.1080/10942912.2016.1163578.
  • Negi, A.; Boora, P.; Khetarpaul, N. Effect of Microwave Cooking on the Starch and Protein Digestibility of Some Newly Released Moth Bean (Phaseolus Aconitifolius Jacq.) Cultivars. J. Food Compost. Anal. 2001, 14(5), 541–546. DOI: 10.1006/jfca.2001.1013.
  • Satya, S.; Kaushik, G.; Naik, S. Processing of Food Legumes: A Boon to Human Nutrition. Mediterr. J. Nutr. Metab. 2010, 3(3), 183–195. DOI: 10.3233/s12349-010-0017-8.
  • Shimelis, E., and Rakshit, S. Effect of Microwave Heating on Solubility and Digestibility of Proteins and Reduction of Antinutrients of Selected Common Bean (Phaseolus Vulgaris L.) Varieties Grown in Ethiopia. Ital. J. Food Sci. 2005, 17, 407 - 418.
  • Pysz, M.; Polaszczyk, S.; Leszczyńska, T.; Piątkowska, E. Effect of Microwave Field on Trypsin Inhibitors Activity and Protein Quality of Broad Bean Seeds (Vicia Faba Var. Major). Acta Scientiarum Polonorum Technologia Alimentaria. 2012, 11(2), 193–198.
  • Deol, J. K.; Bains, K. Effect of Household Cooking Methods on Nutritional and Anti Nutritional Factors in Green Cowpea (Vigna Unguiculata) Pods. J. Food Sci. Technol. 2010, 47(5), 579–581. DOI: 10.1007/s13197-010-0112-3.
  • Khatoon, N.; Prakash, J. Nutritional Quality of Microwave-Cooked and Pressure-Cooked Legumes. Int. J. Food Sci. Nutr. 2004, 55(6), 441–448. DOI: 10.1080/09637480400009102.
  • Saikia, P.; Sarkar, C.; Borua, I. Chemical Composition, Antinutritional Factors and Effect of Cooking on Nutritional Quality of Rice Bean [Vigna Umbellata (Thunb; Ohwi and Ohashi)]. Food Chem. 1999, 67(4), 347–352. DOI: 10.1016/S0308-8146(98)00206-4.
  • Laurena, A. C.; Garcia, V. V.; Mae, E.; Mendoza, T. Effects of Heat on the Removal of Polyphenols and in vitro Protein Digestibility of Cowpea (Vigna Unguiculata (L.) Walp.). Plant Foods Human Nutr. 1987, 37(2), 183–192. DOI: 10.1007/BF01092054.
  • Kalpanadevi, V.; Mohan, V. Effect of Processing on Antinutrients and in vitro Protein Digestibility of the Underutilized Legume, Vigna Unguiculata (L.) Walp Subsp. Unguiculata. LWT Food Sci. Technol. 2013, 51(2), 455–461. DOI: 10.1016/j.lwt.2012.09.030.
  • Luo, Y.-W.; Xie, W.-H. Effect of Different Processing Methods on Certain Antinutritional Factors and Protein Digestibility in Green and White Faba Bean (Vicia Faba L.). J. Food. 2013, 11, 43–49.
  • Khalil, A.; Mansour, E. The Effect of Cooking, Autoclaving and Germination on the Nutritional Quality of Faba Beans. Food Chem. 1995, 54(2), 177–182. DOI: 10.1016/0308-8146(95)00024-D.
  • Carbonaro, M.; Cappelloni, M.; Nicoli, S.; Lucarini, M.; Carnovale, E. Solubility−digestibility Relationship of Legume Proteins. J. Agric. Food Chem. 1997, 45(9), 3387–3394. DOI: 10.1021/jf970070y.
  • Wu, W.; Williams, W.; Kunkel, M. E.; Acton, J.; Wardlaw, F.; Huang, Y.; Grimes, L. Thermal Effects on in vitro Protein Quality of Red Kidney Bean (Phaseolus Vulgaris L.). J. Food Sci. 1994, 59(6), 1187–1191. DOI: 10.1111/j.1365-2621.1994.tb14673.x.
  • Giacomino, S.; PeñPeñAs, E.; Ferreyra, V.; Pellegrino, N.; Fournier, M.; Apro, N.; Carrión, M. O.; FríFríAs, J. Extruded Flaxseed Meal Enhances the Nutritional Quality of Cereal-Based Products. Plant Foods Human Nutr. 2013, 68(2), 131–136. DOI: 10.1007/s11130-013-0359-8.
  • Camire, M. E.; Camire, A.; Krumhar, K. Chemical and Nutritional Changes in Foods During Extrusion. Crit. Rev. Food Sci. Nutr. 1990, 29(1), 35–57. DOI: 10.1080/10408399009527513.
  • Alonso, R.; Orúeúe, E.; Zabalza, M. J.; Grant, G.; Marzo, F. Effect of Extrusion Cooking on Structure and Functional Properties of Pea and Kidney Bean Proteins. J. Sci. Food Agric. 2000b, 80(3), 397–403. DOI: 10.1002/1097-0010(200002)80:3<397:AID-JSFA542>3.0.CO;2-3.
  • Prudêncio‐ferreira, S.; ArêArêAs, J. G. Protein‐protein Interactions in the Extrusion of Soya at Various Temperatures and Moisture Contents. J. Food Sci. 1993, 58(2), 378–381. DOI: 10.1111/j.1365-2621.1993.tb04279.x.
  • Gujska, E.; Khan, K. Effect of Temperature on Properties of Extrudates from High Starch Fractions of Navy, Pinto and Garbanzo Beans. J. Food Sci. 1990, 55(2), 466–469. DOI: 10.1111/j.1365-2621.1990.tb06788.x.
  • Arribas, C.; Cabellos, B.; Sánchez, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M. The Impact of Extrusion on the Nutritional Composition, Dietary Fiber and in vitro Digestibility of Gluten-Free Snacks Based on Rice, Pea and Carob Flour Blends. Food Funct. 2017, 8(10), 3654–3663. DOI: 10.1039/C7FO00910K.
  • Batista, K. A.; Prudencio, S. H.; Fernandes, K. F. Changes in the Functional Properties and Antinutritional Factors of Extruded Hard-to-Cook Common Beans (Phaseolus Vulgaris, L.). J. Food Sci. 2010, 75(3), C286–C290. DOI: 10.1111/j.1750-3841.2010.01557.x.
  • Kadam, S. U.; Tiwari, B. K.; Álvarez, C.; Oʻ-Donnell, C. P. Ultrasound Applications for the Extraction, Identification and Delivery of Food Proteins and Bioactive Peptides. Trends Food Sci. Technol. 2015, 46(1), 60–67. DOI: 10.1016/j.tifs.2015.07.012.
  • Rahman, M. M.; Lamsal, B. P. Ultrasound‐assisted Extraction and Modification of Plant‐based Proteins: Impact on Physicochemical, Functional, and Nutritional Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20(2), 1457–1480. DOI: 10.1111/1541-4337.12709.
  • Sun, X.; Ohanenye, I. C.; Ahmed, T.; Udenigwe, C. C. Microwave Treatment Increased Protein Digestibility of Pigeon Pea (Cajanus Cajan) Flour: Elucidation of Underlying Mechanisms. Food Chem. 2020, 329, 127196. DOI: 10.1016/j.foodchem.2020.127196.
  • Karki, B.; Lamsal, B. P.; Grewell, D.; Pometto, A. L., III; Van Leeuwen, J.; Khanal, S. K.; Jung, S. Functional Properties of Soy Protein Isolates Produced from Ultrasonicated Defatted Soy Flakes. J. Am. Oil Chem. Soc. 2009, 86(10), 1021–1028. DOI: 10.1007/s11746-009-1433-0.
  • Pan, M.; Xu, F.; Wu, Y.; Yao, M.; Xiao, X.; Zhang, N.; Ju, X.; Wang, L. Application of Ultrasound-Assisted Physical Mixing Treatment Improves in vitro Protein Digestibility of Rapeseed Napin. Ultrason. Sonochem. 2020, 67, 105136. DOI: 10.1016/j.ultsonch.2020.105136.
  • Jia, J.; Ma, H.; Zhao, W.; Wang, Z.; Tian, W.; Luo, L.; He, R. The Use of Ultrasound for Enzymatic Preparation of ACE-Inhibitory Peptides from Wheat Germ Protein. Food Chem. 2010, 119(1), 336–342. DOI: 10.1016/j.foodchem.2009.06.036.
  • Martínez-Velasco, A.; Lobato-Calleros, C.; Hernández-Rodríguez, B. E.; Román-Guerrero, A.; Alvarez-Ramirez, J.; Vernon-Carter, E. J. High Intensity Ultrasound Treatment of Faba Bean (Vicia Faba L.) Protein: Effect on Surface Properties, Foaming Ability and Structural Changes. Ultrason. Sonochem. 2018, 44, 97–105. DOI: 10.1016/j.ultsonch.2018.02.007.
  • de Oliveira, A. P. H.; Omura, M. H.; Barbosa, É. D. A. A.; Bressan, G. C.; Vieira, É. N. R.; dos Reis Coimbra, J. S.; de Oliveira, E. B. Combined Adjustment of pH and Ultrasound Treatments Modify Techno-Functionalities of Pea Protein Concentrates. Colloids Surf. A Physicochem. Eng. Aspects. 2020, 603, 125156. DOI: 10.1016/j.colsurfa.2020.125156.
  • Lima, D. C.; Miano, A. C.; Augusto, P. E. D.; Arthur, V. Gamma Irradiation of Common Beans: Effect on Nutritional and Technological Properties. Lwt. 2019, 116, 108539. DOI: 10.1016/j.lwt.2019.108539.
  • Bhat, R.; Sridhar, K. R.; Seena, S. Nutritional Quality Evaluation of Velvet Bean Seeds (Mucuna Pruriens) Exposed to Gamma Irradiation. Int. J. Food Sci. Nutr. 2008, 59(4), 261–278. DOI: 10.1080/09637480701456747.
  • Osman, A. M. A.; Hassan, A. B.; Osman, G. A.; Mohammed, N.; Rushdi, M. A.; Diab, E. E.; Babiker, E. E. Effects of Gamma Irradiation and/or Cooking on Nutritional Quality of Faba Bean (Vicia Faba L.) Cultivars Seeds. J. Food Sci. Technol. 2014, 51(8), 1554–1560. DOI: 10.1007/s13197-012-0662-7.
  • Siddhuraju, P.; Makkar, H.; Becker, K. The Effect of Ionising Radiation on Antinutritional Factors and the Nutritional Value of Plant Materials with Reference to Human and Animal Food. Food Chem. 2002, 78, 187–205. DOI: 10.1016/S0308-8146(01)00398-3.
  • Bamidele, O.; Akanbi, C. Influence of Gamma Irradiation on the Nutritional and Functional Properties of Pigeon Pea (Cajanus Cajan) Flour. Afr. J. Food Sci. 2013, 7(9), 285–290. DOI: 10.5897/AJFS2013.0990.
  • El-Niely, H. F. Effect of Radiation Processing on Antinutrients, in-Vitro Protein Digestibility and Protein Efficiency Ratio Bioassay of Legume Seeds. Radiat. Phys. Chem. 2007, 76(6), 1050–1057. DOI: 10.1016/j.radphyschem.2006.10.006.
  • Nosworthy, M. G.; Medina, G.; Franczyk, A. J.; Neufeld, J.; Appah, P.; Utioh, A.; Frohlich, P.; House, J. D. Effect of Processing on the in vitro and in vivo Protein Quality of Red and Green Lentils (Lens Culinaris). Food Chem. 2018, 240, 588–593. DOI: 10.1016/j.foodchem.2017.07.129.
  • de la Rosa-Millán, J.; Heredia-Olea, E.; Perez-Carrillo, E.; Guajardo-Flores, D.; Serna-Saldívar, S. R. O. Effect of Decortication, Germination and Extrusion on Physicochemical and in vitro Protein and Starch Digestion Characteristics of Black Beans (Phaseolus Vulgaris L.). Lwt. 2019, 102, 330–337. DOI: 10.1016/j.lwt.2018.12.039.
  • Qi, M.; Zhang, G.; Ren, Z.; He, Z.; Peng, H.; Zhang, D.; Ma, C. Impact of Extrusion Temperature on in vitro Digestibility and Pasting Properties of Pea Flour. Plant Foods Human Nutr. 2021, 76(1), 26–30. DOI: 10.1007/s11130-020-00869-1.
  • Khatkar, A. B.; Kaur, A.; Khatkar, S. K. Restructuring of Soy Protein Employing Ultrasound: Effect on Hydration, Gelation, Thermal, in-Vitro Protein Digestibility and Structural Attributes. Lwt. 2020, 132, 109781. DOI: 10.1016/j.lwt.2020.109781.
  • Bashir, K.; Aggarwal, M. Effects of Gamma Irradiation on the Physicochemical, Thermal and Functional Properties of Chickpea Flour. LWT Food Sci. Technol. 2016, 69, 614–622. DOI: 10.1016/j.lwt.2016.02.022.
  • Abdelwhab, N. M.; Nour, A.; Fageer, A. S. M. The Nutritive and Functional Properties of Dry Bean (Phaseolus Vulgaris) as Affected by Gamma Irradiation. Pak J. Nutr. 2009, 8(11), 1739–1742. DOI: 10.3923/pjn.2009.1739.1742.
  • Raju, T. Proteolysis of Proteins. In Co‐ and Post‐translational Modifications of Therapeutic Antibodies and Proteins; Raju, T.S., Ed.; John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA. 2019; pp. 183–202.
  • Chen, L.; Chen, J.; Ren, J.; Zhao, M. Effects of Ultrasound Pretreatment on the Enzymatic Hydrolysis of Soy Protein Isolates and on the Emulsifying Properties of Hydrolysates. J. Agric. Food Chem. 2011, 59(6), 2600–2609. DOI: 10.1021/jf103771x.
  • Dias, D. R.; Abreu, C. M. P. D.; Silvestre, M. P. C.; Schwan, R. F. In vitro Protein Digestibility of Enzymatically Pre-Treated Bean (Phaseolus Vulgaris L.) Flour Using Commercial Protease and Bacillus Sp. Protease. Food Sci. Technol. 2010, 30(1), 94–99. DOI: 10.1590/S0101-20612010005000010.
  • Contreras, M. D. M.; Lama-Muñoz, A.; Gutiérrez-Pérez, J. M.; Espínola, F.; Moya, M.; Castro, E. Protein Extraction from Agri-Food Residues for Integration in Biorefinery: Potential Techniques and Current Status. Bioresour. Technol. 2019, 280, 459–477. DOI: 10.1016/j.biortech.2019.02.040.
  • Segura-Campos, M.; Espinosa-GarcíGarcíA, L.; Chel-Guerrero, L.; Betancur-Ancona, D. Effect of Enzymatic Hydrolysis on Solubility, Hydrophobicity, and in vivo Digestibility in Cowpea (Vigna Unguiculata). Int. J. Food Prop. 2012, 15(4), 770–780. DOI: 10.1080/10942912.2010.501469.
  • Arcan, I.; Yemenicioğlu, A. Effects of Controlled Pepsin Hydrolysis on Antioxidant Potential and Fractional Changes of Chickpea Proteins. Food Res. Int. 2010, 43(1), 140–147. DOI: 10.1016/j.foodres.2009.09.012.
  • Polanco-Lugo, E.; Dávila-Ortiz, G.; Betancur-Ancona, D. A.; Chel-Guerrero, L. A. Effects of Sequential Enzymatic Hydrolysis on Structural, Bioactive and Functional Properties of Phaseolus Lunatus Protein Isolate. Food Sci. Technol. 2014, 34(3), 441–448. DOI: 10.1590/1678-457x.6349.
  • Boye, J.; Wijesinha-Bettoni, R.; Burlingame, B. Protein Quality Evaluation Twenty Years After the Introduction of the Protein Digestibility Corrected Amino Acid Score Method. Br. J. Nutr. 2012, 108(S2), S183–S211. DOI: 10.1017/S0007114512002309.
  • Giami, S. Effect of Fermentation on the Seed Proteins, Nitrogenous Constituents, Antinutrients and Nutritional Quality of Fluted Pumpkin (Telfairia Occidentalis Hook). Food Chem. 2004, 88(3), 397–404. DOI: 10.1016/j.foodchem.2004.01.064.
  • Çabuk, B.; Nosworthy, M. G.; Stone, A. K.; Korber, D. R.; Tanaka, T.; House, J. D.; Nickerson, M. T. Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technol. Biotechnol. 2018, 56(2), 257–264. DOI: 10.17113/ftb.56.02.18.5450.
  • El Hag, M. E.; El Tinay, A. H.; Yousif, N. E. Effect of Fermentation and Dehulling on Starch, Total Polyphenols, Phytic Acid Content and in vitro Protein Digestibility of Pearl Millet. Food Chem. 2002, 77(2), 193–196. DOI: 10.1016/S0308-8146(01)00336-3.
  • Chandra-Hioe, M. V.; Wong, C. H.; Arcot, J. The Potential Use of Fermented Chickpea and Faba Bean Flour as Food Ingredients. Plant Foods Human Nutr. 2016, 71(1), 90–95. DOI: 10.1007/s11130-016-0532-y.
  • Stodolak, B.; Starzyńska‐janiszewska, A. The Influence of Tempeh Fermentation and Conventional Cooking on Anti-Nutrient Level and Protein Bioavailability (in vitro Test) of Grass-Pea Seeds. J. Sci. Food Agric. 2008, 88(13), 2265–2270. DOI: 10.1002/jsfa.3341.
  • Udensi, E. Effects of Fermentation and Germination on the Physicochemical Properties of Mucuna Cochinchinensis Protein Isolate. Afr. J. Biotechnol. 2006, 5, 896.
  • Uppal, V.; Bains, K. Effect of Germination Periods and Hydrothermal Treatments on in vitro Protein and Starch Digestibility of Germinated Legumes. J. Food Sci. Technol. 2012, 49(2), 184–191. DOI: 10.1007/s13197-011-0273-8.
  • Bhathal, S., and Kaur, N. Effect of Germination on Nutrient Composition of Gluten Free Quinoa (Chenopodium Quinoa). Food Sci. 2015, 4, 423 - 425.
  • Ohanenye, I. C.; Tsopmo, A.; Ejike, C. E.; Udenigwe, C. C. Germination as a Bioprocess for Enhancing the Quality and Nutritional Prospects of Legume Proteins. Trends Food Sci. Technol. 2020, 101, 213–222. DOI: 10.1016/j.tifs.2020.05.003.
  • Liu, K.; McWatters, K. H.; Phillips, R. D. Protein Insolubilization and Thermal Destabilization During Storage as Related to Hard-to-Cook Defect in Cowpeas. J. Agric. Food Chem. 1992, 40(12), 2483–2487. DOI: 10.1021/jf00024a028.
  • Yousif, A.; Kato, J.; Deeth, H. Effect of Storage on the Biochemical Structure and Processing Quality of Adzuki Bean (Vigna Angularis). Food Rev. Int. 2007, 23(1), 1–33. DOI: 10.1080/87559120600865172.
  • Saio, K.; Nikkuni, I.; Ando, Y.; Otsuru, M.; Terauchi, Y., and Kito, M. Soybean Quality Changes During Model Storage Studies. Cereal Chem. 1980 , 57, 77 - 82.
  • Srisuma, N.; Hammerschmidt, R.; Uebersax, M.; Ruengsakulrach, S.; Bennink, M.; Hosfield, G. Storage Induced Changes of Phenolic Acids and the Development of Hard‐to‐cook in Dry Beans (Phaseolus Vulgaris Var. Seafarer). J. Food Sci. 1989, 54(2), 311–314. DOI: 10.1111/j.1365-2621.1989.tb03069.x.
  • Hussain, A.; Watts, B.; Bushuk, W. Hard‐to‐cook Phenomenon in Beans: Changes in Protein Electrophoretic Patterns During Storage. J. Food Sci. 1989, 54(5), 1367–1368. DOI: 10.1111/j.1365-2621.1989.tb05996.x.
  • Mohammed, H.-E.-S.-H.; Suliman, A.-E.-R.-E.; Ahmed, A.-E.-R.-A.-E.-R.; Ebrahim, M. A. Ultraviolet Effect on Faba Bean Seed Quality During Storage. Asian J. Plant Sci. 2020, 19(1), 26–34. DOI: 10.3923/ajps.2020.26.34.
  • El-Refai, A. A.; Harras, H. M.; El-Nemr, K. M.; Noaman, M. A. Chemical and Technological Studies on Faba Bean Seeds. I—effect of Storage on Some Physical and Chemical Properties. Food Chem. 1988, 29(1), 27–39. DOI: 10.1016/0308-8146(88)90073-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.