453
Views
0
CrossRef citations to date
0
Altmetric
Review

Red yeast rice: a functional food used to reduce hyperlipidemia

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ma, Y.; Wang, W.; Zhang, J., Lu, Y., Wu, W., Yan, H., and Wang, Y.; et al. Hyperlipidemia and Atherosclerotic Lesion Development in Ldlr-Deficient Mice on a Long-Term High-Fat Diet. PLoS One. 2012, 7(4), e35835. doi:10.1371/journal.pone.0035835.
  • Yanai, H.; Yoshida, H. Secondary Dyslipidemia: Its Treatments and Association with Atherosclerosis. Glob. Health Med. 2021, 3(1), 15–23. doi:10.35772/ghm.2020.01078.
  • Ito, M. K.; Watts, G. F. Challenges in the Diagnosis and Treatment of Homozygous Familial Hypercholesterolemia. Drugs. 2015, 75(15), 1715–1724. doi:10.1007/s40265-015-0466-y.
  • Catapano, A. L.; Graham, I., and De Backer, G., et al. ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) Developed with the Special Contribution of the European Assocciation for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis. 2016, 2016(253), 281–344. doi:10.1016/j.atherosclerosis.2016.08.018.
  • Nie, Y.; Luo, F.; Deng, W. Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. Oxid. Med. Cell Longev. 2021, 2021, 5542342. doi:10.1155/2021/5542342.
  • Dong, Y.; Li, X.; Liu, Y., Gao, J., Tao, J.; et al. The Molecular Targets of Taurine Confer Anti-Hyperlipidemic Effects. Life Sci. 2021, 278, 119579. doi:10.1016/j.lfs.2021.119579.
  • Mollazadeh, H.; Tavana, E.; Fanni, G., Bo, S., Banach, M., Pirro, M., Haehling, S., Jamialahmadi, T., and Sahebkar, A.; et al. Effects of Statins on Mitochondrial Pathways. J. Cachexia Sarcopenia Muscle. 2021, 12(2), 237–251. doi:10.1002/jcsm.12654.
  • Karr, S. Epidemiology and Management of Hyperlipidemia. Am.J Manag. Care. 2017, 23(9 Suppl), S139–S148. 28978219
  • Kozarov, E.; Padro, T.; Badimon, L. View of Statins as Antimicrobials in Cardiovascular Risk Modification. Cardiovasc. Res. 2014, 102(3), 362–374. doi:10.1093/cvr/cvu058.
  • Thompson, P. D.; Panza, G.; Zaleski, A., and Taylor, B.; et al. Statin-Associated Side Effects. J. Am. Coll. Cardiol. 2016, 67(20), 2395–2410. doi:10.1016/j.jacc.2016.02.071.
  • Crisan, E.; Patil, V. K. Neuromuscular Complications of Statin Therapy. Curr. Neurol. Neurosci. Rep. 2020, 20(10), 47. doi:10.1007/s11910-020-01064-0.
  • Gupta, A.; Thompson, D.; Whitehouse, A., Collier, T., Dahlof, B., Poulter, N., Collins, R., and Sever, P.; et al. Adverse Events Associated with Unblinded, but Not with Blinded, Statin Therapy in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid-Lowering Arm (ASCOT-LLA): A Randomised Double-Blind Placebo-Controlled Trial and Its Non-Randomised Non-Blind Extension Phase. Lancet (London, England). 2017, 389(10088), 2473–2481. doi:10.1016/S0140-6736(17)31075-9.
  • Howard, J. P.; Wood, F. A., and Finegold, J. A., et al. Side Effect Patterns in a Crossover Trial of Statin, Placebo, and No Treatment. J. Am. Coll. Cardiol. 2021, 78(12), 1210–1222. doi:10.1016/j.jacc.2021.07.022.
  • Penson, P. E.; Banach, M. Nocebo/drucebo Effect in Statin-Intolerant Patients: An Attempt at Recommendations. Eur. Heart J. 2021, 42(47), 4787–4788. doi:10.1093/eurheartj/ehab358.
  • Song, J.; Luo, J.; Ma, Z., Sun, Q., Wu, C., and Li, X.; et al. Quality and Authenticity Control of Functional Red Yeast Rice—a Review. Molecules. 2019, 24(10), 1944. doi:10.3390/molecules24101944.
  • Gordon, R. Y.; Becker, D. J. The Role of Red Yeast Rice for the Physician. Curr. Atheroscler. Rep. 2011, 13(1), 73–80. doi:10.1007/s11883-010-0145-0.
  • Ruscica, M.; Penson, P. E.; Ferri, N., et al. Impact of Nutraceuticals on Markers of Systemic Inflammation: Potential Relevance to Cardiovascular Diseases – A Position Paper from the International Lipid Expert Panel (ILEP). Prog. Cardiovasc. Dis. 2021, 67, 40–52. doi:10.1016/j.pcad.2021.06.010.
  • Johnston, T. P.; Korolenko, T. A.; Pirro, M., Sahebkar, A.; et al. Preventing Cardiovascular Heart Disease: Promising Nutraceutical and Non-Nutraceutical Treatments for Cholesterol Management. Pharmacol. Res. 2017, 120, 219–225. doi:10.1016/j.phrs.2017.04.008.
  • Venero, C. V.; Venero, J. V.; Wortham, D. C., and Thompson, P. D.; et al. Lipid-Lowering Efficacy of Red Yeast Rice in a Population Intolerant to Statins. Am. J. Cardiol. 2010, 105(5), 664–666. doi:10.1016/j.amjcard.2009.10.045.
  • Banach, M.; Bruckert, E.; Descamps, O. S., et al. The Role of Red Yeast Rice (RYR) Supplementation in Plasma Cholesterol Control: A Review and Expert Opinion. Atheroscler. Suppl. 2019, 39, e1–e8. doi:10.1016/j.atherosclerosissup.2019.08.023.
  • Burke, F. M. Red Yeast Rice for the Treatment of Dyslipidemia. Curr. Atheroscler. Rep. 2015, 17(4), 495. doi:10.1007/s11883-015-0495-8.
  • Wang, T. J.; Lien, A. S.; Chen, J. L., Lin, C.-H., Yang, Y.-S., and Yang, S.-H.; et al. A Randomized Clinical Efficacy Trial of Red Yeast Rice (Monascus Pilosus) Against Hyperlipidemia. Am. J. Chin. Med. 2019, 47(2), 323–335. doi:10.1142/S0192415X19500150.
  • Chen, C. H.; Yang, J. C.; Uang, Y. S., and Lin, C.-J.; et al. Improved Dissolution Rate and Oral Bioavailability of Lovastatin in Red Yeast Rice Products. Int. J. Pharm. 2013, 444(1–2), 18–24. doi:10.1016/j.ijpharm.2013.01.028.
  • Chen, C. H.; Uang, Y. S.; Wang, S. T., Yang, J.-C., Lin, C.-J.; et al. Interaction Between Red Yeast Rice and CYP450 Enzymes/p-Glycoprotein and Its Implication for the Clinical Pharmacokinetics of Lovastatin. Evid. Based Complement. Alternat. Med. 2012, 2012, 127043. doi:10.1155/2012/127043.
  • Nguyen, T.; Karl, M.; Santini, A. J. F. Red Yeast Rice. Foods. 2017, 6(3), 19. doi:10.3390/foods6030019.
  • Fukami, H.; Higa, Y., and Hisano, T., et al. A Review of Red Yeast Rice, a Traditional Fermented Food in Japan and East Asia: Its Characteristic Ingredients and Application in the Maintenance and Improvement of Health in Lipid Metabolism and the Circulatory System. Molecules. 2021, 26(6), 1619. doi:10.3390/molecules26061619.
  • Patel, S. Functional Food Red Yeast Rice (RYR) for Metabolic Syndrome Amelioration: A Review on Pros and Cons. World J. Microbiol. Biotechnol. 2016, 32(5), 87. doi:10.1007/s11274-016-2035-2.
  • Ma, J.; Li, Y.; Ye, Q., Li, J., Hua, Y., Ju, D., Zhang, D., Cooper, R., and Chang, M.; et al. Constituents of Red Yeast Rice, a Traditional Chinese Food and Medicine. J. Agric. Food Chem. 2000, 48(11), 5220–5225. doi:10.1021/jf000338c.
  • Klingelhöfer, I.; Morlock, G. E. Lovastatin in Lactone and Hydroxy Acid Forms and Citrinin in Red Yeast Rice Powders Analyzed by HPTLC-UV/FLD. Anal. Bioanal. Chem. 2019, 411(25), 6655–6665. doi:10.1007/s00216-019-02039-y.
  • Lin, F. Textual Research on Gutian as Place Where Red Yeast Rice Originated. Chin. Tradit. Herb Drug. 2017, 48(13), 2793–2800. doi:10.7501/j.issn.0253-2670.2017.13.032.
  • Yang, C. W.; Mousa, S. A. The Effect of Red Yeast Rice (Monascus purpureus) in Dyslipidemia and Other Disorders. Complement Ther. Med. 2012, 20(6), 466–474. doi:10.1016/j.ctim.2012.07.004.
  • Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J. Antibiot (Tokyo), 1976, 29(12), 1346–1348. doi:10.7164/antibiotics.29.1346.
  • Endo, A. Monacolin K, a New Hypocholesterolemic Agent Produced by a Monascus Species. J. Antibiot. (Tokyo). 1979, 32(8), 852–854. doi:10.7164/antibiotics.32.852.
  • Cicero A. F. G.; Fogacci F.; Banach M. Red Yeast Rice for Hypercholesterolemia. Red Yeast Rice for Hypercholesterolemia. Methodist Debakey Cardiovasc. J. 2019, 15(3), 192–199. doi:10.14797/mdcj-15-3-192.s.
  • Brown, M. S.; Goldstein, J. L. How LDL Receptors Influence Cholesterol and Atherosclerosis. Sci. Am. 1984, 251(5), 58–66. doi:10.1038/scientificamerican1184-58.
  • Samsudin, N. I.; Abdullah, N. A Preliminary Survey on the Occurrence of Mycotoxigenic Fungi and Mycotoxins Contaminating Red Rice at Consumer Level in Selangor, Malaysia. Mycotoxin Res. 2013, 29(2), 89–96. doi:10.1007/s12550-012-0154-7.
  • Zhang, Y. T.; Wang, Y.; Zhang, X. T., Wu, D.-L., Zhang, X.-Q., and Ye, W.-C.; et al. A New Decalin Derivative from Red Yeast Rice. J. Asian Nat. Prod. Res. 2009, 11(9), 792–795. doi:10.1080/10286020903164269.
  • Huang, X.; Tang, S.; Zheng, L., Teng, Y., Yang, Y., Zhu, J., and Lu, X.; et al. Construction of an Efficient and Robust Aspergillus Terreus Cell Factory for Monacolin J Production. ACS Synth. Biol. 2019, 8(4), 818–825. doi:10.1021/acssynbio.8b00489.
  • Zhang, Z.; Ali, Z.; Khan, S. I., Khan, I. A.; et al. Cytotoxic Monacolins from Red Yeast Rice, a Chinese Medicine and Food. Food Chem. 2016, 202, 262–268. doi:10.1016/j.foodchem.2015.12.039.
  • Endo, A.; Komagata, D.; Shimada, H. Monacolin M, a New Inhibitor of Cholesterol Biosynthesis. J. Antibiot. (Tokyo). 1986, 39(12), 1670–1673. doi:10.7164/antibiotics.39.1670.
  • Sorensen, J. L.; Vederas, J. C. Monacolin N, a Compound Resulting from Derailment of Type I Iterative Polyketide Synthase Function En Route to Lovastatin. Chem. Commun. 2003, 13(13), 1492–1493. doi:10.1039/b304252a.
  • Liu, M. T.; Wang, A. L.; Sun, Z., Li, J.-J., Wu, X.-L., Liu, Y.-X., and Shang, X.-Y.; et al. Cytotoxic Monacolin Analogs from Monascus Purpureus -Fermented Rice. J. Asian Nat. Prod. Res. 2013, 15(6), 600–609. doi:10.1080/10286020.2013.790379.
  • Zhang, B.; Liu, T. X.; Wang, A. L., Li, J.-J., Wang, X., Luan, N., Ji, L.-L., and Shang, X.-Y.; et al. Four New Monacolin Analogs from Monascus Purpureus -Fermented Rice. J. Asian Nat. Prod. Res. 2018, 20(3), 209–216. doi:10.1080/10286020.2017.1396978.
  • Endo, A.; Hasumi, K.; Nakamura, T., Kunishima, M., and Masuda, M.; et al. Dihydromonacolin L and Monacolin X. New Metabolites Those Inhibit Cholesterol Biosynthesis. J. Antibiot. (Tokyo). 1985, 38(3), 321–327. doi:10.7164/antibiotics.38.321.
  • Zhu, L.; Yau, L. F.; Lu, J. G., Zhu, G.-Y., Wang, J.-R., Han, Q.-B., Hsiao, W.-L., and Jiang, Z.-H.; et al. Cytotoxic Dehydromonacolins from Red Yeast Rice. J. Agric. Food Chem. 2012, 60(4), 934–939. doi:10.1021/jf203579f.
  • Dhale, M. A.; Divakar, S.; Umesh-Kumar, S., and Vijayalakshmi, G.; et al. Characterization of Dehydromonacolin-MV2 from Monascus Purpureus Mutant. J. Appl. Microbiol. 2007, 103(6), 2168–2173. doi:10.1111/j.1365-2672.2007.03457.x.
  • Dhale, M. A.; Divakar, S.; Kumar, S. U.; Vijayalakshmi, G. Isolation and Characterization of Dihydromonacolin-MV from Monascus Purpureus for Antioxidant Properties. Appl. Microbiol. Biotechnol. 2007, 73(5), 1197–1202. doi:10.1007/s00253-006-0578-0.
  • Liu, B. Y.; Xu, F.; Bai, J., Yan, D.-J., Zhang, L., Zhang, D., and Hu, Y.-C.; et al. Six New Monacolin Analogs from Red Yeast Rice. Chin. J. Nat. Med. 2019, 17(5), 394–400. doi:10.1016/S1875-5364(19)30046-9.
  • Peng, Y.; Zhang, X.; Zhang, T., et al. Lovastatin Inhibits Toll-Like Receptor 4 Signaling in Microglia by Targeting Its Co-Receptor Myeloid Differentiation Protein 2 and Attenuates Neuropathic Pain. Brain Behav. Immun. 2019, 82, 432–444. doi:10.1016/j.bbi.2019.09.013.
  • Agboyibor, C.; Kong, W. B.; Chen, D., Zhang, A.-M., Niu, S.-Q.; et al. Monascus Pigments Production, Composition, Bioactivity and Its Application: A Review. Biocatal Agric. Biotechnol. 2018, 16, 433–447. doi:10.1016/j.bcab.2018.09.012.
  • Feng, D.; Sun, J. G., and Sun, R. B., et al. Isoflavones and Phytosterols Contained in Xuezhikang Capsules Modulate Cholesterol Homeostasis in High-Fat Diet Mice. Acta Pharmacol. Sin. 2015, 36(12), 1462–1472. doi:10.1038/aps.2015.98.
  • Yang, H.; Pan, R.; Wang, J., Zheng, L., Li, Z., Guo, Q., Wang, C.; et al. Modulation of the Gut Microbiota and Liver Transcriptome by Red Yeast Rice and Monascus Pigment Fermented by Purple Monascus SHM1105 in Rats Fed with a High-Fat Diet. Front Pharmacol. 2020, 11, 599760. doi:10.3389/fphar.2020.599760.
  • Sungthong, B.; Yoothaekool, C.; Promphamorn, S., and Phimarn, W.; et al. Efficacy of Red Yeast Rice Extract on Myocardial Infarction Patients with Borderline Hypercholesterolemia: A Meta-Analysis of Randomized Controlled Trials. Sci. Rep. 2020, 10(1), 2769. doi:10.1038/s41598-020-59796-5.
  • Hachem, R.; Assemat, G.; Balayssac, S., Martins-Froment, N., Gilard, V., Martino, R., Malet-Martino, M. Comparative Chemical Profiling and Monacolins Quantification in Red Yeast Rice Dietary Supplements by (1) H-NMR and UHPLC-DAD-MS. Molecules. 2020, 25(2), 317. doi:10.3390/molecules25020317.
  • Shang, Q.; Liu, Z.; Chen, K., Xu, H., Liu, J.; et al. A Systematic Review of Xuezhikang, an Extract from Red Yeast Rice, for Coronary Heart Disease Complicated by Dyslipidemia. Evid. Based Complement. Alternat. Med. 2012, 2012, 636547. doi:10.1155/2012/636547.
  • Mach, F.; Baigent, C., and Catapano, A. L., et al. 2019 ESC/EAS Guidelines for Themanagement of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41(1), 111–188. doi:10.1093/eurheartj/ehz455.
  • Wu, H. C.; Cheng, M. J.; Wu, M. D., Chen, J.-J., Chen, Y.-L., Chang, H.-S., and Chen, K.-P.; et al. Secondary Metabolites from the Fermented Rice of the Fungus Monascus Purpureus and Their Bioactivities. Nat. Prod. Res. 2019, 33(24), 3541–3550. doi:10.1080/14786419.2018.1488698.
  • Zuo, L. S.; Tang, X. Y., and Xiong, F., et al. Isoflavone Biomarkers are Inversely Associated with Atherosclerosis Progression in Adults: A Prospective Study. Am. J. Clin. Nutr. 2021, 114(1), 203–213. doi:10.1093/ajcn/nqab008.
  • Xiong, Z.; Cao, X.; Wen, Q., et al. An Overview of the Bioactivity of Monacolin K/lovastatin. Food Chem. Toxicol. 2019, 131(1), 110585. Doi:10.1016/j.fct.2019.110585.
  • Pérez-Jiménez, F.; Pascual, V., and Meco, J. F., et al. Document of Recommendations of the SEA 2018. Lifestyle in Cardiovascular Prevention. Clin. Investig. Arterioscler. 2018, 30(6), 280–310. doi:10.1016/j.arteri.2018.06.005.
  • Liang, J. X.; Zhang, Q. Q.; Huang, Y. F., Pang, H.-Q., Liu, X.-G., Gao, W., Li, P., Yang, H.; et al. Comprehensive Chemical Profiling of Monascus-Fermented Rice Product and Screening of Lipid-Lowering Compounds Other Than Monacolins. J. Ethnopharmacol. 2019, 238, 111879. doi:10.1016/j.jep.2019.111879.
  • Cicero, A. F. G.; Colletti, A., and Bajraktari, G., et al. Lipid-Lowering Nutraceuticals in Clinical Practice: Position Paper from an International Lipid Expert Panel. Nutr. Rev. 2017, 75(9), 731–767. doi:10.5114/aoms.2017.69326.
  • Leone, G.; Consumi, M., and Pepi, S., et al. New Formulations to Enhance Lovastatin Release from Red Yeast Rice (RYR). J. Drug Deliv. 2016, 36, 110–119. doi:10.1016/j.jddst.2016.10.001.
  • Cicero, A. F. G.; Fogacci, F.; Zambon, A. Red Yeast Rice for Hypercholesterolemia: JACC Focus Seminar. J. Am. Coll. Cardiol. 2021, 77(5), 620–628. doi:10.1016/j.jacc.2020.11.056.
  • Endo, A. Monacolin K, a New Hypocholesterolemic Agent That Specifically Inhibits 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase. J. Antibiot. (Tokyo). 1980, 33(3), 334–336. doi:10.7164/antibiotics.33.334.
  • Banach, M.; Patti, A. M., and Giglio, R. V., et al. The Role of Nutraceuticals in Statin Intolerant Patients. J. Am. Coll. Cardiol. 2018, 72(1), 96–118. doi:10.1016/j.jacc.2018.04.040.
  • Fogacci, F.; Banach, M.; Mikhailidis, D. P., et al. Safety of Red Yeast Rice Supplementation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2019, 143, 1–16. doi:10.1016/j.phrs.2019.02.028.
  • Dufossé, L.; Galaup, P.; Yaron, A., Arad, S. M., Blanc, P., Chidambara Murthy, K. N., and Ravishankar, G. A.; et al. Microorganisms and Microalgae as Sources of Pigments for Food Use: A Scientific Oddity or an Industrial Reality? Trends Food Sci. Technol. 2005, 16(9), 389–406. doi:10.1016/j.tifs.2005.02.006.
  • Patakova, P. Monascus Secondary Metabolites: Production and Biological Activity. J. Ind. Microbiol. Biotechnol. 2013, 40(2), 169–181. doi:10.1007/s10295-012-1216-8.
  • Chen, W.; Chen, R., and Liu, Q., et al. Orange, Red, Yellow: Biosynthesis of Azaphilone Pigments in Monascus Fungi. Chem. Sci. 2017, 8(7), 4917–4925. doi:10.1039/c7sc00475c.
  • Kim, D.; Ku, S. Beneficial Effects of Monascus Sp. KCCM 10093 Pigments and Derivatives: A Mini Review. Molecules. 2018, 23(1), 98. doi:10.3390/molecules23010098.
  • Zhou, W.; Guo, R., and Guo, W., et al. Monascus Yellow, Red and Orange Pigments from Red Yeast Rice Ameliorate Lipid Metabolic Disorders and Gut Microbiota Dysbiosis in Wistar Rats Fed on a High-Fat Diet. Food Funct. 2019, 10(2), 1073–1084. doi:10.1039/c8fo02192a.
  • Jou, P. C.; Ho, B. Y.; Hsu, Y. W., and Pan, T.-M.; et al. The Effect of Monascus Secondary Polyketide Metabolites, Monascin and Ankaflavin, on Adipogenesis and Lipolysis Activity in 3T3-L1. J. Agric. Food Chem. 2010, 58(24), 12703–12709. doi:10.1021/jf103121c.
  • Lee, C. L.; Wen, J. Y., and Hsu, Y. W., et al. Monascus-Fermented Yellow Pigments Monascin and Ankaflavin Showed Antiobesity Effect via the Suppression of Differentiation and Lipogenesis in Obese Rats Fed a High-Fat Diet. J. Agric. Food Chem. 2013, 61(7), 1493–1500. doi:10.1021/jf304015z.
  • Sampson, U. K.; Linton, M. F.; Fazio, S. Are Statins Diabetogenic? Curr. Opin. Cardiol. 2011, 26(4), 342–347. doi:10.1097/HCO.0b013e3283470359.
  • Katsiki, N.; Rizzo, M.; Mikhailidis, D. P., and Mantzoros, C. S.; et al. New-Onset Diabetes and Statins: Throw the Bath Water Out, but, Please, Keep the Baby! Metabolism. 2015, 64(4), 471–475. doi:10.1016/j.metabol.2014.11.001.
  • Yandrapalli, S.; Malik, A.; Guber, K., Rochlani, Y., Pemmasani, G., Jasti, M., and Aronow, W. S.; et al. Statins and the Potential for Higher Diabetes Mellitus Risk. Expert Rev. Clin. Pharmacol. 2019, 12(9), 825–830. doi:10.1080/17512433.2019.1659133.
  • Meinicke, R. M.; Vendruscolo, F., and Moritz, D. E., et al. Potential Use of Glycerol as Substrate for the Production of Red Pigments by Monascus Ruber in Submerged Fermentation. Biocatal. Agric. Biotechnol. 2012, 1(3), 238–242. doi:10.1016/j.bcab.2012.03.001.
  • Vendruscolo, F.; Rossi, M. J., and Schmidell, W., et al. Determination of Oxygen Solubility in Liquid Media. ISRN Chem. Eng. 2012, 2012(3). doi:10.5402/2012/601458.
  • Vendruscolo, F.; Pitol, L. O.; Carciofi, B., Moritz, D. E., Laurindo, J. B., Schmidell, W., and Ninow, J. L.; et al. Construction and Application a Vane System in a Rotational Rheometer for Determination of the Rheological Properties of Monascus Ruber CCT 3802. Biorheology. 2010, 24(1), 29–35. doi:10.1007/s12573-010-0019-7.
  • Liu, H. Q.; Huang, Z. F.; Yang, S. Z., Tian, X.-F., and Wu, Z.-Q.; et al. Inducing Red Pigment and Inhibiting Citrinin Production by Adding Lanthanum(iii) Ion in Monascus Purpureus Fermentation. Appl. Microbiol. Biotechnol. 2021, 105(5), 1905–1912. doi:10.1007/s00253-021-11162-9.
  • Wong, H.; Koehler, P. E. Production and Isolation of an Antibiotic from Monascus Purpureus and Its Relationship to Pigment Production. J. Food Sci. 2010, 46(2), 589–592. doi:10.1111/j.1365-2621.1981.tb04917.x.
  • Xu, W. Study on the Liquid Fermentation to Produce Monascus Pigment with Corn Starch and Antibacteria. Adv. Mater. Res. 2011, 183, 1336–1340. doi:10.4028/www.scientific.net/AMR.183-185.1336.
  • Sun, J.-M.; Kim, S.-J., and Kim, G.-W., et al. Inhibition of Hepatitis C Virus Replication by Monascus Pigment Derivatives That Interfere with Viral RNA Polymerase Activity and the Mevalonate Biosynthesis Pathway. J. Antimicrob. Chemother. 2012, 67(1), 49–58. doi:10.1093/jac/dkr432.
  • Huang, Y. P.; Li, P.; Du, T., Du, X.-J., and Wang, S.; et al. Protective Effect and Mechanism of Monascus -Fermented Red Yeast Rice Against Colitis Caused by Salmonella Enterica Serotype Typhimurium ATCC 14028. Food Funct. 2020, 11(7), 6363–6375. doi:10.1039/d0fo01017k.
  • Shi, Y. X., and Chen, W. S. Monascin Ameliorate Inflammation in the Lipopolysaccharide-Induced BV-2 Microglial Cells via Suppressing the NF-κB/p65 Pathway. Iran J. Basic Med. Sci. 2020, 23(4), 461–468. doi:10.22038/ijbms.2020.41045.9702.
  • Tung, Y. C.; Chou, R. F.; Nagabhushanam, K., Ho, C.-T., and Pan, M.-H.; et al. 3′-Hydroxydaidzein Improves Obesity Through the Induced Browning of Beige Adipose and Modulation of Gut Microbiota in Mice with Obesity Induced by a High-Fat Diet. J. Agric. Food Chem. 2020, 68(49), 14513–14522. doi:10.1021/acs.jafc.0c06138.
  • Cardullo, N.; Muccilli, V.; Pulvirenti, L., and Tringali, C.; et al. Natural Isoflavones and Semisynthetic Derivatives as Pancreatic Lipase Inhibitors. J J. Nat. Prod. 2021, 84(3), 654–665. doi:10.1021/acs.jnatprod.0c01387.
  • Kim, S. K.; Ko, Y. H.; Lee, Y., Lee, S.-Y., and Jang, C.-G.; et al. Antineuroinflammatory Effects of 7,3’,4’-Trihydroxyisoflavone in Lipopolysaccharide-Stimulated BV2 Microglial Cells Through MAPK and NF-κB Signaling Suppression. Biomol. Ther. 2021, 29(2), 127–134. doi:10.4062/biomolther.2020.093.
  • Laddha, A. P.; Kulkarni, Y. A. Daidzein Ameliorates Diabetic Retinopathy in Experimental Animals. Life Sci. 2021, 265, 118779. doi:10.1016/j.lfs.2020.118779.
  • Kuryłowicz, A. The Role of Isoflavones in Type 2 Diabetes Prevention and Treatment-A Narrative Review. Int. J. Mol. Sci. 2020, 22(1), 218. doi:10.3390/ijms22010218.
  • Bhatt, P. C.; Pathak, S., and Kumar, V., et al. Attenuation of Neurobehavioral and Neurochemical Abnormalities in Animal Model of Cognitive Deficits of Alzheimer’s Disease by Fermented Soybean Nanonutraceutical. Inflammopharmacology. 2018, 26(1), 105–118. doi:10.1007/s10787-017-0381-9.
  • Kim, S. H.; Heo, J. H.; Kim, Y. S., Kang, S. S., Choi, J. S., and Lee, S.-M.; et al. Protective Effect of Daidzin Against D -Galactosamine and Lipopolysaccharide-Induced Hepatic Failure in Mice. Phytother. Res. 2009, 23(5), 701–706. doi:10.1002/ptr.2710.
  • Glisic, M.; Kastrati, N., and Gonzalez-Jaramillo, V., et al. Associations Between Phytoestrogens, Glucose Homeostasis, and Risk of Diabetes in Women: A Systematic Review and Meta-Analysis. Adv Nutr. 2018, 9(6), 726–740. doi:10.1093/advances/nmy048.
  • Meezan, E.; Meezan, E. M.; Jones, K., Moore, R., Barnes, S., and Prasain, J. K.; et al. Contrasting Effects of Puerarin and Daidzin on Glucose Homeostasis in Mice. J. Agric. Food Chem. 2005, 53(22), 8760–8767. doi:10.1021/jf058105e.
  • Wang, W.; Yang, R., and Zhang, M., et al. Glycitin Suppresses Cartilage Destruction of Osteoarthritis in Mice. Inflammation. 2020, 43(4), 1312–1322. doi:10.1007/s10753-020-01210-3.
  • Zhang, L.; Chen, J.; Chai, W., Ni, M., Sun, X., and Tian, D.; et al. Glycitin Regulates Osteoblasts Through TGF-β or AKT Signaling Pathways in Bone Marrow Stem Cells. Exp. Ther. Med. 2016, 12(5), 3063–3067. doi:10.3892/etm.2016.3696.
  • Zang, Y.; Igarashi, K.; Yu, C. Anti-Obese and Anti-Diabetic Effects of a Mixture of Daidzin and Glycitin on C57BL/6J Mice Fed with a High-Fat Diet. Biosci. Biotechnol., Biochem. 2015, 79(1), 117–123. doi:10.1080/09168451.2014.955453.
  • Zhong, H.; Liu, H.; Jiang, Z. Genistein Ameliorates Fat Accumulation Through AMPK Activation in Fatty Acid-Induced BRL Cells. J. Food Sci. 2017, 82(11), 2719–2725. doi:10.1111/1750-3841.13856.
  • Seidemann, L.; Krüger, A.; Kegel-Hübner, V., Seehofer, D., and Damm, G.; et al. Influence of Genistein on Hepatic Lipid Metabolism in an in vitro Model of Hepatic Steatosis. Molecules. 2021, 26(4), 1156. doi:10.3390/molecules26041156.
  • Liu, H.; Zhong, H.; Yin, Y., Jiang, Z.; et al. Genistein Has Beneficial Effects on Hepatic Steatosis in High Fat-High Sucrose Diet-Treated Rats. Biomed. Pharmacother. 2017, 91, 964–969. doi:10.1016/j.biopha.2017.04.130.
  • Yi, X. Y.; Wang, Z. H.; Wang, Y. Genistein for Glycolipid Metabolism in Postmenopausal Women: A Meta-Analysis. Climacteric. 2021, 24(3), 267–274. doi:10.1080/13697137.2020.1859473.
  • Makena, W.; Hambolu, J. O.; Timbuak, J. A., Umana, U. E., Iliya, A. I., and Dibal, N. I.; et al. Mormodica Charantia L. Fruit and Genistein Ameliorates Type 2 Diabetes in Rats by Preventing Lipid Accumulation, Insulin Resistance and Enhancing Beta Cell Function. J. Diabetes Metab. Disord. 2020, 19(2), 1303–1310. doi:10.1007/s40200-020-00648-4.
  • Zhou, L.; Xiao, X.; Zhang, Q., Zheng, J., Deng, M.; et al. Maternal Genistein Intake Mitigates the Deleterious Effects of High-Fat Diet on Glucose and Lipid Metabolism and Modulates Gut Microbiota in Adult Life of Male Mice. Front. Physiol. 2019, 10, 985. doi:10.3389/fphys.2019.00985.
  • Zhou, L.; Xiao, X.; Zhang, Q., et al. Dietary Genistein Could Modulate Hypothalamic Circadian Entrainment, Reduce Body Weight, and Improve Glucose and Lipid Metabolism in Female Mice. Int. J. Endocrinol. 2019, 2019, 2163838. doi:10.1155/2019/2163838.
  • Shen, H. H.; Huang, S. Y.; Kung, C. W., et al. Genistein Ameliorated Obesity Accompanied with Adipose Tissue Browning and Attenuation of Hepatic Lipogenesis in Ovariectomized Rats with High-Fat Diet. J. Nutr. Biochem. 2019, 67, 111–122. doi:10.1016/j.jnutbio.2019.02.001.
  • Yang, H.; Lee, S. H., and Ji, H., et al. Orobol, an Enzyme-Convertible Product of Genistein, Exerts Anti-Obesity Effects by Targeting Casein Kinase 1 Epsilon. Sci. Rep. 2019, 9(1), 8942. doi:10.1038/s41598-019-43950-9.
  • Choi, Y. R.; Shim, J.; Kim, M. J. Genistin: A Novel Potent Anti-Adipogenic and Anti-Lipogenic Agent. Molecules. 2020, 25(9), 2042. doi:10.3390/molecules25092042.
  • Islam, A.; Islam, M. S.; Uddin, M. N., Hasan, M. M. I., and Akanda, M. R.; et al. The Potential Health Benefits of the Isoflavone Glycoside Genistin. Arch. Pharm. Res. 2020, 43(4), 395–408. doi:10.1007/s12272-020-01233-2.
  • Nguyen, C. T.; Pham, N. M.; Do, V. V., Binns, C. W., Hoang, V. M., Dang, D. A., and Lee, A. H.; et al. Soyfood and Isoflavone Intake and Risk of Type 2 Diabetes in Vietnamese Adults. Eur. J. Clin. Nutr. 2017, 71(10), 1186–1192. doi:10.1038/ejcn.2017.76.
  • Pyo, Y. H.; Seong, K. S. Hypolipidemic Effects of Monascus-Fermented Soybean Extracts in Rats Fed a High-Fat and -Cholesterol Diet. J. Agric. Food Chem. 2009, 57(18), 8617–8622. doi:10.1021/jf901878c.
  • Gu, Y.; Chen, X.; Fu, S., Liu, W., Wang, Q., Liu, K.-J., Shen, J.; et al. Astragali Radix Isoflavones Synergistically Alleviate Cerebral Ischemia and Reperfusion Injury via Activating Estrogen Receptor-PI3K-Akt Signaling Pathway. Front Pharmacol. 2021, 12, 533028. doi:10.3389/fphar.2021.533028.
  • Gachumi, G.; Poudel, A.; Wasan, K. M., and El-Aneed, A.; et al. Analytical Strategies to Analyze the Oxidation Products of Phytosterols, and Formulation-Based Approaches to Reduce Their Generation. Pharmaceutics. 2021, 13(2), 268. doi:10.3390/pharmaceutics13020268.
  • Zhu, B.; Qi, F.; Wu, J., Yin, G., Hua, J., Zhang, Q., Qin, L.; et al. Red Yeast Rice: A Systematic Review of the Traditional Uses, Chemistry, Pharmacology, and Quality Control of an Important Chinese Folk Medicine. Front Pharmacol. 2019, 10, 1449. doi:10.3389/fphar.2019.01449.
  • Hu, J.; Wang, J., and Gan, Q. X., et al. Impact of Red Yeast Rice on Metabolic Diseases: A Review of Possible Mechanisms of Action. J. Agric. Food Chem. 2020, 68(39), 10441–10455. doi:10.1021/acs.jafc.0c01893.
  • Musa-Veloso, K.; Poon, T. H.; Elliot, J. A., and Chung, C.; et al. A Comparison of the LDL-Cholesterol Lowering Efficacy of Plant Stanols and Plant Sterols Over a Continuous Dose Range: Results of a Meta-Analysis of Randomized, Placebo-Controlled Trials. Prostaglandins Leukot. Essent. Fatty Acids. 2011, 85(1), 9–28. doi:10.1016/j.plefa.2011.02.001.
  • Cicero, A. F. G.; D’-Addato, S.; Borghi, C. A. Randomized Double-Blinded, Placebo-Controlled, Clinical Study of the Effects of a Nutraceutical Combination (LEVELIP DUO (®)) on LDL Cholesterol Levels and Lipid Pattern in Subjects with Sub-Optimal Blood Cholesterol Levels (NATCOL Study). Nutrients. 2020, 12(10), 3127. doi:10.3390/nu12103127.
  • Domenech, M.; Casas, R.; Ruiz-León, A. M., Sobrino, J., Ros, E., and Estruch, R.; et al. Effects of a Novel Nutraceutical Combination (Aquilea Colesterol®) on the Lipid Profile and Inflammatory Biomarkers: A Randomized Control Trial. Nutrients. 2019, 11(5), 949. doi:10.3390/nu11050949.
  • Cicero, A. F. G.; Fogacci, F.; Rosticci, M.; Parini, A.; Giovannini, M.; Veronesi, M.; D’-Addato, S.; Borghi, C., et al. Effect of a Short-Term Dietary Supplementation with Phytosterols, Red Yeast Rice or Both on Lipid Pattern in Moderately Hypercholesterolemic Subjects: A Three-Arm, Double-Blind, Randomized Clinical Trial. Nutr. Metab. 2017, 14, 61. doi:10.1186/s12986-017-0214-2.
  • Malinowski, J. M.; Gehret, M. M. Phytosterols for Dyslipidemia. Am. J. Health Syst. Pharm. 2010, 67(14), 1165–1173. doi:10.2146/ajhp090427.
  • Bruning, T.; Al-Khaled, M. Do Statins Reduce the Mortality Rate in Stroke Patients Treated with Systemic Thrombolysis in a 5-Year. Neural. Regen. Res. 2021, 16(9), 1807–1812. doi:10.4103/1673-5374.306088.
  • Yu, Q.; Chen, Y.; Xu, C. B. Statins and New-Onset Diabetes Mellitus: LDL Receptor May Provide a Key Link. Front Pharmacol. 2017, 8, 372. doi:10.3389/fphar.2017.00372.
  • Brault, M.; Ray, J.; Gomez, Y. H., Mantzoros, C. S., and Daskalopoulou, S. S.; et al. Statin Treatment and New-Onset Diabetes: A Review of Proposed Mechanisms. Metabolism. 2014, 63(6), 735–745. doi:10.1016/j.metabol.2014.02.014.
  • Sattar, N.; Preiss, D., and Murray, H. M., et al. Statins and Risk of Incident Diabetes: A Collaborative Meta-Analysis of Randomised Statin Trials. Lancet. 2010, 375(9716), 735–742. doi:10.1016/S0140-6736(09)61965-6.
  • Mansi, I. A.; Frei, C. R.; Halm, E. A., and Mortensen, E. M.; et al. Association of Statins with Diabetes Mellitus and Diabetic Complications: Role of Confounders During Follow-Up. J. Investig. Med. 2017, 65(1), 32–42. doi:10.1136/jim-2016-000218.
  • Ramu, R.; Shirahatti, P. S.; Nayakavadi, S., R, V., Zameer, F., Dhananjaya, B. L., and Prasad MN, N.; et al. The Effect of a Plant Extract Enriched in Stigmasterol and β-Sitosterol on Glycaemic Status and Glucose Metabolism in Alloxan-Induced Diabetic Rats. Food Funct. 2016, 7(9), 3999–4011. doi:10.1039/c6fo00343e.
  • Ponnulakshmi, R.; Shyamaladevi, B.; Vijayalakshmi, P., and Selvaraj, J.; et al. In silico and in vivo Analysis to Identify the Antidiabetic Activity of Beta Sitosterol in Adipose Tissue of High Fat Diet and Sucrose Induced Type-2 Diabetic Experimental Rats. Toxicol. Mech. Methods. 2019, 29(4), 276–790. doi:10.1080/15376516.2018.1545815.
  • Xiong, M.; Huang, Y., and Liu, Y., et al. Antidiabetic Activity of Ergosterol from Pleurotus Ostreatus in KK-A Y Mice with Spontaneous Type 2 Diabetes Mellitus. Mol. Nutr. Food Res. 2018, 62(3), 1700444. doi:10.1002/mnfr.201700444.
  • Gao, F.; Wang, G.; Wang, L., and Guo, N.; et al. Phytosterol Nutritional Supplement Improves Pregnancy and Neonatal Complications of Gestational Diabetes Mellitus in a Double-Blind and Placebo-Controlled Clinical Study. Food Funct. 2017, 8(1), 424–428. doi:10.1039/c6fo01777k.
  • Xie, W.; Zhao, Y.; Du, L. Emerging Approaches of Traditional Chinese Medicine Formulas for the Treatment of Hyperlipidemia. J. Ethnopharmacol. 2012, 140(2), 345–367. doi:10.1016/j.jep.2012.01.027.
  • Gerards, M. C.; Terlou, R. J.; Yu, H., Koks, C. H. W., Gerdes, V. E. A.; et al. Traditional Chinese Lipid-Lowering Agent Red Yeast Rice Results in Significant LDL Reduction but Safety is Uncertain – A Systematic Review and 880 Meta-Analysis. Atherosclerosis. 2015, 240(2), 415–423. doi:10.1016/j.atherosclerosis.2015.04.004.
  • Landi, F.; Martone, A. M.; Salini, S., et al. Effects of a New Combination of Medical Food on Endothelial Function and Lipid Profile in Dyslipidemic Subjects: A Pilot Randomized Trial. Biomed Res. Int. 2019, 2019, 1970878. doi:10.1155/2019/1970878.
  • Cicero, A. F. G.; Kennedy, C.; Knežević, T.; Bove, M.; Georges, C. M. G.; Šatrauskienė, A.; Toth, P. P.; Fogacci, F., et al. Efficacy and Safety of Armolipid Plus®: An Updated PRISMA Compliant Systematic Review and MetaAnalysis of Randomized Controlled Clinical Trials. Nutrients. 2021, 13(2), 638. doi:10.3390/nu13020638.
  • Ruscica, M.; Pavanello, C., and Gandini, S., et al. Nutraceutical Approach for the Management of Cardiovascular Risk - a Combination Containing the Probiotic Bifidobacterium Longum BB536 and Red Yeast Rice Extract: Results from a Randomized, Double-Blind, Placebo-Controlled Study. Nutr. J. 2019, 18(1), 13. doi:10.1186/s12937-019-0438-2.
  • Hermans, N.; Van der Auwera, A.; Breynaert, A., Verlaet, A., De Bruyne, T., Van Gaal, L., Pieters, L., and Verhoeven, V.; et al. A Red Yeast Rice-Olive Extract Supplement Reduces Biomarkers of Oxidative Stress, OxLdl and Lp-PLA(2), in Subjects with Metabolic Syndrome: A Randomised, Double-Blind, Placebo-Controlled Trial. Trials. 2017, 18(1), 302. doi:10.1186/s13063-017-2058-5.
  • Derosa, G.; Catena, G., and Raddino, R., et al. Effects on Oral Fat Load of a Nutraceutical Combination of Fermented Red Rice, Sterol Esters and Stanols, Curcumin, and Olive Polyphenols: A Randomized, Placebo Controlled Trial. Phytomedicine. 2018, 42, 75–82. doi:10.1016/j.phymed.2018.01.014.
  • Spigoni, V.; Aldigeri, R., and Antonini, M., et al. Effects of a New Nutraceutical Formulation (Berberine, Red Yeast Rice and Chitosan) on Non-HDL Cholesterol Levels in Individuals with Dyslipidemia: Results from a Randomized, Double Blind, Placebo-Controlled Study. Int. J. Mol. Sci. 2017, 18(7), 1498. doi:10.3390/ijms18071498.
  • D’-Addato, S.; Scandiani, L., and Mombelli, G. , et al. Effect of a Food Supplement Containing Berberine, Monacolin K, Hydroxytyrosol and Coenzyme Q(10) on Lipid Levels: A Randomized, Double-Blind, Placebo Controlled Study. Drug Des. Devel. Ther. 11, 1585–1592. doi:10.2147/DDDT.S128623.
  • Marazzi, G.; Campolongo, G.; Pelliccia, F., Quattrino, S., Vitale, C., Cacciotti, L., Massaro, R., Volterrani, M., and Rosano, G.; et al. Comparison of Low-Dose Statin versus Low-Dose Statin + armolipid Plus in High-Intensity Statin-Intolerant Patients with a Previous Coronary Event and Percutaneous Coronary Intervention (ADHERENCE Trial). Am. J. Cardiol. 2017, 120(6), 893–897. doi:10.1016/j.amjcard.2017.06.015.
  • Mercurio, V.; Pucci, G., and Bosso, G., et al. A Nutraceutical Combination Reduces Left Ventricular Mass in Subjects with Metabolic Syndrome and Left Ventricular Hypertrophy: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. 2020, 39(5), 1379–1384. doi:10.1016/j.clnu.2019.06.026.
  • Mazza, A.; Lenti, S.; Schiavon, L., Di Giacomo, E., Tomasi, M., Manunta, R., Torin, G., Townsend, D. M., Rubello, D.; et al. Effect of Monacolin K and COQ10 Supplementation in Hypertensive and 890 Hypercholesterolemic Subjects with Metabolic Syndrome. Biomed. Pharmacother. 2018, 105, 992–996. doi:10.1016/j.biopha.2018.06.076.
  • Cimaglia, P.; Vieceli Dalla Sega, F.; Vitali, F., et al. Effectiveness of a Novel Nutraceutical Compound Containing 885 Red Yeast Rice, Polymethoxyflavones and Antioxidants in the Modulation of Cholesterol Levels in Subjects with Hypercholesterolemia and Low-Moderate Cardiovascular Risk: The NIRVANA Study. Front. Physiol. 2019, 10, 217. doi:10.3389/fphys.2019.00217.
  • Mazza, A.; Schiavon, L.; Rigatelli, G., Torin, G., Montanaro, F., and Lenti, S.; et al. The Short-Term Supplementation of Monacolin K Improves the Lipid and Metabolic Patterns of Hypertensive and Hypercholesterolemic Subjects at Low Cardiovascular Risk. Food Funct. 2018, 9(7), 3845–3852. doi:10.1039/c8fo00415c.
  • Cicero, A. F.; Morbini, M.; Rosticci, M., D''Addato, S., Grandi, E., and Borghi, C.; et al. Middle-Term Dietary Supplementation with Red Yeast Rice Plus Coenzyme Q10 Improves Lipid Pattern, Endothelial Reactivity and Arterial Stiffness in Moderately Hypercholesterolemic Subjects. Ann. Nutr. Metab. 2016, 68(3), 213–219. doi:10.1159/000445359.
  • Heinz, T.; Schuchardt, J. P.; Möller, K., Hadji, P., and Hahn, A.; et al. Low Daily Dose of 3 Mg Monacolin K from RYR Reduces the Concentration of LDL-C in a Randomized, Placebo-Controlled Intervention. Nutr. Res. 2016, 36(10), 1162–1170. doi:10.1016/j.nutres.2016.07.005.
  • Kasliwal, R. R.; Bansal, M., and Gupta, R., et al. ESSENS Dyslipidemia: A Placebo-Controlled, Randomized Study of a Nutritional Supplement Containing Red Yeast Rice in Subjects with Newly Diagnosed Dyslipidemia. Nutrition. 2016, 32(7–8), 767–776. doi:10.1016/j.nut.2016.01.012.
  • Adorni, M. P.; Ferri, N.; Marchianò, S., Trimarco, V., Rozza, F., Izzo, R., Bernini, F., Zimetti, F.; et al. Effect of a Novel Nutraceutical Combination on Serum Lipoprotein Functional Profile and Circulating PCSK9. Ther Clin Risk ManagTher. 2017, 13, 1555–1562. doi:10.2147/TCRM.S144121.
  • Gou, S. H.; Liu, B. J.; Han, X.F.; Wang, L.; Zhong, C.; Liang, S.; Liu, H.; Qiang, Y., and Zhang, Y., et al. Anti-Atherosclerotic Effect of Fermentum Rubrum and Gynostemma Pentaphyllum Mixture in High-Fat Emulsion- and Vitamin D(3)-Induced Atherosclerotic Rats. J. Chin. Med. Assoc. 2018, 81(5), 398–408. doi:10.1016/j.jcma.2017.08.018.
  • Gou, S. H.; Huang, H. F.; Chen, X. Y., Liu, J., He, M., Ma, Y.-Y., Zhao, X.-N., Zhang, Y., and Ni, J.-M.; et al. Lipid-Lowering, Hepatoprotective, and Atheroprotective Effects of the Mixture Hong-Qu and Gypenosides in Hyperlipidemia with NAFLD Rats. J. Chin. Med. Assoc. 2016, 79(3), 111–121. doi:10.1016/j.jcma.2015.09.002.
  • Dong, Y.; Cheng, H.; Liu, Y., Xue, M., and Liang, H.; et al. Red Yeast Rice Ameliorates High-Fat Diet-Induced Atherosclerosis in Apoe −/− Mice in Association with Improved Inflammation and Altered Gut Microbiota Composition. Food Funct. 2019, 10(7), 3880–3889. doi:10.1039/c9fo00583h.
  • Chen, T. L.; Lin, C. S.; Lin, J. A., Yeh, C.-C., Sung, L.-C., Chang, Y.-C., Shih, C.-C., Liao, C.-C.; et al. Evaluating Risk of Incident Diabetes Between Patients Who Used Lovastatin and Red Yeast Rice Prescriptions (LipoCol Forte): A Retrospective Cohort Study Based on a Real-World Database. Diabetes Metab. Syndr. Obes. 2020, 13, 89–98. doi:10.2147/DMSO.S223833.
  • Wu, B.; Huang, J. F.; He, B. J., Huang, C.-W., Lu, J.-H.; et al. Promotion of Bone Formation by Red Yeast Rice in Experimental Animals: A Systematic Review and Meta-Analysis. Biomed Res. Int. 2020, 2020, 7231827. doi:10.1155/2020/7231827.
  • Banach, M.; Penson, P. E. What Have We Learned About Lipids and Cardiovascular Risk from PCSK9 Inhibitor Outcome Trials: ODYSSEY and FOURIER? Cardiovasc. Res. 2019, 115(3), e26–e31. doi:10.1093/cvr/cvy301.
  • Mazzanti, G.; Moro, P. A.; Raschi, E.; Da Cas, R., and Menniti‐ippolito, F., et al. Adverse Reactions to Dietary Supplements Containing Red Yeast Rice: Assessment of Cases from the Italian Surveillance System. Br.J. Clin. Pharmacol. 2017, 83(4), 894–908. doi:10.1111/bcp.13171.
  • Vrolijk, M. F.; van de Koppel, S.; van Hunsel, F. Red Yeast Rice (Monascus purpureus) Supplements: Case Series Assessment of Spontaneously Reported Cases to the Netherlands Pharmacovigilance Centre Lareb. Br.J. Clin. Pharmacol. 2021, 87(4), 2146–2151. doi:10.1111/bcp.14599.
  • Cicero, A.; Fogacci, F.; Stoian, A. P., Vrablik, M., Al Rasadi, K., Banach, M., Toth, P. P., and Rizzo, M.; et al. Nutraceuticals in the Management of Dyslipidemia: Which, When, and for Whom? Could Nutraceuticals Help Low-Risk Individuals with Non-Optimal Lipid Levels? Curr. Atheroscler. Rep. 2021, 23(10), 57. doi:10.1007/s11883-021-00955-y.
  • Righetti, L.; Dall’-Asta, C.; Bruni, R. Risk Assessment of RYR Food Supplements: Perception Vs. Reality. Front Nutr. 2021, 8, 792529. doi:10.3389/fnut.2021.792529.
  • Younes, M.; Aggett, P., and Aguilar, F., et al. Scientific Opinion on the Safety of Monacolins in Red Yeast Rice. Efsa J. 2018, 16(8), e05368. doi:10.2903/j.efsa.2018.5368.
  • Venhuis, B. J.; van Hunsel, F., and van de Koppel, S. , et al. Pharmacologically Effective Red Yeast Rice Preparations Marketed as Dietary Supplements Illustrated by a Case Report. Drug Test Anal. 2016, 8(3–4), 315–318. doi:10.1002/dta.1929.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.