484
Views
1
CrossRef citations to date
0
Altmetric
Review

Marine lipids as a source of high-quality fatty acids and antioxidants

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Larsen, R.; Eilertsen, K.-E.; Elvevoll, E. O. Health Benefits of Marine Foods and Ingredients. Biotechnol. Adv. 2011, 29(5), 508–518. DOI: 10.1016/j.biotechadv.2011.05.017.
  • Kolakowska, A.; Olley, J., and Dunstan, G. A. Fish Lipids. In Chemical and Functional Properties of Food Lipids; Zdzislaw, Z.; Sikorsky, A., and Kolakowska, A., Eds.; CRC Press 221–264 : Washington DC, 2003.
  • Ababouch, L.; Taconet, M.; Plummer, J.; Garibaldi, L.; Vannuccini, S. Bridging the Sciencepolicy Divide to Promote Fisheries Knowledge for All: The Case of the Food and Agriculture Organization of the United Nations. In Science, Information, and Policy Interface for Effective Coastal and Ocean Management; MacDonald, B.H.; Soomai, S.S.; de Santo, E.M. and Wells, P.G., Eds.; CRC Press: Boca Ratón USA, 2016; pp 389–417. DOI: 10.1201/b21483.
  • Kris-Etherton, P. M.; Taylor, D. S.; Yu-Poth, S.; Huth, P.; Moriarty, K.; Fishell, V.; Hargrove, R. L.; Zhao, G.; Etherton, T. D. Polyunsaturated Fatty Acids in the Food Chain in the United States. Am. Am. J. Clin. Nutr. 2000, 71(1), 179S–188S. DOI: 10.1093/ajcn/71.1.179S.
  • Passi, S.; Cataudella, S.; Di Marco, P.; De Simone, F.; Rastrelli, L. Fatty Acid Composition and Antioxidant Levels in Muscle Tissue of Different Mediterranean Marine Species of Fish and Shellfish. J. Agric. Food. Chem. 2002, 50(25), 7314–7322. DOI: 10.1021/jf020451y.
  • Aidos, I.; Van der Padt, A.; Luten, J. B.; Boom, R. M. Seasonal Changes in Crude and Lipid Composition of Herring Fillets, Byproducts, and Respective Produced Oils. J. Agric. J. Agric. Food Chem. 2002, 50(16), 4589–4599. DOI: 10.1021/jf0115995.
  • Méndez, E.; González, R. M. Seasonal Changes in the Chemical and Lipid Composition of Fillets of the Southwest Atlantic Hake (Merluccius hubbsi). Food Chem. 1997, 59(2), 213–217. DOI: 10.1016/S0308-8146(96)00225-7.
  • Bandarra, N. M.; Batista, I.; Nunes, M. L.; Empis, J. M.; Christie, W. W. Seasonal Changes in Lipid Composition of Sardine (Sardina pilchardus). J. Food Sci. 1997, 62(1), 40–42. DOI: 10.1111/j.1365-2621.1997.tb04364.x.
  • Iverson, S. J.; Frost, K. J.; Lang, S. L. C. Fat Content and Fatty Acid Composition of Forage Fish and Invertebrates in Prince William Sound, Alaska: Factors Contributing to Among and Within Species Variability. Mar. Ecol. Prog. Ser. 2002, 241, 161–181. DOI: 10.3354/meps241161.
  • Budge, S. M.; Iverson, S. J.; Bowen, W. D.; Ackman, R. G. Among-And Within-Species Variability in Fatty Acid Signatures of Marine Fish and Invertebrates on the Scotian Shelf, Georges Bank, and Southern Gulf of St. Lawrence. Can. J. Fish.Aquat. 2002, 59(5), 886–898. DOI: 10.1139/f02-062.
  • Luzia, L. A.; Sampaio, G. R.; Castellucci, C. M. N.; Torres, E. A. F. S. The Influence of Season on the Lipid Profiles of Five Commercially Important Species of Brazilian Fish. Food Chem. 2003, 83(1), 93–97. DOI: 10.1016/S0308-8146(03)00054-2.
  • Morioka, K.; Sakai, S.; Takegami, C.; Obatake, A. Seasonal Variations in Lipids and Fatty Acid Compositions of Frigate Mackerel Auxis Rochei. Nippon Suisan Gakk. 1999, 65(4), 732–738. DOI: 10.2331/suisan.65.732.
  • Cretton, M.; Rost, E. J.; Mazzuca Sobczuk, T.; Mazzuca, M. Variation in the Proximate Composition and Fatty Acid Profile Recovered from Argentine Hake (Merluccius hubbsi) Waste from Patagonia. Grasas Y Aceites. 2016, 67(1), 1–6.
  • Jahns, L. Fish Intake in the United States. In Fish and Fish Oil in Health and Disease Prevention; Raatz, S.K. and Bibus, D.M., Eds.; Academic Press: San Diego, 2016; pp 1–11. DOI: 10.1016/B978-0-12-802844-5.00001-4.
  • Sanhueza, J.; Nieto, S.; Valenzuela, A. Acido Docosahexaenoico (DHA), Desarrollo Cerebral, Memoria Y Aprendizaje: undefined Importancia de La Suplementación Perinatal. Rev. Chil. Nutr. 2004, 31(2), 84–92.
  • Piironen, V.; Lindsay, D. G.; Miettinen, T. A.; Toivo, J.; Lampi, A. Plant Sterols: Biosynthesis, Biological Function and Their Importance to Human Nutrition. J. Sci. Food Agric. 2000, 80(7), 939–966. DOI: 10.1002/(SICI)1097-0010(20000515)80:7<939:AID-JSFA644>3.0.CO;2-C.
  • Nes, W. D. Biosynthesis of Cholesterol and Other Sterols. Chem. Rev. 2011, 111(10), 6423–6451. DOI: 10.1021/cr200021m.
  • Jacobsen, C.; Skall Nielsen, N.; Frisenfeldt Horn, A.; MoltkeSørensen, A. D. Food Enrichment with Omega-3 Faty Acids. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Jacobsen, C.; Nielsen, N.S.; Horn, A.F. and Sørensen, A.-D.-M., Eds.; Woodhead Publishing, 2013. DOI: 10.1533/9780857098863.2.130.
  • Genot, C.; Meynier, A.; Bernoud-Hubac, N., and Michalski, M.-C. Bioavailability of Lipids. In Fish and Fish Oil in Health and Disease Prevention; Raatz, S.K., and Bibus, D.M., Eds.; London: Academic Press, 2016; pp 61–74.
  • Pokorný, J. Are Natural Antioxidants Better-and Safer-Than Synthetic Antioxidants? Eur. J. Lipid Sci. Technol. 2007, 109(6), 629–642. DOI: 10.1002/ejlt.200700064.
  • Cook, C. M.; Larsen, T. S.; Derrig, L. D.; Kelly, K. M.; Tande, K. S. Wax Ester Rich Oil from the Marine Crustacean, Calanus Finmarchicus, is a Bioavailable Source of EPA and DHA for Human Consumption. Lipids. 2016, 51(10), 1137–1144. DOI: 10.1007/s11745-016-4189-y.
  • Calder, P. C. Omega-3 Fatty Acids and Inflammatory Processes. Nutrients. 2010, 2(3), 355–374. DOI: 10.3390/nu2030355.
  • Sun, G. Y.; Simonyi, A.; Fritsche, K. L.; Chuang, D. Y.; Hannink, M.; Gu, Z.; Greenlief, C. M.; Yao, J. K.; Lee, J. C.; Beversdorf, D. Q. Docosahexaenoic Acid (DHA): An Essential Nutrient and a Nutraceutical for Brain Health and Diseases. Prostaglandins Leukot. Essent. Fat. Acids. 2018, 136, 3–13. DOI: 10.1016/j.plefa.2017.03.006.
  • Kidd, P. M. Omega-3 DHA and EPA for Cognition, Behavior, and Mood: Clinical Findings and Structural-Functional Synergies with Cell Membrane Phospholipids. AlAltern. Med. Rev. 2007, 12(3), 207.
  • Mohanty, B. P.; Ganguly, S.; Mahanty, A.; Sankar, T. V.; Anandan, R.; Chakraborty, K.; Paul, B. N.; Sarma, D.; SyamaDayal, J.; Venkateshwarlu, G., et al. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India. Biomed Res. Int. 2016, 2016, 1–14. DOI: 10.1155/2016/4027437.
  • Simopoulos, A. P. The Importance of the Omega-6/omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233(6), 674–688. DOI: 10.3181/0711-MR-311.
  • Zárate, R.; el Jaber-Vazdekis, N.; Tejera, N.; Pérez, J. A.; Rodríguez, C. Significance of Long Chain Polyunsaturated Fatty Acids in Human Health. Clin. Transl. Med. 2017, 6(1), 1–19. DOI: 10.1186/s40169-017-0153-6.
  • Innes, J. K.; Calder, P. C. The Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Cardiometabolic Risk Factors: A Systematic Review. Int. J. Mol. Sci. 2018, 19(2), 532. DOI: 10.3390/ijms19020532.
  • Tortosa-Caparrós, E.; Navas-Carrillo, D.; Marín, F.; Orenes-Piñero, E. Anti-Inflammatory Effects of Omega 3 and Omega 6 Polyunsaturated Fatty Acids in Cardiovascular Disease and Metabolic Syndrome. Crit. Rev. Food Sci. Nutr. 2017, 57(16), 3421–3429. DOI: 10.1080/10408398.2015.1126549.
  • Minokawa, Y.; Sawada, Y.; Nakamura, M. The Influences of Omega-3 Polyunsaturated Fatty Acids on the Development of Skin Cancers. Diagnostics. 2021, 11(11), 2149. DOI: 10.3390/diagnostics11112149.
  • Ashfaq, W.; Rehman, K.; Siddique, M. I.; Khan, Q.-A.-A. Eicosapentaenoic Acid and Docosahexaenoic Acid from Fish Oil and Their Role in Cancer Research. Food Rev. Int. 2020, 36(8), 795–814. DOI: 10.1080/87559129.2019.1686761.
  • Hoppenbrouwers, T.; Cvejićhogervorst, J. H.; Garssen, J.; Wichers, H. J.; Willemsen, L. E. M. Long Chain Polyunsaturated Fatty Acids (LCPUFAs) in the Prevention of Food Allergy. RRont. Immunol. 2019, 10, 1118. DOI: 10.3389/fimmu.2019.01118.
  • Adams, S.; Lopata, A. L.; Smuts, C. M.; Baatjies, R.; Jeebhay, M. F. Relationship Between Serum Omega-3 Fatty Acid and Asthma Endpoints. Int. J. Environ. Res. Public Health. 2019, 16(1), 1–14. DOI: 10.3390/ijerph16010043.
  • Skoczyńska, M.; Świerkot, J. The Role of Diet in Rheumatoid Arthritis. Reumatologia. 2018, 56(4), 259–267. DOI: 10.5114/reum.2018.77979.
  • Bercea, C.-I.; Cottrell, G. S.; Tamagnini, F.; McNeish, A. J. Omega-3 Polyunsaturated Fatty Acids and Hypertension: A Review of Vasodilatory Mechanisms of Docosahexaenoic Acid and Eicosapentaenoic Acid. Br. J. Pharmacol. 2021, 178(4), 860–877. DOI: 10.1111/bph.15336.
  • Koletzko, B.; Cetin, I.; Thomas Brenna, J. Dietary Fat Intakes for Pregnant and Lactating Women. Br. J. Nutr. 2007, 98(5), 873–877. DOI: 10.1017/S0007114507764747.
  • Jiang, L.; Gao, C.; Yan, P.; Chen, P.; Jiang, C.; Xu, Y.; Chen, M. Omega-3 Fatty Acids Plus Vitamin for Women with Gestational Diabetes or Prediabetes: A Meta-Analysis of Randomized Controlled Studies. J. Matern. -Fetal. Neonatal. Med. 2020, 1–8. DOI: 10.1080/14767058.2020.1814239.
  • Tocher, D. R.; Betancor, M. B.; Sprague, M.; Olsen, R. E.; Napier, J. A. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap Between Supply and Demand. Nutrients. 2019, 11(1), 89. DOI: 10.3390/nu11010089.
  • Monroig, Ó.; Kabeya, N. Desaturases and Elongases Involved in Polyunsaturated Fatty Acid Biosynthesis in Aquatic Invertebrates: A Comprehensive Review. Fish. Sci. 2018, 84(6), 911–928. DOI: 10.1007/s12562-018-1254-x.
  • Gladyshev, M. I.; Arts, M. T.; Sushchik, N. N. Preliminary Estimates of the Export of Omega-3 Highly Unsaturated Fatty Acids (EPA+DHA) from Aquatic to Terrestrial Ecosystems. In Lipids in Aquatic Ecosystems; Kainz, M.; Brett, M.T. and Arts, M.T., Eds.; Springer: New York, 2009; pp 179–210. DOI: 10.1007/978-0-387-89366-2_8.
  • Bell, M. V.; Tocher, D. R. Biosynthesis of Polyunsaturated Fatty Acids in Aquatic Ecosystems: General Pathways and New Directions. In Lipids in Aquatic Ecosystems; Kainz, M.; Brett, M. and Arts, M., Eds.; Springer: New York, 2009; pp 211–236. DOI: 10.1007/978-0-387-89366-29.
  • Lands, W. E. M. Human Life: Caught in the Food Web. In Lipids in Aquatic Ecosystems; Kainz, M.; Brett, M.T. and Arts, M.T., Eds.; Springer: New York, 2009; pp 327–354. DOI:10.1007/978-0-387-89366-2_14.
  • Gladyshev, M. I.; Sushchik, N. N.; Makhutova, O. N. Production of EPA and DHA in Aquatic Ecosystems and Their Transfer to the Land. Prostaglandins Other Lipid Mediat. 2013, 107, 117–126. DOI: 10.1016/j.prostaglandins.2013.03.002.
  • Guo, F.; Bunn, S. E.; Brett, M. T.; Kainz, M. J. Polyunsaturated Fatty Acids in Stream Food Webs - High Dissimilarity Among Producers and Consumers. Freshw. Biol. 2017, 62(8), 1325–1334. DOI: 10.1111/fwb.12956.
  • The State of World Fisheries and Aquaculture 2020 ; Rome; 2020. DOI: 10.4060/ca9229en.
  • Falch, E.; Rustad, T.; Aursand, M. By-Products from Gadiform Species as Raw Material for Production of Marine Lipids as Ingredients in Food or Feed. Process Biochem. 2006, 41(3), 666–674. DOI: 10.1016/j.procbio.2005.08.015.
  • Durmuş, M. Fish Oil for Human Health: Omega-3 Fatty Acid Profiles of Marine Seafood Species. Food Sci. Technol. 2018, 39(suppl 2), 454–461. DOI: 10.1590/fst.21318.
  • Falch, E.; Rustad, T.; Jonsdottir, R.; Shaw, N. B.; Dumay, J.; Berge, J. P.; Arason, S.; Kerry, J. P.; Sandbakk, M.; Aursand, M. Geographical and Seasonal Differences in Lipid Composition and Relative Weight of by-Products from Gadiform Species. J. Food Compos. Anal. 2006, 19(6–7), 727–736. DOI: 10.1016/j.jfca.2005.12.004.
  • Hartwich, M.; Martin-Creuzburg, D.; Wacker, A. Seasonal Changes in the Accumulation of Polyunsaturated Fatty Acids in Zooplankton. J. Plankton Res. 2013, 35(1), 121–134. DOI: 10.1093/plankt/fbs078.
  • Ahmad, T. B.; Rudd, D.; Kotiw, M.; Liu, L.; Benkendorff, K. Correlation Between Fatty Acid Profile and Anti-Inflammatory Activity in Common Australian Seafood by-Products. Mar. Drugs. 2019, 17(3), 155. DOI: 10.3390/md17030155.
  • Shahidi, F.; Naczk, M.; Pegg, R. B.; Synowiecki, J. Chemical Composition and Nutritional Value of Processing Discards of Cod (Gadus morhua). Food Chem. 1991, 42(2), 145–151. DOI: 10.1016/0308-8146(91)90030-R.
  • Tsape, K.; Sinanoglou, V. J.; Miniadis-Meimaroglou, S. Comparative Analysis of the Fatty Acid and Sterol Profiles of Widely Consumed Mediterranean Crustacean Species. Food Chem. 2010, 122(1), 292.–299. DOI: 10.1016/j.foodchem.2010.02.019.
  • Saini, R. K.; Keum, Y.-S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. DOI: 10.1016/j.foodchem.2017.07.099.
  • Cretton, M.; Malanga, G.; Mazzuca Sobczuk, T.; Mazzuca, M. Lipid Fraction from Industrial Crustacean Waste and Its Potential as a Supplement for the Feed Industry: A Case Study in Argentine Patagonia. Waste Biomass Valorization. 2021, 12(5), 2311–2319. DOI: 10.1007/s12649-020-01162-7.
  • Turchini, G. M.; Francis, D. S.; Senadheera, S. P. S. D.; Thanuthong, T.; de Silva, S. S. Fish Oil Replacement with Different Vegetable Oils in Murray Cod: Evidence of an “Omega-3 Sparing Effect” by Other Dietary Fatty Acids. Aquaculture. 2011, 315(3), 250–259. DOI: 10.1016/j.aquaculture.2011.02.016.
  • Codabaccus, B. M.; Carter, C. G.; Bridle, A. R.; Nichols, P. D. The “N−3 LC-PUFA Sparing Effect” of Modified Dietary N−3 LC-PUFA Content and DHA to EPA Ratio in Atlantic Salmon Smolt. Aquaculture. 2012, 356-357, 135–140. DOI: 10.1016/j.aquaculture.2012.05.024.
  • Tocher, D. R.; Glencross, B. D. Lipids and Fatty Acids. In Dietary Nutrients, Additives, and Fish Health; John Wiley & Sons, Ltd, 2015; pp 47–94. DOI: 10.1002/9781119005568.ch3.
  • Schuchardt, J. P.; Hahn, A. Bioavailability of Long-Chain Omega-3 Fatty Acids. Prostaglandins Leukot. Essent. Fat. Acids. 2013, 89(1), 1–8. DOI: 10.1016/j.plefa.2013.03.010.
  • Guillaume, J.; Khaushik, S.; Bergot, P.; Métailler, R. Nutrition and Feeding of Fish and Crustaceans; Springer Science & Business Media: London, 2001.
  • Dewick, P. M. The Acetate Pathway: Fatty Acids and Polyketides. in Medicinal Natural Products. A Biosynthetic Approach, 2nded.; John Wiley & Sons Ltd, West Sussex: England, 2001; pp 35–117.
  • Garrido, D.; Kabeya, N.; Hontoria, F.; Navarro, J. C.; Reis, D. B.; Martín, M. V.; Rodríguez, C.; Almansa, E.; Monroig, Ó. Methyl-End Desaturases with ∆12 and Ω3 Regioselectivities Enable the de Novo PUFA Biosynthesis in the Cephalopod Octopus Vulgaris. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2019, 1864(8), 1134–1144. DOI: 10.1016/j.bbalip.2019.04.012.
  • Sun, X.-M.; Geng, L.-J.; Ren, L.-J.; Ji, X.-J.; Hao, N.; Chen, K.-Q.; Huang, H. Influence of Oxygen on the Biosynthesis of Polyunsaturated Fatty Acids in Microalgae. Bioresour. Technol. 2018, 250, 868–876. DOI: 10.1016/j.biortech.2017.11.005.
  • Fernández-GarcíGarcíA, E.; Carvajal-Lérida, I.; Pérez-Gálvez, A. In vitro Bioaccessibility Assessment as a Prediction Tool of Nutritional Efficiency. Nutr. Res. 2009, 29(11), 751–760. DOI: 10.1016/j.nutres.2009.09.016.
  • Nieva-EchevarríEchevarríA, B.; Goicoechea, E.; Guillén, M. D. Food Lipid Oxidation Under Gastrointestinal Digestion Conditions: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60(3), 461–478. DOI: 10.1080/10408398.2018.1538931.
  • McClements, D. J.; Li, F.; Xiao, H. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting Their Oral Bioavailability. Annu. Rev. Food Sci. Technol. 2015, 6(1), 299–327. DOI: 10.1146/annurev-food-032814-014043.
  • Wydro, P.; Krajewska, B.; Haąc-Wydro, K. Chitosan as a Lipid Binder: A Langmuir Monolayer Study of Chitosan−lipid Interactions. Biomacromolecules. 2007, 8(8), 2611–2617. DOI: 10.1021/bm700453x.
  • Kitson, A. P.; Metherel, A. H.; Chen, C. T.; Domenichiello, A. F.; Trépanier, M.-O.; Berger, A.; Bazinet, R. P. Effect of Dietary Docosahexaenoic Acid (DHA) in Phospholipids or Triglycerides on Brain DHA Uptake and Accretion. J. Nutr Biochem. 2016, 33, 91–102. DOI: 10.1016/j.jnutbio.2016.02.009.
  • Schuchardt, J. P.; Schneider, I.; Meyer, H.; Neubronner, J.; von Schacky, C.; Hahn, A. Incorporation of EPA and DHA into Plasma Phospholipids in Response to Different Omega-3 Fatty Acid Formulations - a Comparative Bioavailability Study of Fish Oil Vs. Krill Oil. Krill Oil. Lipids Health Dis. 2011, 10(1), 145. DOI: 10.1186/1476-511X-10-145.
  • Wu, X.; Ge, W.; Shao, T.; Wu, W.; Hou, J.; Cui, L.; Wang, J.; Zhang, Z. Enhancing the Oral Bioavailability of Biochanin A by Encapsulation in Mixed Micelles Containing Pluronic F127 and Plasdone S630. Int. J. Nanomed. 2017, 12, 1475–1483. DOI: 10.2147/IJN.S125041.
  • Wen, M.; Zhao, Y.; Shi, H.; Wang, C.; Zhang, T.; Wang, Y.; Xue, C. Short-Term Supplementation of DHA as Phospholipids Rather Than Triglycerides Improve Cognitive Deficits Induced by Maternal Omega-3 PUFA Deficiency During the Late Postnatal Stage. Food Funct. 2021, 12(2), 564–572. DOI: 10.1039/D0FO02552F.
  • Destaillats, F.; Oliveira, M.; BasticSchmid, V.; Masserey-Elmelegy, I.; Giuffrida, F.; Thakkar, S. K.; Dupuis, L.; Gosoniu, M. L.; Cruz-Hernandez, C. Comparison of the Incorporation of DHA in Circulatory and Neural Tissue When Provided as Triacylglycerol (TAG), Monoacylglycerol (MAG) or Phospholipids (PL) Provides New Insight into Fatty Acid Bioavailability. Nutrients. 2018, 10(5). DOI: 10.3390/nu10050620.
  • Sehl, A.; Couëdelo, L.; Vaysse, C.; Cansell, M. Intestinal Bioavailability of N-3 Long-Chain Polyunsaturated Fatty Acids Influenced by the Supramolecular Form of Phospholipids. Food Funct. 2020, 11(2), 1721–1728. DOI: 10.1039/C9FO02953B.
  • Gázquez, A.; Hernández-Albaladejo, I.; Larqué, E. Docosahexaenoic Acid Supplementation During Pregnancy as Phospholipids Did Not Improve the Incorporation of This Fatty Acid into Rat Fetal Brain Compared with the Triglyceride Form. Nutr. Res. 2017, 37, 78–86. DOI: 10.1016/j.nutres.2016.12.006.
  • Yurko-Mauro, K.; Kralovec, J.; Bailey-Hall, E.; Smeberg, V.; Stark, J. G.; Salem, N. Similar Eicosapentaenoic Acid and Docosahexaenoic Acid Plasma Levels Achieved with Fish Oil or Krill Oil in a Randomized Double-Blind Four-Week Bioavailability Study. Lipids Health Dis. 2015, 14(1), 99. DOI: 10.1186/s12944-015-0109-z.
  • Cuenoud, B.; Rochat, I.; Gosoniu, M. L.; Dupuis, L.; Berk, E.; Jaudszus, A.; Mainz, J. G.; Hafen, G.; Beaumont, M.; Cruz-Hernandez, C. Monoacylglycerol Form of Omega-3s Improves Its Bioavailability in Humans Compared to Other Forms. Nutrients. 2020, 12(4), 12. DOI: 10.3390/nu12041014.
  • Kling, D. F.; Johnson, J.; Rooney, M.; Davidson, M. Omega-3 Free Fatty Acids Demonstrate More Than 4-Fold Greater Bioavailability for EPA and DHA Compared with Omega-3-Acid Ethyl Esters in Conjunction with a Low-Fat Diet: The ECLIPSE Study†. J. Clin. Lipidol. 2011, 5(3), 231. DOI: 10.1016/j.jacl.2011.03.062.
  • Offman, E.; Marenco, T.; Ferber, S.; Johnson, J.; Kling, D.; Curcio, D.; Davidson, M. Steady-State Bioavailability of Prescription Omega-3 on a Low-Fat Diet is Significantly Improved with a Free Fatty Acid Formulation Compared with an Ethyl Ester Formulation: The ECLIPSE II Study. Vasc. Health Risk Manag. 2013, 9, 563–573. DOI: 10.2147/VHRM.S50464.
  • Qin, Y.; Nyheim, H.; Haram, E. M.; Moritz, J. M.; Hustvedt, S. O. A Novel Self-Micro-Emulsifying Delivery System (SMEDS) Formulation Significantly Improves the Fasting Absorption of EPA and DHA from a Single Dose of an Omega-3 Ethyl Ester Concentrate. Lipids Health Dis. 2017, 16(1), 204. DOI: 10.1186/s12944-017-0589-0.
  • McClements, D. J.; Decker, E. A.; Weiss, J. Emulsion-Based Delivery Systems for Lipophilic Bioactive Components. J. Food Sci. 2007, 72(8), R109–R124. DOI: 10.1111/j.1750-3841.2007.00507.x.
  • Arenas-Jal, M.; Suñé-Negre, J. M.; GarcíGarcíA-Montoya, E. An Overview of Microencapsulation in the Food Industry: Opportunities, Challenges, and Innovations. Eur. Food Res. Technol. Eur. Food Res. Technol. 2020, 246(7), 1371–1382. DOI: 10.1007/s00217-020-03496-x.
  • Jamshidi, A.; Cao, H.; Xiao, J.; Simal-Gandara, J. Advantages of Techniques to Fortify Food Products with the Benefits of Fish Oil. Food. Res. Int. 2020, 137, 109353. DOI: 10.1016/j.foodres.2020.109353.
  • Hosseini, S. A.; Romano, G.; Greaney, P. A. Mitigating the Effect of Nanoscale Porosity on Thermoelectric Power Factor of Si. ACS Appl. Energy Mater. 2021, 4(2), 1915–1923. DOI: 10.1021/acsaem.0c02640.
  • Richter, C. K.; Skulas-Ray, A. C.; Kris-Etherton, P. M. Recommended Intake of Fish and Fish Oils Worldwide. In Fish and Fish Oil in Health and Disease Prevention; Raatz, S.K. and Bibus, D.M., Eds.; Academic Press: San Diego, 2016; pp 27–48. DOI: 10.1016/B978-0-12-802844-5.00003-8.
  • Fao, R. N.; Eng, C. P. D.; Fao, J.; On Fats, W. E. C. Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation, 10-14 November 2008, Geneva; 2010.
  • Cunnane, S.; Drevon, C.; Harris, W. Recommendations for Intakes of Polyunsaturated Fatty Acids in Healthy Adults. ISSFAL Newsl. 2004, 11, 12–25.
  • Calder, P. C. Mechanisms of Action of (N-3) Fatty Acids. J. Nutr. 2012, 142(3), 592S–599S. DOI: 10.3945/jn.111.155259.
  • Rizliya, V.; Mendis, E. Biological, Physical, and Chemical Properties of Fish Oil and Industrial Applications. In Seafood Processing by-Products: Trends and Applications; Kim, S.-K., Ed.; Springer New York: New York, NY, 2014; pp 285–313. DOI: 10.1007/978-1-4614-9590-1_14.
  • Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Enhancing and Improving the Extraction of Omega-3 from Fish Oil. Sustain. Chem. Pharm. 2017, 5, 54–59. DOI: 10.1016/j.scp.2017.03.001.
  • Mkadem, H.; Kaanane, A. Recovery and Characterization of Fish Oil from by-Products of Sardine (Sardina pilchardus) in the Canning Process. J. Aquat. Food Prod. Technol. 2019, 28(10), 1037–1050. DOI: 10.1080/10498850.2019.1682733.
  • Lamas, D. L.; Massa, A. E. Ray Liver Oils Obtained by Different Methodologies: Characterization and Refining. J. Aquat. Food Prod. Technol. 2019, 28(5), 555–569. DOI: 10.1080/10498850.2019.1605554.
  • Shirai, N.; Higuchi, T.; Suzuki, H. Analysis of Lipid Classes and the Fatty Acid Composition of the Salted Fish Roe Food Products, Ikura, Tarako, Tobiko and Kazunoko. Food Chem. 2006, 94(1), 61–67. DOI: 10.1016/j.foodchem.2004.10.050.
  • Guil-Guerrero, J. L.; Venegas-Venegas, E.; Rincón-Cervera, M. Á.; Suárez, M. D. Fatty Acid Profiles of Livers from Selected Marine Fish Species. J. Food Compos. Anal. 2011, 24(2), 217–222. DOI: 10.1016/j.jfca.2010.07.011.
  • Li, X.; Liu, J.; Chen, G.; Zhang, J.; Wang, C.; Liu, B. Extraction and Purification of Eicosapentaenoic Acid and Docosahexaenoic Acid from Microalgae: A Critical Review. Algal Res. 2019, 43, 101619. DOI: 10.1016/j.algal.2019.101619.
  • Gunstone, F. D. Long-Chain Omega-3 Specialty Oils. Ed. Breivik, H. Woodhead Publishing: Porsgrunn, Norway, 2012; pp 1–22. DOI: 10.1533/9780857097897.1.
  • Sachindra, N. M.; Bhaskar, N.; Mahendrakar, N. S. Carotenoids in Different Body Components of Indian Shrimps. J. Sci. Food Agric. 2005, 85(1), 167–172. DOI: 10.1002/jsfa.1977.
  • Alfio, V. G.; Manzo, C., and Micillo, R. From Fish Waste to Value: An Overview of the Sustainable Recovery of Omega-3 for Food Supplements. Molecules 26 4 . 2021, 1002.
  • Tufan, B.; Tufan, B.; Koral, S.; Köse, S. Changes During Fishing Season in the Fat Content and Fatty Acid Profile of Edible Muscle, Liver and Gonads of Anchovy (Engraulis encrasicolus) Caught in the Turkish Black Sea. Int. J. Food Sci. 2011, 46(4), 800–810. DOI: 10.1111/j.1365-2621.2011.02562.x.
  • Rincón-Cervera, M. Á.; Suárez-Medina, M. D.; Guil-Guerrero, J. L. Fatty Acid Composition of Selected Roes from Some Marine Species. Eur. J. Lipid Sci. Technol. 2009, 111(9), 920–925. DOI: 10.1002/ejlt.200800256.
  • Kolanowski, W. Salmonids as Natural Functional Food Rich in Omega-3 PUFA. Appl. Sci. 2021, 11(5), 2409. DOI: 10.3390/app11052409.
  • Sharma, J.; Sarmah, P.; Bishnoi, N. R. Market Perspective of EPA and DHA Production from Microalgae. In Nutraceutical Fatty Acids from Oleaginous Microalgae; John Wiley & Sons, Ltd: 2020; pp 281–297. DOI: 10.1002/9781119631729.ch11.
  • Rincón-Cervera, M. Á.; González-Barriga, V.; Romero, J.; Rojas, R.; López-Arana, S. Quantification and Distribution of Omega-3 Fatty Acids in South Pacific Fish and Shellfish Species. Foods. 2020, 9(2), 233. DOI: 10.3390/foods9020233.
  • Wheeler, S. C.; Morrissey, M. T. Quantification and Distribution of Lipid, Moisture, and Fatty Acids of West Coast Albacore Tuna (Thunnus alalunga). J. Aquat. Food Prod. Technol. 2003, 12(2), 3–16. DOI: 10.1300/J030v12n02_02.
  • Gómez-Estaca, J.; Calvo, M. M.; Álvarez-Acero, I.; Montero, P.; Gómez-Guillén, M. C. Characterization and Storage Stability of Astaxanthin Esters, Fatty Acid Profile and α-Tocopherol of Lipid Extract from Shrimp (L. vannamei) Waste with Potential Applications as Food Ingredient. Food Chem. 2017, 216, 37–44. DOI: 10.1016/j.foodchem.2016.08.016.
  • Abdulkadir, S.; Tsuchiya, M. One-Step Method for Quantitative and Qualitative Analysis of Fatty Acids in Marine Animal Samples. J. Exp. Mar. Biol. Ecol. 2008, 354(1), 1–8. DOI: 10.1016/j.jembe.2007.08.024.
  • Cherifi, H.; Chebil Ajjabi, L.; Sadok, S. Nutritional Value of the Tunisian Mussel Mytilus Galloprovincialis with a Special Emphasis on Lipid Quality. Food Chem. 2018, 268, 307–314. DOI: 10.1016/j.foodchem.2018.06.075.
  • Paz, A.; Karnaouri, A.; Templis, C. C.; Papayannakos, N.; Topakas, E. Valorization of Exhausted Olive Pomace for the Production of Omega-3 Fatty Acids by Crypthecodinium Cohnii. Waste Manag. 2020, 118, 435–444. DOI: 10.1016/j.wasman.2020.09.011.
  • Chini Zittelli, G.; Lavista, F.; Bastianini, A.; Rodolfi, L.; Vincenzini, M.; Tredici, M. R. Production of Eicosapentaenoic Acid by Nannochloropsis Sp. Cultures in Outdoor Tubular Photobioreactors. In Marine Bioprocess Engineering; Osinga, R.; Tramper, J.; Burgess, J.G. and Wijffels, R.H. Eds.; Progress in Industrial Microbiology; Elsevier, 1999; Vol. 35, pp 299–312. DOI: 10.1016/S0079-6352(99)80122-2.
  • Durmaz, Y.; Monteiro, M.; Bandarra, N.; Gokpinar, S.; Isik, O. The Effect of Low Temperature on Fatty Acid Composition and Tocopherols of the Red Microalga, Porphyridium Cruentum. J. Appl. Phycol. 2007, 19(3), 223–227. DOI: 10.1007/s10811-006-9127-6.
  • Chang, K. J. L.; Nichols, C. M.; Blackburn, S. I. E.; Dunstan, G. A.; Koutoulis, A.; Nichols, P. D. Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium Sp., Thraustochytrium sp., and Ulkenia Sp. for Production of Biodiesel, Long-Chain Omega-3 Oils, and Exopolysaccharide. Mar. Biotechnol. 2014, 16(4), 396–411. DOI: 10.1007/s10126-014-9560-5.
  • Cui, Y.; Thomas-Hall, S. R.; Chua, E. T.; Schenk, P. M. Development of High-Level Omega-3 Eicosapentaenoic Acid (EPA) Production from Phaeodactylum Tricornutum. J. Phycol. 2021, 57(1), 258–268. DOI: 10.1111/jpy.13082.
  • Hu, J.; Lu, W.; Lv, M.; Wang, Y.; Ding, R.; Wang, L. Extraction and Purification of Astaxanthin from Shrimp Shells and the Effects of Different Treatments on Its Content. Rev. Bras. Farmacogn. 2019, 29(1), 24–29. DOI: 10.1016/j.bjp.2018.11.004.
  • Phleger, C. F.; Nelson, M. M.; Mooney, B. D.; Nichols, P. D. Interannual and Between Species Comparison of the Lipids, Fatty Acids and Sterols of Antarctic Krill from the US AMLR Elephant Island Survey Area. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002, 131(4), 733–747. DOI: 10.1016/S1096-4959(02)00021-0.
  • Kutzner, L.; Ostermann, A. I.; Konrad, T.; Riegel, D.; Hellhake, S.; Schuchardt, J. P.; Schebb, N. H. Lipid Class Specific Quantitative Analysis of N-3 Polyunsaturated Fatty Acids in Food Supplements. J. Agric. Food. Chem. 2017, 65(1), 139–147. DOI: 10.1021/acs.jafc.6b03745.
  • Nichols, P. D.; Glencross, B.; Petrie, J. R.; Singh, S. P. Readily Available Sources of Long-Chain Omega-3 Oils: Is Farmed Australian Seafood a Better Source of the Good Oil Than Wild-Caught Seafood? Nutrients. 2014, 6(3), 1063–1079. DOI: 10.3390/nu6031063.
  • Castro-Gómez, M. P.; Holgado, F.; Rodríguez-Alcalá, L. M.; Montero, O.; Fontecha, J. Comprehensive Study of the Lipid Classes of Krill Oil by Fractionation and Identification of Triacylglycerols, Diacylglycerols, and Phospholipid Molecular Species by Using Uplc/qtof-MS. Food Anal. Methods. 2015, 8(10), 2568–2580. DOI: 10.1007/s12161-015-0150-6.
  • Guillou, A.; Khalil, M.; Adambounou, L. Effects of Silage Preservation on Astaxanthin Forms and Fatty Acid Profiles of Processed Shrimp (Pandalus borealis) Waste. Aquaculture. 1995, 130(4), 351–360. DOI: 10.1016/0044-8486(94)00324-H.
  • Lordan, S.; Ross, R. P.; Stanton, C. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases. Mar. Drugs. 2011, 9(6), 1056–1100. DOI: 10.3390/md9061056.
  • Galasso, C.; Corinaldesi, C., and Sansone, C. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Antioxidants. 2017 6 , 96.
  • Fung, A.; Hamid, N.; Lu, J. Fucoxanthin Content and Antioxidant Properties of Undaria Pinnatifida. Food Chem. 2013, 136(2), 1055–1062. DOI: 10.1016/j.foodchem.2012.09.024.
  • Yan, X.; Chuda, Y.; Suzuki, M.; Nagata, T. Fucoxanthin as the Major Antioxidant in Hijikia fusiformis, a Common Edible Seaweed. Biosci. Biotechnol., Biochem. 1999, 63(3), 605–607. DOI: 10.1271/bbb.63.605.
  • Symonds, R. C.; Kelly, M. S.; Caris-Veyrat, C.; Young, A. J. Carotenoids in the Sea Urchin Paracentrotus lividus: Occurrence of 9′-Cis-Echinenone as the Dominant Carotenoid in Gonad Colour Determination. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 148(4), 432–444. DOI: 10.1016/j.cbpb.2007.07.012.
  • Suckling, C. C.; Kelly, M. S.; Symonds, R. C. Carotenoids in Sea Urchins. In Sea Urchins: Biology and Ecology; Lawrence, J.M. Ed.; Developments in Aquaculture and Fisheries Science; Elsevier, 2020; Vol. 43, pp 209–217. DOI: 10.1016/B978-0-12-819570-3.00011-1.
  • Pereira, A. G.; Otero, P.; Echave, J.; Carreira-Casais, A.; Chamorro, F.; Collazo, N.; Jaboui, A.; Lourenço-Lopes, C.; Simal-Gandara, J.; Prieto, M. A. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar. Drugs. 2021, 19(4), 188. DOI: 10.3390/md19040188.
  • Lucas, M.; Freitas, M.; Carvalho, F.; Fernandes, E.Ribeiro, D. Antioxidant and Pro-Oxidant Activities of Carotenoids. In Plant Antioxidants and Health; Maria, E.H.; Ramawat, K.G. and J, A., Eds.; Springer International Publishing: Cham, 2020; pp 1–27. DOI: 10.1007/978-3-030-45299-5_4-1.
  • Sugawara, T.; Ganesan, P.; Li, Z.; Manabe, Y.; Hirata, T. Siphonaxanthin, a Green Algal Carotenoid, as a Novel Functional Compound. Mar. Drugs. 2014, 12(6), 3660–3668. DOI: 10.3390/md12063660.
  • Shindo, K.; Misawa, N. New and Rare Carotenoids Isolated from Marine Bacteria and Their Antioxidant Activities. Mar. Drugs. 2014, 12(3), 1690–1698. DOI: 10.3390/md12031690.
  • Kotake-Nara, E.; Kushiro, M.; Zhang, H.; Sugawara, T.; Miyashita, K.; Nagao, A. Carotenoids Affect Proliferation of Human Prostate Cancer Cells. J. Nutr. 2001, 131(12), 3303–3306. DOI: 10.1093/jn/131.12.3303.
  • Hosokawa, M.; Wanezaki, S.; Miyauchi, K.; Kurihara, H.; Kohno, H.; Kawabata, J.; Odashima, S.; Takahashi, K. Apoptosis-Inducing Effect of Fucoxanthin on Human Leukemia Cell Line HL-60. Food Sci. Technol. Res. 1999, 5(3), 243–246. DOI: 10.3136/fstr.5.243.
  • Shiratori, K.; Ohgami, K.; Ilieva, I.; Jin, X.-H.; Koyama, Y.; Miyashita, K.; Yoshida, K.; Kase, S.; Ohno, S. Effects of Fucoxanthin on Lipopolysaccharide-Induced Inflammation in vitro and in vivo. Exp. Eye Res. 2005, 81(4), 422–428. DOI: 10.1016/j.exer.2005.03.002.
  • Maeda, H.; Hosokawa, M.; Sashima, T.; Miyashita, K. Dietary Combination of Fucoxanthin and Fish Oil Attenuates the Weight Gain of White Adipose Tissue and Decreases Blood Glucose in Obese/diabetic KK-Ay Mice. J. Agric. Food. Chem. 2007, 55(19), 7701–7706. DOI: 10.1021/jf071569n.
  • Sachindra, N. M.; Sato, E.; Maeda, H.; Hosokawa, M.; Niwano, Y.; Kohno, M.; Miyashita, K. Radical Scavenging and Singlet Oxygen Quenching Activity of Marine Carotenoid Fucoxanthin and Its Metabolites. J. Agric. Food. Chem. 2007, 55(21), 8516–8522. DOI: 10.1021/jf071848a.
  • Núñez-Gastélum, J. A.; Sánchez-Machado, D. I.; López-Cervantes, J.; Rodríguez-Núñez, J. R.; Correa-Murrieta, M. A.; Sánchez-Duarte, R. G.; Campas-Baypoli, O. N. Astaxanthin and Its Esters in Pigmented Oil from Fermented Shrimp by-Products. J. Aquat. Food Prod. Technol. 2016, 25(3), 334–343. DOI: 10.1080/10498850.2013.851756.
  • Arathi, B. P.; Sowmya, P.-R.-R.; Vijay, K.; Baskaran, V.; Lakshminarayana, R. Metabolomics of Carotenoids: The Challenges and Prospects - A Review. Trends Food Sci. Technol. 2015, 45(1), 105–117. DOI: 10.1016/j.tifs.2015.06.003.
  • Mattei, R.; Polotow, T. G.; Vardaris, C. V.; Guerra, B. A.; Leite, J. R.; Otton, R.; Barros, M. P. Astaxanthin Limits Fish Oil-Related Oxidative Insult in the Anterior Forebrain of Wistar Rats: Putative Anxiolytic Effects? Pharmacol. Biochem. Behav. 2011, 99(3), 349–355. DOI: 10.1016/j.pbb.2011.05.009.
  • Dose, J.; Matsugo, S.; Yokokawa, H.; Koshida, Y.; Okazaki, S.; Seidel, U.; Eggersdorfer, M.; Rimbach, G.; Esatbeyoglu, T. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin. Int. J. Mol. Sci. 2016, 17(1), 103. DOI: 10.3390/ijms17010103.
  • Miki, W. Biological Functions and Activities of Animal Carotenoids. Pure Appl. Chem. 1991, 63(1), 141–146. DOI: 10.1351/pac199163010141.
  • Naguib, Y. M. A. Antioxidant Activities of Astaxanthin and Related Carotenoids. J. Agric. J. Agric. Food Chem. 2000, 48(4), 1150–1154. DOI: 10.1021/jf991106k.
  • Liu, J.; Wen, X.; Lu, J.; Kan, J.; Jin, C. Free Radical Mediated Grafting of Chitosan with Caffeic and Ferulic Acids: Structures and Antioxidant Activity. Int. J. Biol. Macromol. 2014, 65, 97–106. DOI: 10.1016/j.ijbiomac.2014.01.021.
  • Li, J.; Zhu, D.; Niu, J.; Shen, S.; Wang, G. An Economic Assessment of Astaxanthin Production by Large Scale Cultivation of Haematococcus Pluvialis. Biotechnol. Adv. 2011, 29(6), 568–574. DOI: 10.1016/j.biotechadv.2011.04.001.
  • Yuan, J.-P.; Chen, F. Purification of Trans-Astaxanthin from a High-Yielding Astaxanthin Ester-Producing Strain of the Microalga Haematococcus Pluvialis. Food Chem. 2000, 68(4), 443–448. DOI: 10.1016/S0308-8146(99)00219-8.
  • Montoya, J.; Mata, S.; Acosta, J.; Cabrera, B.; López-Valdez, L.; Cesar, R.; Barrales-Cureño, H. J. Obtaining of Astaxanthin from Crab Exosqueletons and Shrimp Head Shells. Biointerface Res. Appl. Chem. 2021, 11, 13516–13523.
  • Roy, V. C.; Getachew, A. T.; Cho, Y.-J.; Park, J.-S.; Chun, B.-S. Recovery and Bio-Potentialities of Astaxanthin-Rich Oil from Shrimp (Penaeus monodon) Waste and Mackerel (Scomberomous niphonius) Skin Using Concurrent Supercritical Co2 Extraction. J. Supercrit. Fluids. 2020, 159, 104773. DOI: 10.1016/j.supflu.2020.104773.
  • Sowmya, R.; Sachindra, N. M. Evaluation of Antioxidant Activity of Carotenoid Extract from Shrimp Processing Byproducts by in vitro Assays and in Membrane Model System. Food Chem. 2012, 134(1), 308–314. DOI: 10.1016/j.foodchem.2012.02.147.
  • Cretton, M. Mejoramiento de La Calidad Nutricional de Alimentos Balanceados Para Acuicultura, (Thesis) 2019.
  • Khanafari, A.; Saberi, A.; Azar, M.; Vosooghi, G.; Jamili, S.; Sabbaghzadeh, B. Extraction of Astaxanthin Esters from Shrimp Waste by Chemical and Microbial Methods. Iran. J. Environ. Health Sci. Eng. 2007, 4(2), 93–98.
  • Radzali, S. A.; Baharin, B. S.; Othman, R.; Markom, M.; Rahman, R. A. Co-Solvent Selection for Supercritical Fluid Extraction of Astaxanthin and Other Carotenoids from Penaeus Monodon Waste. J. Oleo. Sci. 2014, 63(8), 769–777. DOI: 10.5650/jos.ess13184.
  • Albino Antunes, S.; Ferreira, S.; Hense, H. Enzymatic Hydrolysis of Blue Crab (Callinectes sapidus) Waste Processing to Obtain Chitin, Protein, and Astaxanthin-Enriched Extract. Int. J. Environ. Agric. Res. 2017, 3, 81–92.
  • Chintong, S.; Phatvej, W.; Rerk-Am, U.; Waiprib, Y.; Klaypradit, W. In vitro Antioxidant, Antityrosinase, and Cytotoxic Activities of Astaxanthin from Shrimp Waste. Antioxidants. 2019, 8(5), 128. DOI: 10.3390/antiox8050128.
  • Li, J.; Sun, W.; Ramaswamy, H. S.; Yu, Y.; Zhu, S.; Wang, J.; Li, H. High Pressure Extraction of Astaxanthin from Shrimp Waste (Penaeus Vannamei Boone): Effect on Yield and Antioxidant Activity. J. Food Process Eng. 2017, 40(2), e12353. DOI: 10.1111/jfpe.12353.
  • dos Santos, C. A.; Padilha, C. E. A.; Damasceno, K. S. F. S. C.; Leite, P. I. P.; de Araújo, A. C. J.; Freitas, P. R.; Vieira, É. A.; Cordeiro, A. M. T. M.; de Sousa, F. C.; de Assis, C. F. Astaxanthin Recovery from Shrimp Residue by Solvent Ethanol Extraction Using Choline Chloride: Glycerol Deep Eutectic Solvent as Adjuvant. J. Braz. Chem. Soc. 2021, 32(5). DOI: 10.21577/0103-5053.20210005.
  • Sharayei, P.; Azarpazhooh, E.; Zomorodi, S.; Einafshar, S.; Ramaswamy, H. S. Optimization of Ultrasonic-Assisted Extraction of Astaxanthin from Green Tiger (Penaeuss emisulcatus) Shrimp Shell. Ultrason. Sonochem. 2021, 76. DOI: 10.1016/j.ultsonch.2021.105666.
  • Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F. M. Astaxanthin: A Review of Its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006, 46(2), 185–196. DOI: 10.1080/10408690590957188.
  • Martínez-Delgado, A. A.; Khandual, S.; Villanueva-Rodríguez, S. J. Chemical Stability of Astaxanthin Integrated into a Food Matrix: Effects of Food Processing and Methods for Preservation. Food Chem. 2017, 225, 23–30. DOI: 10.1016/j.foodchem.2016.11.092.
  • Hatta, F. A. M.; Othman, R. Carotenoids as Potential Biocolorants: A Case Study of Astaxanthin Recovered from Shrimp Waste. In Carotenoids: Properties, Processing and Applications, 1sted.; Galanakis, C.M., Ed.; Academic Press: Amsterdam, Netherlands, 2020; pp 289–325.
  • Routray, W.; Dave, D.; Cheema, S. K.; Ramakrishnan, V. V.; Pohling, J. Biorefinery Approach and Environment-Friendly Extraction for Sustainable Production of Astaxanthin from Marine Wastes. Crit. Rev. Biotechnol. 2019, 39(4), 469–488. DOI: 10.1080/07388551.2019.1573798.
  • Hooshmand, H.; Shabanpour, B.; Moosavi-Nasab, M.; Golmakani, M. T. Optimization of Carotenoids Extraction from Blue Crab (Portunus pelagicus) and Shrimp (Penaeus semisulcatus) Wastes Using Organic Solvents and Vegetable Oils. J. Food Process Preserv. 2017, 41(5), e13171. DOI: 10.1111/jfpp.13171.
  • Gao, J.; You, J.; Kang, J.; Nie, F.; Ji, H.; Liu, S. Recovery of Astaxanthin from Shrimp (Penaeus vannamei) Waste by Ultrasonic-Assisted Extraction Using Ionic Liquid-in-Water Microemulsions. Food Chem. 2020, 325, 126850. DOI: 10.1016/j.foodchem.2020.126850.
  • Uquiche, E.; Antilaf, I.; Millao, S. Enhancement of Pigment Extraction from B. Braunii Pretreated Using CO2 Rapid Depressurization. Braz. J. Microbiol. 2016, 47(2), 497–505. DOI: 10.1016/j.bjm.2016.01.020.
  • da Silva, A. K. N.; Rodrigues, B. D.; Da Slva, L. H. M.; Rodrigues, A. M. D. C. Drying and Extraction of Astaxanthin from Pink Shrimp Waste (Farfantepenaeus subtilis): The Applicability of Spouted Beds. Food Sci. Technol. 2018, 38(3), 454–461. DOI: 10.1590/fst.31316.
  • Irna, C.; Jaswir, I.; Othman, R.; Jimat, D. N. Comparison Between High-Pressure Processing and Chemical Extraction: Astaxanthin Yield from Six Species of Shrimp Carapace. J. Diet. Suppl. 2018, 15(6), 805–813. DOI: 10.1080/19390211.2017.1387885.
  • Strati, I.; Gogou, E.; Oreopoulou, V. Enzyme and High Pressure Assisted Extraction of Carotenoids from Tomato Waste. Food Bioprod. Process. 2014, 94. DOI: 10.1016/j.fbp.2014.09.012.
  • Khan, S. A.; Aslam, R.; Makroo, H. A. High Pressure Extraction and Its Application in the Extraction of Bio-Active Compounds: A Review. J. Food Process. Eng. 2019, 42(1), e12896. DOI: 10.1111/jfpe.12896.
  • Maschmeyer, T.; Luque, R.; Selva, M. Upgrading of Marine (Fish and Crustaceans) Biowaste for High Added-Value Molecules and Bio(nano)-Materials. Chem. Soc. Rev. 2020, 49(13), 4527–4563. DOI: 10.1039/C9CS00653B.
  • Roy, V.C.; Ho, T. C.; Lee, H.-J.; Park, J.-S.; Nam, S. Y.; Lee, H.; Getachew, A. T.; Chun, B.-S. Extraction of Astaxanthin Using Ultrasound-Assisted Natural Deep Eutectic Solvents from Shrimp Wastes and Its Application in Bioactive Films. J. Clean. Prod. 2021, 284, 125417. DOI: 10.1016/j.jclepro.2020.125417.
  • FAO. Fishery Industries Division the Production of Fish Meal and Oil. Fish. Tech. Pap. 142; Rome, Italy, 1986.
  • Rubio-Rodríguez, N.; de Diego, S. M.; Beltrán, S.; Jaime, I.; Sanz, M. T.; Rovira, J. Supercritical Fluid Extraction of Fish Oil from Fish by-Products: A Comparison with Other Extraction Methods. J. Food Eng. 2012, 109(2), 238–248. DOI: 10.1016/j.jfoodeng.2011.10.011.
  • Hao, S.; Wei, Y.; Li, L.; Yang, X.; Cen, J.; Huang, H.; Lin, W.; Yuan, X. The Effects of Different Extraction Methods on Composition and Storage Stability of Sturgeon Oil. Food Chem. 2015, 173, 274–282. DOI: 10.1016/j.foodchem.2014.09.154.
  • Oterhals, Å.; Vogt, G. 3 - Impact of Extraction, Refining and Concentration Stages on the Stability of Fish Oil. In Food Enrichment with Omega-3 Fatty Acids; Jacobsen, C.; Nielsen, N.S.; Horn, A.F. and Sørensen, A.-D.-M., Eds.; Woodhead Publishing, 2013; pp 111–129. DOI:10.1533/9780857098863.2.111.
  • Garcia Alba, L.; Torri, C.; Samorì, C.; van der Spek, J.; Fabbri, D.; Kersten, S. R. A.; Brilman, D. W. F. (Wim). Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process as Conversion Method in an Algae Biorefinery Concept. Energy Fuels. 2012, 26 (1), 642–657. DOI: 10.1021/ef201415s.
  • Furse, S.; Egmond, M. R.; Killian, J. A. Isolation of Lipids from Biological Samples. Mol. Membr. Biol. 2015, 32(3), 55–64. DOI: 10.3109/09687688.2015.1050468.
  • Mazzuca Sobczuk, T.; Chisti, Y. Potential Fuel Oils from the Microalga Choricystis Minor. J. Chem. Technol. Biotechnol. 2010, 85(1), 100–108. DOI: 10.1002/jctb.2272.
  • Ma, Y.-A.; Cheng, Y.-M.; Huang, J.-W.; Jen, J. F.; Huang, Y.-S.; Yu, C.-C. Effects of Ultrasonic and Microwave Pretreatments on Lipid Extraction of Microalgae. Bioprocess Biosyst. Eng. 2014, 37(8), 1543–1549. DOI: 10.1007/s00449-014-1126-4.
  • Staby, A.; Mollerup, J. Mutual Solubilities of Mono-Alcohols and Carbon Dioxide: A Review of Experimental Data. Fluid Ph. Equilibria. 1993, 89(2), 351–381. DOI: 10.1016/0378-3812(93)85094-3.
  • Folch, J.; Lees, M.; Stanley, G. H. S. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226(1), 497–509. DOI: 10.1016/S0021-9258(18)64849-5.
  • Blight, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37(8), 911–917. DOI: 10.1139/y59-099.
  • Varisco, M.; Crovetto, C.; Colombo, J.; Vinuesa, J.; Risso, S. Proximate Composition and Nutritional Quality of the Meat of the Squat Lobster Munida Gregaria (Fabricius 1973). J. Aquat. Food Prod. Technol. 2020, 29(3), 229–237. DOI: 10.1080/10498850.2020.1719256.
  • Mika, A.; Swiezewska, E.; Stepnowski, P. Polar and Neutral Lipid Composition and Fatty Acids Profile in Selected Fish Meals Depending on Raw Material and Grade of Products. Lwt. 2016, 70, 199–207. DOI: 10.1016/j.lwt.2016.02.051.
  • Dixit, D. C.; Reddy, C. R. K.; Balar, N.; Suthar, P.; Gajaria, T.; Gadhavi, D. K. Assessment of the Nutritive, Biochemical, Antioxidant and Antibacterial Potential of Eight Tropical Macro Algae Along Kachchh Coast, India as Human Food Supplements. J. Aquat. Food Prod. Technol. 2018, 27(1), 61–79. DOI: 10.1080/10498850.2017.1396274.
  • Susanto, E.; Fahmi, A. S.; Abe, M.; Hosokawa, M.; Miyashita, K. L. Fatty Acids, and Fucoxanthin Content from Temperate and Tropical Brown Seaweeds. Aquat. Procedia. 2016, 7, 66–75. DOI: 10.1016/j.aqpro.2016.07.009.
  • Law, S. Q. K.; Chen, B.; Scales, P. J.; Martin, G. J. O. Centrifugal Recovery of Solvent After Biphasic Wet Extraction of Lipids from a Concentrated Slurry of Nannochloropsis Sp. Biomass. Algal Res. 2017, 24, 299–308. DOI: 10.1016/j.algal.2017.04.016.
  • Tölgyessy, P.; Miháliková, Z. Rapid Determination of Total Lipids in Fish Samples Employing Extraction/partitioning with Acetone/ethyl Acetate Solvent Mixture and Gravimetric Quantification. Food Control. 2016, 60, 44–49. DOI: 10.1016/j.foodcont.2015.07.017.
  • Teo, C. L.; Idris, A. Enhancing the Various Solvent Extraction Method via Microwave Irradiation for Extraction of Lipids from Marine Microalgae in Biodiesel Production. Bioresour. Technol. 2014, 171, 477–481. DOI: 10.1016/j.biortech.2014.08.024.
  • Bernaerts, T. M. M.; Gheysen, L.; Foubert, I.; Hendrickx, M. E.; van Loey, A. M. Evaluating Microalgal Cell Disruption Upon Ultra High Pressure Homogenization. Algal Res. 2019, 42, 101616. DOI: 10.1016/j.algal.2019.101616.
  • Halim, R.; Papachristou, I.; Kubisch, C.; Nazarova, N.; Wüstner, R.; Steinbach, D.; Chen, G. Q.; Deng, H.; Frey, W.; Posten, C., et al. Hypotonic Osmotic Shock Treatment to Enhance Lipid and Protein Recoveries from Concentrated Saltwater Nannochloropsis Slurries. Fuel. 2021, 287, 119442. DOI: 10.1016/j.fuel.2020.119442.
  • Cordova, O.; Passos, F.; Chamy, R. Enzymatic Pretreatment of Microalgae: Cell Wall Disruption, Biomass Solubilisation and Methane Yield Increase. Appl. Biochem. Biotechnol. 2019, 189(3), 787–797. DOI: 10.1007/s12010-019-03044-8.
  • Yao, S.; Mettu, S.; Law, S. Q. K.; Ashokkumar, M.; Martin, G. J. O. The Effect of High-Intensity Ultrasound on Cell Disruption and Lipid Extraction from High-Solids Viscous Slurries of Nannochloropsis Sp. Biomass. Algal. Res. 2018, 35, 341–348. DOI: 10.1016/j.algal.2018.09.004.
  • Viswanathan, T.; Mani, S.; Das, K. C.; Chinnasamy, S.; Bhatnagar, A.; Singh, R. K.; Singh, M. Effect of Cell Rupturing Methods on the Drying Characteristics and Lipid Compositions of Microalgae. Bioresour. Technol. 2012, 126, 131–136. DOI: 10.1016/j.biortech.2012.08.122.
  • Schüler, L. M.; Gangadhar, K. N.; Duarte, P.; Placines, C.; Molina-Márquez, A. M.; LéLéOn-Bañares, R.; Sousa, V. S.; Varela, J.; Barreira, L. Improvement of Carotenoid Extraction from a Recently Isolated, Robust Microalga, Tetraselmis Sp. CTP4 (Chlorophyta). Bioprocess Biosyst. Eng. 2020, 43(5), 785–796. DOI: 10.1007/s00449-019-02273-9.
  • GarcíGarcíA-López, M.; Pérez-Martín, R. I.; Sotelo, C. G. Carotenoid Pigments Composition of Two Commonly Discarded Decapod Crustaceans in Grand Sole and the Galician-Northern Portugal Coast Fisheries. J. Aquat. Food Prod. Technol. 2016, 25(1), 114–121. DOI: 10.1080/10498850.2013.830279.
  • Sánchez-Camargo, A. P.; Almeida Meireles, M. Â.; Lopes, B. L. F.; Cabral, F. A. Proximate Composition and Extraction of Carotenoids and Lipids from Brazilian Redspotted Shrimp Waste (Farfantepenaeus paulensis). J. Food Eng. 2011, 102(1), 87–93. DOI: 10.1016/j.jfoodeng.2010.08.008.
  • Sachindra, N. M.; Bhaskar, N.; Mahendrakar, N. S. Recovery of Carotenoids from Shrimp Waste in Organic Solvents. Waste Manag. 2006, 26(10), 1092–1098. DOI: 10.1016/j.wasman.2005.07.002.
  • Parjikolaei, B. R.; Parjikolaei, B. R.; El-Houri, R. B.; Fretté, X. C.; Christensen, K. V. Influence of Green Solvent Extraction on Carotenoid Yield from Shrimp (Pandalus borealis). Processing Waste. J. Food Eng. 2015, 155, 22–28. DOI: 10.1016/j.jfoodeng.2015.01.009.
  • Niamnuy, C.; Devahastin, S.; Soponronnarit, S.; Vijaya Raghavan, G. S. Kinetics of Astaxanthin Degradation and Color Changes of Dried Shrimp During Storage. J. Food Eng. 2008, 87(4), 591–600. DOI: 10.1016/j.jfoodeng.2008.01.013.
  • Ferdosh, S.; Sarker, M. Z. I.; NorulainiNikabrahman, N.; HaqueAkanda, M. J.; Ghafoor, K.; Kadir, M. O. A. Simultaneous Extraction and Fractionation of Fish Oil from Tuna by-Product Using Supercritical Carbon Dioxide (SC-CO2). J. Aquat. Food Prod. Technol. 2016, 25(2), 230–239. DOI: 10.1080/10498850.2013.843629.
  • Patil, P. D.; Reddy, H.; Muppaneni, T.; Deng, S. Biodiesel Fuel Production from Algal Lipids Using Supercritical Methyl Acetate (Glycerin-Free) Technology. Fuel. 2017, 195, 201–207. DOI: 10.1016/j.fuel.2016.12.060.
  • Skoog, D.; West, D.; Holler, F., and Crouch, S. Fundamentos de Química analítica, 9th ed.; Cengage Learning; D.F. (México): México; 2015; p. 958.
  • Friedl, T. Project Final Report: The Value Chain from Microalgae to PUFA; Gottingen, 2017.
  • Latyshev, N.; Kasyanov, S.; Kharlamenko, V.; Svetashev, V. Lipids and Fatty Acids of Edible Crabs of the North-Western Pacific. Food Chem. 2009, 116(3), 657–661. DOI: 10.1016/j.foodchem.2009.02.085.
  • Breithaupt, D. E. Identification and Quantification of Astaxanthin Esters in Shrimp (Pandalus borealis) and in a Microalga (Haematococcus pluvialis) by Liquid Chromatography−mass Spectrometry Using Negative Ion Atmospheric Pressure Chemical Ionization. J. Agric. Food. Chem. 2004, 52(12), 3870–3875. DOI: 10.1021/jf049780b.
  • Nieva-EchevarríEchevarríA, B.; Goicoechea, E.; Guillén, M. D. Polyunsaturated Lipids and Vitamin A Oxidation During Cod Liver Oil in vitro Gastrointestinal Digestion. Antioxidant Effect of Added BHT. Food Chem. 2017, 232, 733–743. DOI: 10.1016/j.foodchem.2017.04.057.
  • Christie, W.; Han, X. Lipid Analysis; The Oily Press: Bridgewater (UK), 2010.
  • Sindhu, S.; Sherief, P.M. Extraction, Characterization, Antioxidant and Anti-Inflammatory Properties of Carotenoids from the Shell Waste of Arabian Red Shrimp Aristeus alcocki, Ramadan 1938. Open Conf. Proc. J. 2011, 2, 95–103. DOI: 10.2174/2210289201102010095.
  • Britton, G. Carotenoids in Natural Food Colorants; In Hendry, G.A.F. and Houghton, J.D. Eds.; Springer US: Boston, MA; 1996, pp 197–243. DOI: 10.1007/978-1-4615-2155-6_7.
  • Goto, M.; Kanda, H.; Wahyudiono; Machmudah, S. Extraction of Carotenoids and Lipids from Algae by Supercritical Co2 and Subcritical Dimethyl Ether. J. Supercrit Fluids. 2015, 96, 245–251. DOI: 10.1016/j.supflu.2014.10.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.