470
Views
2
CrossRef citations to date
0
Altmetric
Review

Incorporation of fruit by-products on edible seaweed based films: A review

, & ORCID Icon

References

  • Efferth, T.; Paul, N. W. Threats to Human Health by Great Ocean Garbage Patches. Lancet Planet. Health. 2017, 1, e301–e303.
  • Woodall, L. C.; Sanchez-Vidal, A.; Canals, M.; Paterson, G. L.; Coppock, R.; Sleight, V.; Calafat, A.; Rogers, A. D.; Narayanaswamy, B. E.; Thompson, R. C. The Deep Sea is a Major Sink for Microplastic Debris. R. Soc. Open Sci. 2014, 1, 140317.
  • Salgado, P. R.; Ortiz, C. M.; Musso, Y. S.; Di Giorgio, L.; Mauri, A. N. Edible Films and Coatings Containing Bioactives. Curr. Opin. Food Sci. 2015, 5, 86–92.
  • Azeredo, H. M. C. Antimicrobial Nanostructures in Food Packaging. Trends Food Sci. Technol. 2013, 30, 56–69.
  • Skurtys, O.; Acevedo, C.; Pedreschi, F.; Enronoe, J.; Osorio, F., and Aguilera, J. Food Hydrocolloid Edible Films and Coatings; Hauppauge, NY, USA: Nova Science Publishers, Incorporated, 2014.
  • Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of Edible Films and Coatings from Alginates and Carrageenans. Carbohydr Polym. 2016, 137, 360–374.
  • Rhim, J.-W. Physical and Mechanical Properties of Water Resistant Sodium Alginate Films. LWT-Food Sci. Technol. 2004, 37, 323–330.
  • Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations: Rome, 2011.
  • Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A. F.; Arora, A. Bioactives from Fruit Processing Wastes: Green Approaches to Valuable Chemicals. Food Chem. 2017, 225, 10–22.
  • Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. Whatʻs New in Biopotential of Fruit and Vegetable by-Products Applied in the Food Processing Industry. Trends Food Sci. Technol. 2017, 67, 150–159.
  • Sagar, N. A.; Pareek, S.; Sharma, S.; Yahia, E. M.; Lobo, M. G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization, Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531.
  • Mirabella, N.; Castellani, V.; Sala, S. Current Options for the Valorization of Food Manufacturing Waste: A Review. J. Clean. Prod. 2014, 65, 28–41.
  • Girotto, F.; Alibardi, L.; Cossu, R. Food Waste Generation and Industrial Uses: A Review. Waste Manage. 2015, 45, 32–41.
  • Pérez-Jiménez, J.; Viuda-Martos, M. Introduction to the Special Issue Byproducts from Agri-Food Industry: New Strategies for Their Revalorization. Food Res. Int. 2015, 73, 1–2.
  • Oreopoulou, V.; Tzia, C. Utilization of Plant by-Products for the Recovery of Proteins, Dietary Fibers, Antioxidants, and Colorants. In Utilization of by-Products and Treatment of Waste in the Food Industry; Oreopoulou, V. and Russ, W., Eds.; Springer US: Boston, MA, 2007; pp. 209–232.
  • Gowe, C. Review on Potential Use of Fruit and Vegetables by-Products as a Valuable Source of Natural Food Additives. Food Sci. Qual. Manage. 2015, 45, 47–61.
  • Buzby, J. C.; Hyman, J.; Stewart, H.; Wells, H. F. The Value of Retail- and Consumer-Level Fruit and Vegetable Losses in the United States. J Consum Aff. 2011, 45, 492–515.
  • Selani, M. M.; Brazaca, S. G. C.; dos Santos Dias, C. T.; Ratnayake, W. S.; Flores, R. A.; Bianchini, A. Characterisation and Potential Application of Pineapple Pomace in an Extruded Product for Fibre Enhancement. Food Chem. 2014, 163, 23–30.
  • de Souza, C. B.; Jonathan, M.; Saad, S. M. I.; Schols, H. A.; Venema, K. Characterization and in vitro Digestibility of by-Products from Brazilian Food Industry: Cassava Bagasse, Orange Bagasse and Passion Fruit Peel. Bioact. Carbohydr. Dietary Fibre. 2018, 16, 90–99.
  • Grigelmo-Miguel, N.; Martin-Belloso, O. Comparison of Dietary Fibre from by-Products of Processing Fruits and Greens and from Cereals, LWT. Food Sci. Technol. 1999, 32, 503–508.
  • Oʻ-Shea, N.; Arendt, E. K.; Gallagher, E. Dietary Fibre and Phytochemical Characteristics of Fruit and Vegetable by-Products and Their Recent Applications as Novel Ingredients in Food Products. Innovative Food Sci. Emerg. Technol. 2012, 16, 1–10.
  • Viganó, J.; Aguiar, A. C.; Moraes, D. R.; Jara, J. L. P.; Eberlin, M. N.; Cazarin, C. B. B.; Maróstica, M. R.; Martínez, J. Sequential High Pressure Extractions Applied to Recover Piceatannol and Scirpusin B from Passion Fruit Bagasse. Food Res. Int. 2016, 85, 51–58.
  • Liew, S. Q.; Chin, N. L.; Yusof, Y. A.; Sowndhararajan, K. Comparison of Acidic and Enzymatic Pectin Extraction from Passion Fruit Peels and Its Gel Properties. J Food Process Eng. 2016, 39, 501–511.
  • Duarte, Y.; Chaux, A.; Lopez, N.; Largo, E.; Ramírez, C.; Nuñez, H.; Simpson, R.; Vega, O. Effects of Blanching and Hot Air Drying Conditions on the Physicochemical and Technological Properties of Yellow Passion Fruit (Passiflora Edulis Var. Flavicarpa) by-Products, J. Food Process Eng. 2017, 40. DOI:10.1111/jfpe.12425. n/a-N.PAG.
  • Villacís–chiriboga, J.; Elst, K.; Van Camp, J.; Vera, E.; Ruales, J. Valorization of Byproducts from Tropical Fruits: Extraction Methodologies, Applications, Environmental, and Economic Assessment: A Review (Part 1: General Overview of the Byproducts, Traditional Biorefinery Practices, and Possible Applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 405–447.
  • Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P. S. Processing of Apple Pomace for Bioactive Molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296.
  • Kruczek, M.; Gumul, D.; Kačániová, M.; Ivanišhová, E.; Mareček, J.; Gambuś, H. Industrial Apple Pomace by-Products as a Potential Source of Pro-Health Compounds in Functional Food. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 22–26.
  • Matta, E.; Tavera-Quiroz, M. J.; Bertola, N. Active Edible Films of Methylcellulose with Extracts of Green Apple (Granny Smith) Skin. Int. J. Biol. Macromol. 2019, 124, 1292–1298.
  • Calinoiu, L. F.; Mitrea, L.; Precup, G.; Bindea, M.; Rusu, B.; Dulf, F. V.; Stefanescu, B. E.; Vodnar, D. C. Characterization of Grape and Apple Peel Wastes Bioactive Compounds and Their Increased Bioavailability After Exposure to Thermal Process, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Sci. Technol. 2017, 74, 80–89.
  • Kour, R.; Rastogi, A.; Sharma, R. K.; Kumar, A.; Raghuwanshi, P. Chemical Composition, Anti-Oxidative Activity and in vitro Dry Matter Degradability of Kinnow Mandarin Fruit Waste. Vet. World. 2014, 7, 803–806.
  • Esparza-Martínez, F.; Miranda-López, R.; Mata-Sánchez, S.; Guzmán-Maldonado, S. Extractable and Non-Extractable Phenolics and Antioxidant Capacity of Mandarin Waste Dried at Different Temperatures. Plant Foods Human Nutr. 2016, 71, 294–300.
  • Figuerola, F.; Hurtado, M. L.; Estevez, A. M.; Chiffelle, I.; Asenjo, F. Fibre Concentrates from Apple Pomace and Citrus Peel as Potential Fibre Sources for Food Enrichment. Food Chem. 2005, 91, 395–401.
  • Ajila, C. M.; Leelavathi, K.; Prasada Rao, U. J. S. Improvement of Dietary Fiber Content and Antioxidant Properties in Soft Dough Biscuits with the Incorporation of Mango Peel Powder. J. Cereal Sci. 2008, 48, 319–326.
  • Gourgue, C. M. P.; Champ, M. M. J.; Delort-Laval, J.; Lozano, Y. Dietary Fiber from Mango Byproducts: Characterization and Hypoglycemic Effects Determined by in vitro Methods. J. Agr. Food Chem. 1992, 40, 1864–1868.
  • de Lourdes garcía-magaña, M.; GarcíGarcíA, H. S.; Bello-Pérez, L. A.; Sáyago-Ayerdi, S. G.; de Oca, M.-M.-M. Functional Properties and Dietary Fiber Characterization of Mango Processing by-Products (Mangifera Indica L., Cv Ataulfo and Tommy Atkins. Plant Foods Human Nutr. 2013, 68, 254–258.
  • Baumgartel, T.; Kluth, H.; Epperlein, K.; Rodehutscord, M. A Note on Digestibility and Energy Value for Sheep of Different Grape Pomace. Small Ruminant Res. 2007, 67, 302–306.
  • Bravo, L.; Saura-Calixto, F. Characterization of Dietary Fiber and the in vitro Indigestible Fraction of Grape Pomace. Am. J. Enol. Vitic. 1998, 49, 135–141.
  • Deng, Q.; Penner, M. H.; Zhao, Y. Chemical Composition of Dietary Fiber and Polyphenols of Five Different Varieties of Wine Grape Pomace Skins. Food Res. Int. 2011, 44, 2712–2720.
  • Gonzalez-Centeno, M. R.; Rossello, C.; Simal, S.; Garau, M. C.; Lopez, F.; Femenia, A. Physico-Chemical Properties of Cell Wall Materials Obtained from ten Grape Varieties and Their Byproducts, Grape Pomaces and Stems. LWT- Food Sci. Technol. 2010, 43, 1580–1586.
  • Abid, M.; Cheikhrouhou, S.; Renard, C. M.; Bureau, S.; Cuvelier, G.; Attia, H.; Ayadi, M. A. Characterization of Pectins Extracted from Pomegranate Peel and Their Gelling Properties. Food Chem. 2017, 215, 318–325.
  • Schieber, A.; Stintzing, F. C.; Carle, R. By-Products of Plant Food Processing as a Source of Functional Compounds- Recent Developments. Trends Food Sci. Technol. 2001, 12, 401–413.
  • Quiles, A.; Campbell, G. M.; Struck, S.; Rohm, H.; Hernando, I. Fiber from Fruit Pomace: A Review of Applications in Cereal-Based Products. Food Rev. Int. 2016, 34, 162–181.
  • Mohamed, S. A. A.; El-Sakhawy, M.; El-Sakhawy, M.-A.-M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr Polym. 2020, 238, 116178.
  • Lin, L.-Y.; Chuang, C.-H.; Chen, H.-C.; Yang, K.-M. Lime (Citrus Aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Antioxidant Capacity, and Hypolipidemic Effect. Foods. 2019, 8, 398.
  • Geraci, A.; Di Stefano, V.; Di Martino, E.; Schillaci, D.; Schicchi, R. Essential Oil Components of Orange Peels and Antimicrobial Activity. Nat. Prod. Res. 2017, 31, 653–659.
  • Ayala-Zavala, J. F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J. A.; Siddiqui, M. W.; Dávila-AviñAviñA, J. E.; González-Aguilar, G. A. Agro-Industrial Potential of Exotic Fruit Byproducts as a Source of Food Additives. Food Res. Int. 2011, 44, 1866–1874.
  • Yousuf, B.; Sun, Y.; Wu, S. Lipid and Lipid-Containing Composite Edible Coatings and Films. Food Rev. Int. 2021, 1–24. doi:10.1080/87559129.2021.1876084.
  • Babbar, N.; Oberoi, H. S.; Sandhu, S. K. Therapeutic and Nutraceutical Potential of Bioactive Compounds Extracted from Fruit Residues. Crit Rev Food Sci Nutr. 2015, 55, 319–337.
  • Maringgal, B.; Hashim, N.; Tawakkal, I. S. M. A.; Mohamed, M. T. M. Recent Advance in Edible Coating and Its Effect on Fresh/fresh-Cut Fruits Quality. Trends Food Sci. Technol. 2020, 96, 253–267.
  • Tsouko, E.; Maina, S.; Ladakis, D.; Kookos, I. K.; Koutinas, A. Integrated Biorefinery Development for the Extraction of Value-Added Components and Bacterial Cellulose Production from Orange Peel Waste Streams. Renewable Energy. 2020, 160, 944–954.
  • Naqvi, S. A. Z.; Irfan, A.; Zaheer, S.; Sultan, A.; Shajahan, S.; Rubab, S. L.; Ain, Q.; Acevedo, R. Proximate Composition of Orange Peel, Pea Peel and Rice Husk Wastes and Their Potential Use as Antimicrobial Agents and Antioxidants. Vegetos. 2021, 34, 470–476.
  • Hassan, B.; Chatha, S. A. S.; Hussain, A. I.; Zia, K. M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107.
  • Du, W.-X.; Avena-Bustillos, R. J.; Hua, S. S. T.; McHugh, T. H. Antimicrobial Volatile Essential Oils in Edible Films for Food Safety, Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. 2011, 2, 1124–1134.
  • Seyfzadeh, M.; Motalebi, A. A.; Kakoolaki, S.; Gholipour, H. Chemical, Microbiological and Sensory Evaluation of Gutted Kilka Coated with Whey Protein Based Edible Film Incorporated with Sodium Alginate During Frozen Storage. Iran. J. Fish. Sci. 2013, 12, 140–153.
  • Feng, Z.; Wu, G.; Liu, C.; Li, D.; Jiang, B.; Zhang, X. Edible Coating Based on Whey Protein Isolate Nanofibrils for Antioxidation and Inhibition of Product Browning. Food Hydrocoll. 2018, 79, 179–188.
  • Dehghani, S.; Hosseini, S. V.; Regenstein, J. M. Edible Films and Coatings in Seafood Preservation: A Review. Food Chem. 2018, 240, 505–513.
  • Moreira, M. R.; Cassani, L.; Martín-Belloso, O.; Soliva-Fortuny, R. Effects of Polysaccharide-Based Edible Coatings Enriched with Dietary Fiber on Quality Attributes of Fresh-Cut Apples. J Food Sci Technol. 2015, 52, 7795–7805.
  • Nieto, M. B., Structure and Function of Polysaccharide Gum-Based Edible Films and Coatings, Edible films and coatings for food applications, Springer 2009. pp. 57–112.
  • Zimoch-Korzycka, A.; Jarmoluk, A. Polysaccharide-Based Edible Coatings Containing Cellulase for Improved Preservation of Meat Quality During Storage. Molecules. 2017, 22, 390.
  • Galus, S.; Kadzińska, J. Food Applications of Emulsion-Based Edible Films and Coatings. Trends Food Sci. Technol. 2015, 45, 273–283.
  • Ganiari, S.; Choulitoudi, E.; Oreopoulou, V. Edible and Active Films and Coatings as Carriers of Natural Antioxidants for Lipid Food. Trends Food Sci. Technol. 2017, 68, 70–82.
  • Yuan, G.; Chen, X.; Li, D. Chitosan Films and Coatings Containing Essential Oils: The Antioxidant and Antimicrobial Activity, and Application in Food Systems. Food Res. Int. 2016, 89, 117–128.
  • Abdollahzadeh, E.; Nematollahi, A.; Hosseini, H. Composition of Antimicrobial Edible Films and Methods for Assessing Their Antimicrobial Activity: A Review. Trends Food Sci. Technol. 2021, 110, 291–303.
  • Falguera, V.; Quintero, J. P.; Jiménez, A.; Muñoz, J. A.; Ibarz, A. Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303.
  • Abdul Khalil, H. P. S.; Lai, T. K.; Tye, Y. Y.; Rizal, S.; Chong, E. W. N.; Yap, S. W.; Hamzah, A. A.; Nurul Fazita, M. R.; Paridah, M. T. A Review of Extractions of Seaweed Hydrocolloids: Properties and Applications. Express Polym. Lett. 2018, 12, 296–317.
  • Freitas, A.; Pereira, L.; Rodrigues, D.; Carvalho, A.; Panteleitchouk, T.; Gomes, A., and Duarte, A. In Springer handbook of marine biotechnology. Mar. Funct. Foods. 2015.
  • Gupta, S.; Abu-Ghannam, N. Bioactive Potential and Possible Health Effects of Edible Brown Seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326.
  • Oʻ-Sullivan, L.; Murphy, B.; McLoughlin, P.; Duggan, P.; Lawlor, P. G.; Hughes, H.; Gardiner, G. E., Prebiotics from Marine Macroalgae for Human and Animal Health Applications, Marine Drugs 2010 8, 2038.
  • Pomin, V. H. Review: An Overview About the Structure–function Relationship of Marine Sulfated Homopolysaccharides with Regular Chemical Structures. Biopolymers. 2009, 91, 601–609.
  • El Sohaimy, S. Functional Foods and Nutraceuticals-Modern Approach to Food Science. World Appl. Sci. J. 2012, 20, 691–708.
  • Milani, J., and Maleki, G. Hydrocolloids in Food Industry, Food Industrial Processes-Methods and Equipment. InTech . 2012,17–39.
  • Rhein-Knudsen, N.; Ale, M. T.; Ajalloueian, F.; Meyer, A. S. Characterization of Alginates from Ghanaian Brown Seaweeds: Sargassum Spp. and Padina Spp. Food Hydrocoll. 2017, 71, 236–244.
  • Xiao, Q.; Gu, X.; Tan, S. Drying Process of Sodium Alginate Films Studied by Two-Dimensional Correlation ATR-FTIR Spectroscopy. Food Chem. 2014, 164, 179–184.
  • Gao, C.; Pollet, E.; Avérous, L. Properties of Glycerol-Plasticized Alginate Films Obtained by Thermo-Mechanical Mixing. Food Hydrocoll. 2017, 63, 414–420.
  • Costa, M. J.; Marques, A. M.; Pastrana, L. M.; Teixeira, J. A.; Sillankorva, S. M.; Cerqueira, M. A. Physicochemical Properties of Alginate-Based Films: Effect of Ionic Crosslinking and Mannuronic and Guluronic Acid Ratio. Food Hydrocoll. 2018, 81, 442–448.
  • Galus, S.; Lenart, A. Development and Characterization of Composite Edible Films Based on Sodium Alginate and Pectin. J Food Eng. 2013, 115, 459–465.
  • Silva, M. A. D.; Bierhalz, A. C. K.; Kieckbusch, T. G. Alginate and Pectin Composite Films Crosslinked with Ca2+ Ions: Effect of the Plasticizer Concentration. Carbohydr Polym. 2009, 77, 736–742.
  • Xiao, Q.; Lim, L.-T.; Tong, Q. Properties of Pullulan-Based Blend Films as Affected by Alginate Content and Relative Humidity. Carbohydr Polym. 2012, 87, 227–234.
  • Norajit, K.; Kim, K. M.; Ryu, G. H. Comparative Studies on the Characterization and Antioxidant Properties of Biodegradable Alginate Films Containing Ginseng Extract. J Food Eng. 2010, 98, 377–384.
  • Guangli, Z.; Xihui, Z.; Yanzhi, X., Preparation and Properties of Essential Oil Microspheres Antibacterial Alignate Films, IOP Conference Series: Materials Science and Engineering 382 (2018) 022042.
  • Zhang, Y.; Ma, Q.; Critzer, F.; Davidson, P. M.; Zhong, Q. Physical and Antibacterial Properties of Alginate Films Containing Cinnamon Bark Oil and Soybean Oil, LWT. Food Sci. Technol. 2015, 64, 423–430.
  • Benavides, S.; Villalobos-Carvajal, R.; Reyes, J. E. Physical, Mechanical and Antibacterial Properties of Alginate Film: Effect of the Crosslinking Degree and Oregano Essential Oil Concentration. J Food Eng. 2012, 110, 232–239.
  • Blanco-Pascual, N.; Montero, M.; Gómez-Guillén, M. Antioxidant Film Development from Unrefined Extracts of Brown Seaweeds Laminaria Digitata and Ascophyllum Nodosum. Food Hydrocoll. 2014, 37, 100–110.
  • Zia, K. M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A Review on Synthesis, Properties and Applications of Natural Polymer Based Carrageenan Blends and Composites. Int. J. Biol. Macromol. 2017, 96, 282–301.
  • Campo, V. L.; Kawano, D. F.; Silva, D. B. D.; Carvalho, I. Carrageenans: Biological Properties, Chemical Modifications and Structural Analysis – A Review. Carbohydr Polym. 2009, 77, 167–180.
  • Nur Fatin, N. R.; Nur Hanani, Z. A. Physicochemical Characterization of Kappa-Carrageenan (Euchema Cottoni) Based Films Incorporated with Various Plant Oils. Carbohydr Polym. 2017, 157, 1479–1487.
  • Varela, P.; Fiszman, S. M. Hydrocolloids in Fried Foods. A Review. Food Hydrocoll. 2011, 25, 1801–1812.
  • Seol, K.-H.; Lim, D.-G.; Jang, A.; Jo, C.; Lee, M. Antimicrobial Effect of κ-Carrageenan-Based Edible Film Containing Ovotransferrin in Fresh Chicken Breast Stored at 5°C. Meat Sci. 2009, 83, 479–483.
  • Alves, V. D.; Costa, N.; Coelhoso, I. M. Barrier Properties of Biodegradable Composite Films Based on Kappa-Carrageenan/pectin Blends and Mica Flakes. Carbohydr Polym. 2010, 79, 269–276.
  • Farhan, A.; Hani, N. M. Characterization of Edible Packaging Films Based on Semi-Refined Kappa-Carrageenan Plasticized with Glycerol and Sorbitol. Food Hydrocoll. 2017, 64, 48–58.
  • Paşcalău, V.; Popescu, V.; Popescu, G. L.; Dudescu, M. C.; Borodi, G.; Dinescu, A.; PerhaiţPerhaiţA, I.; Paul, M. The Alginate/k-Carrageenan Ratioʻs Influence on the Properties of the Cross-Linked Composite Films. J Alloys Compd. 2012, 536, S418–S423.
  • Lafargue, D.; Lourdin, D.; Doublier, J.-L. Film-Forming Properties of a Modified starch/κ-Carrageenan Mixture in Relation to Its Rheological Behaviour. Carbohydr Polym. 2007, 70, 101–111.
  • Alves, V. D.; Castelló, R.; Ferreira, A. R.; Costa, N.; Fonseca, I. M.; Coelhoso, I. M. Barrier Properties of Carrageenan/pectin Biodegradable Composite Films. Procedia Food Sci. 2011, 1, 240–245.
  • Thakur, R.; Saberi, B.; Pristijono, P.; Golding, J.; Stathopoulos, C.; Scarlett, C.; Bowyer, M.; Vuong, Q. Characterization of Rice Starch-ι-Carrageenan Biodegradable Edible Film. Effect of Stearic Acid on the Film Properties. Int. J. Biol. Macromol. 2016, 93, 952–960.
  • Hambleton, A.; Voilley, A.; Debeaufort, F. Transport Parameters for Aroma Compounds Through I-Carrageenan and Sodium Alginate-Based Edible Films. Food Hydrocoll. 2011, 25, 1128–1133.
  • Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M. A.; Mohammadi, A.; Ghasemlou, M.; Hosseini, S. M.; Khaksar, R. Characterization of κ-Carrageenan Films Incorporated Plant Essential Oils with Improved Antimicrobial Activity. Carbohydr Polym. 2014, 101, 582–591.
  • El-Fawal, G. Preparation, Characterization and Antibacterial Activity of Biodegradable Films Prepared from Carrageenan. J Food Sci Technol. 2014, 51, 2234–2239.
  • Wibowo, A. H.; Listiyawati, O.; Purnawan, C., The Effects of Plasticizers and Palmitic Acid Toward the Properties of the Carrageenan Film. IOP Conf. Ser. Mater. Sci. Eng. 2016 107, 012043.
  • Paula, G. A.; Benevides, N. M. B.; Cunha, A. P.; de Oliveira, A. V.; Pinto, A. M. B.; Morais, J. P. S.; Azeredo, H. M. C. Development and Characterization of Edible Films from Mixtures of κ-Carrageenan, ι-Carrageenan, and Alginate. Food Hydrocoll. 2015, 47, 140–145.
  • The, D. P.; Debeaufort, F.; Voilley, A.; Luu, D. Biopolymer Interactions Affect the Functional Properties of Edible Films Based on Agar, Cassava Starch and Arabinoxylan Blends. J Food Eng. 2009, 90, 548–558.
  • Shankar, S.; Rhim, J.-W. Preparation of Nanocellulose from Micro-Crystalline Cellulose: The Effect on the Performance and Properties of Agar-Based Composite Films. Carbohydr Polym. 2016, 135, 18–26.
  • Wu, Y.; Geng, F.; Chang, P. R.; Yu, J.; Ma, X. Effect of Agar on the Microstructure and Performance of Potato Starch Film. Carbohydr Polym. 2009, 76, 299–304.
  • Reddy, J. P.; Rhim, J.-W. Characterization of Bionanocomposite Films Prepared with Agar and Paper-Mulberry Pulp Nanocellulose. Carbohydr Polym. 2014, 110, 480–488.
  • Madera-Santana, T. J.; Freile-Pelegrín, Y.; Azamar-Barrios, J. A. Physicochemical and Morphological Properties of Plasticized Poly(vinyl Alcohol)–agar Biodegradable Films. Int. J. Biol. Macromol. 2014, 69, 176–184.
  • Phan the, D.; Debeaufort, F.; Luu, D.; Voilley, A. Moisture Barrier, Wetting and Mechanical Properties of Shellac/agar or Shellac/cassava Starch Bilayer Bio-Membrane for Food Applications. J Memb Sci. 2008, 325, 277–283.
  • Wu, H.; Lei, Y.; Zhu, R.; Zhao, M.; Lu, J.; Xiao, D.; Jiao, C.; Zhang, Z.; Shen, G.; Li, S. Preparation and Characterization of Bioactive Edible Packaging Films Based on Pomelo Peel Flours Incorporating Tea Polyphenol. Food Hydrocoll. 2019, 90, 41–49.
  • Temkov, M.; Simonovska, J.; Dimitrovski, D.; Mojsova, S.; Rafajlovska, V.; Velickova, E. Properties of Alginate-Based Edible Films Incorporated with Capsicum Oleoresin, III International Congress. Food Technol. Qual. Saf. 2016, 25–27.
  • Moreira, D.; Gullón, B.; Gullón, P.; Gomes, A.; Tavaria, F. Bioactive Packaging Using Antioxidant Extracts for the Prevention of Microbial Food-Spoilage. Food Funct. 2016, 7, 3273–3282.
  • Tran, T. T. B.; Roach, P.; Nguyen, M. H.; Pristijono, P.; Vuong, Q. V. Development of Biodegradable Films Based on Seaweed Polysaccharides and Gac Pulp (Momordica Cochinchinensis), the Waste Generated from Gac Oil Production. Food Hydrocoll. 2020, 99, 105322.
  • Fabra, M. J.; Falcó, I.; Randazzo, W.; Sánchez, G.; López-Rubio, A. Antiviral and Antioxidant Properties of Active Alginate Edible Films Containing Phenolic Extracts. Food Hydrocoll. 2018, 81, 96–103.
  • Rojas-Graü, M. A.; Avena-Bustillos, R. J.; Olsen, C.; Friedman, M.; Henika, P. R.; Martín-Belloso, O.; Pan, Z.; McHugh, T. H. Effects of Plant Essential Oils and Oil Compounds on Mechanical, Barrier and Antimicrobial Properties of Alginate–apple Puree Edible Films. J Food Eng. 2007, 81, 634–641.
  • Siracusa, V.; Romani, S.; Gigli, M.; Mannozzi, C.; Cecchini, J. P.; Tylewicz, U.; Lotti, N., Characterization of Active Edible Films Based on Citral Essential Oil, Alginate and Pectin, Materials 11 (2018) 1980.
  • Kanmani, P.; Rhim, J.-W. Antimicrobial and Physical-Mechanical Properties of Agar-Based Films Incorporated with Grapefruit Seed Extract. Carbohydr Polym. 2014, 102, 708–716.
  • Deng, Q.; Zhao, Y. Physicochemical, Nutritional, and Antimicrobial Properties of Wine Grape (Cv. Merlot) Pomace Extract-Based Films. J. Food Sci. 2011, 76, E309–E317.
  • Kanmani, P.; Rhim, J.-W. Development and Characterization of Carrageenan/grapefruit Seed Extract Composite Films for Active Packaging. Int. J. Biol. Macromol. 2014, 68, 258–266.
  • Liu, Y.; Zhang, X.; Li, C.; Qin, Y.; Xiao, L.; Liu, J. Comparison of the Structural, Physical and Functional Properties of κ-Carrageenan Films Incorporated with Pomegranate Flesh and Peel Extracts. Int. J. Biol. Macromol. 2020, 147, 1076–1088.
  • Jridi, M.; Abdelhedi, O.; Zouari, N.; Fakhfakh, N.; Nasri, M. Development and Characterization of Grey Triggerfish Gelatin/agar Bilayer and Blend Films Containing Vine Leaves Bioactive Compounds. Food Hydrocoll. 2019, 89, 370–378.
  • Senturk Parreidt, T.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods. 2018, 7, 170.
  • Lourenço, S. C.; Fraqueza, M. J.; Fernandes, M. H.; Moldão-Martins, M.; Alves, V. D. Application of Edible Alginate Films with Pineapple Peel Active Compounds on Beef Meat Preservation. Antioxidants. 2020, 9, 667.
  • Nair, S.; Saxena, A.; Kaur, C. Characterization and Antifungal Activity of Pomegranate Peel Extract and Its Use in Polysaccharide-Based Edible Coatings to Extend the Shelf-Life of Capsicum (Capsicum Annuum L. Food Bioprocess Technol. 2018, 11, 1317–1327.
  • Su Cha, D.; Choi, J. H.; Chinnan, M. S.; Park, H. J. Antimicrobial Films Based on Na-Alginate and κ-Carrageenan, LWT. Food Sci. Technol. 2002, 35, 715–719.
  • Shin, Y. J.; Song, H. Y.; Seo, Y. B.; Song, K. B. Preparation of Red Algae Film Containing Grapefruit Seed Extract and Application for the Packaging of Cheese and Bacon. Food Sci. Biotechnol. 2012, 21, 225–231.
  • Kim, J.-H.; Hong, W.-S.; Oh, S.-W. Effect of Layer-by-Layer Antimicrobial Edible Coating of Alginate and Chitosan with Grapefruit Seed Extract for Shelf-Life Extension of Shrimp (Litopenaeus Vannamei) Stored at 4 °C. Int. J. Biol. Macromol. 2018, 120, 1468–1473.
  • Volpe, M. G.; Siano, F.; Paolucci, M.; Sacco, A.; Sorrentino, A.; Malinconico, M.; Varricchio, E. Active Edible Coating Effectiveness in Shelf-Life Enhancement of Trout (Oncorhynchusmykiss) Fillets. LWT - Food Sci. Technol. 2015, 60, 615–622.
  • Guerreiro, A. C.; Gago, C. M. L.; Faleiro, M. L.; Miguel, M. G. C.; Antunes, M. D. C. The Effect of Alginate-Based Edible Coatings Enriched with Essential Oils Constituents on Arbutus Unedo L. Fresh Fruit Storage. Postharvest Biol. Technol. 2015, 100, 226–233.
  • Gomes, M. D. S.; Cardoso, M. D. G.; Guimarães, A. C. G.; Guerreiro, A. C.; Gago, C. M. L.; Vilas Boas, E. V. D. B.; Dias, C. M. B.; Manhita, A. C. C.; Faleiro, M. L.; Miguel, M. G. C., et al. Effect of Edible Coatings with Essential Oils on the Quality of Red Raspberries Over Shelf-Life. J. Sci. Food Agric. 2017, 97, 929–938.
  • Aloui, H.; Khwaldia, K.; Sánchez-González, L.; Muneret, L.; Jeandel, C.; Hamdi, M.; Desobry, S. Alginate Coatings Containing Grapefruit Essential Oil or Grapefruit Seed Extract for Grapes Preservation. Int. J. Food Sci. Technol. 2014, 49, 952–959.
  • Nair, S.; Saxena, A.; Kaur, C. Effect of Chitosan and Alginate Based Coatings Enriched with Pomegranate Peel Extract to Extend the Postharvest Quality of Guava (Psidium Guajava L. Food Chem. 2018, 240, 245–252.
  • Saxena, A.; Sharma, L.; Maity, T. Chapter 34 - Enrichment of Edible Coatings and Films with Plant Extracts or Essential Oils for the Preservation of Fruits and Vegetables. In Biopolymer-Based Formulations, Pal, K.; Banerjee, I.; Sarkar, P.; Kim, D.; Deng, W.-P.; Dubey, N.K. and Majumder, K., Eds.; Elsevier, 2020; pp. 859–880.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.