591
Views
0
CrossRef citations to date
0
Altmetric
Review

Carica papaya biowaste valorization: Biorefinery advances and extraction optimization

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Evans, E. A.; Ballen, F. H., “An Overview of Global Papaya Production, Trade, and Consuption,” IFAS Extension, Univ. Florida, no. UF/IFAS Extension Service; University of Florida, pp. 1–7, 2012.
  • Papaya Global Production and Top Producing Countries − Tridge. https://www.tridge.com/intelligences/papaya/production 2021. (accessed Nov 7, 2020).
  • Salunkhe, D. K., and Kadam, S.S. Handbook of Fruit Science and Technology: Production, Composition, Storage, and Processing; Boca Raton, FL, USA: CRC press, 1995.
  • Abdulazeez, M. A.; Sani, I. Use of Fermented Papaya (Carica Papaya) Seeds as a Food Condiment, and Effects on Pre− and Post-Implantation Embryo Development; Elsevier Inc, 2011.
  • Malacrida, C. R.; Kimura, M.; Jorge, N. Characterization of a High Oleic Oil Extracted from Papaya (Carica Papaya L.) Seeds. Ciência E Tecnol. Aliment. 2011, 31(4), 929–934. DOI: 10.1590/s0101-20612011000400016.
  • Kermanshai, R.; McCarry, B. E.; Rosenfeld, J.; Summers, P. S.; Weretilnyk, E. A.; Sorger, G. J. Benzyl Isothiocyanate is the Chief or Sole Anthelmintic in Papaya Seed Extracts. Phytochemistry. 2001, 57(3), 427–435. DOI: 10.1016/S0031-9422(01)00077-2.
  • Ho, M. Q.; Li, S. F. Y. Preparation, Characterization and Application of Sorbent Envelopes with Carica Papaya Seeds and Citrus Grandis Rind for Cationic Dyes Removal. Green Chem. Lett. Rev. 2019, 12(3), 343–352. DOI: 10.1080/17518253.2019.1643927.
  • Cheok, C. Y., Mohd Adzahan, N., Abdul Rahman, R., Zainal Abedin, N. H., Hussain, N., Sulaiman, R., Chong, G. H.; et al. Current Trends of Tropical Fruit Waste Utilization. Crit. Rev. Food Sci. Nutr. 2018, 58(3), 335–361.
  • Hossain, S. M. Z., Taher, S., Khan, A., Sultana, N., Irfan, M. F., Haq, B., Razzak, S. A.; et al. Experimental Study and Modeling Approach of Response Surface Methodology Coupled with Crow Search Algorithm for Optimizing the Extraction Conditions of Papaya Seed Waste Oil. Arab. J. Sci. Eng. 2020, 45(9), 7371–7383.
  • Castro-Vargas, H. I.; Baumann, W.; Ferreira, S. R. S.; Parada-Alfonso, F. Valorization of Papaya (Carica Papaya L.) Agroindustrial Waste Through the Recovery of Phenolic Antioxidants by Supercritical Fluid Extraction. J. Food Sci. Technol. 2019, 56(6), 3055–3066. DOI: 10.1007/s13197-019-03795-6.
  • Blakeney, M. Food loss and food waste: Causes and solutions. Edward Elgar Publishing, 2019.
  • Galanakis, C. M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 26(2), 68–87. Aug. 01, 2012, doi:10.1016/j.tifs.2012.03.003. Elsevier.
  • Dora, M.; Wesana, J.; Gellynck, X.; Seth, N.; Dey, B.; De Steur, H. Importance of Sustainable Operations in Food Loss: Evidence from the Belgian Food Processing Industry. Ann. Oper. Res. 2020, 290(1–2), 47–72. DOI: 10.1007/s10479-019-03134-0.
  • Waldron, K. W. Handbook of Waste Management and Co-Product Recovery in Food Processing; Cambridge, UK: Elsevier, 2009.
  • Galanakis, C. M.; Aldawoud, T. M. S.; Rizou, M.; Rowan, N. J.; Ibrahim, S. A. Food Ingredients and Active Compounds Against the Coronavirus Disease (COVID-19) Pandemic: A Comprehensive Review. Foods. 2020, 9(11), 1701. DOI: 10.3390/foods9111701.
  • Nieto-Calvache, J. E.; de Escalada Pla, M.; Gerschenson, L. N. Dietary Fibre Concentrates Produced from Papaya By-Products for Agroindustrial Waste Valorisation. Int. J. Food Sci. Technol. 2019, 54(4), 1074–1080. DOI: 10.1111/ijfs.13962.
  • Yanty, N. A. M.; Marikkar, J. M. N.; Nusantoro, B. P.; Long, K.; Ghazali, H. M. Physico-Chemical Characteristics of Papaya (Carica Papaya L.) Seed Oil of the Hong Kong/sekaki Variety. J. Oleo. Sci. 2014, 63(9), 885–892. DOI: 10.5650/jos.ess13221.
  • Chielle, D. P.; Bertuol, D. A.; Meili, L.; Tanabe, E. H.; Dotto, G. L. Spouted Bed Drying of Papaya Seeds for Oil Production. LWT − Food Sci. Technol. , 2016, 65, 852–860. DOI: 10.1016/j.lwt.2015.09.022.
  • Senrayan, J.; Venkatachalam, S. A Short Extraction Time of Vegetable Oil from Carica Papaya L. Seeds Using Continuous Ultrasound Acoustic Cavitation: Analysis of Fatty Acid Profile and Thermal Behavior. J. Food Process. Eng. 2019, 42(1), 1–9. DOI: 10.1111/jfpe.12950.
  • Samaram, S.; Mirhosseini, H.; Tan, C. P.; Ghazali, H. M. Ultrasound-Assisted Extraction (UAE) and Solvent Extraction of Papaya Seed Oil: Yield, Fatty Acid Composition and Triacylglycerol Profile. Molecules. 2013, 18(10), 12474–12487. DOI: 10.3390/molecules181012474.
  • Alara, O. R.; Abdurahman, N. H.; Alara, J. A. Carica Papaya: Comprehensive Overview of the Nutritional Values, Phytochemicals and Pharmacological activities, No. 0123456789; Springer Singapore, 2020.
  • Gonçalves Rodrigues, L. G.; Mazzutti, S.; Vitali, L.; Micke, G. A.; Ferreira, S. R. S. Recovery of Bioactive Phenolic Compounds from Papaya Seeds Agroindustrial Residue Using Subcritical Water Extraction. Biocatal Agric. Biotechnol. 2019, 22(October), 101367. DOI: 10.1016/j.bcab.2019.101367.
  • Gogna, N.; Hamid, N.; Dorai, K. Metabolomic Profiling of the Phytomedicinal Constituents of Carica Papaya L. Leaves and Seeds by 1H NMR Spectroscopy and Multivariate Statistical Analysis. J. Pharm. Biomed. Anal. 2015, 115, 74–85. DOI: 10.1016/j.jpba.2015.06.035.
  • Kadiri, O.; Akanbi, C. T.; Olawoye, B. T.; Gbadamosi, S. O. Characterization and Antioxidant Evaluation of Phenolic Compounds Extracted from the Protein Concentrate and Protein Isolate Produced from Pawpaw (Carica Papaya Linn.) Seeds. Int. J. Food. Prop. 2017, 20(11), 2423–2436. DOI: 10.1080/10942912.2016.1230874.
  • He, X.; Ma, Y.; Yi, G.; Wu, J.; Zhou, L.; Guo, H. Chemical Composition and Antifungal Activity of Carica Papaya Linn. Seed Essential Oil Against Candida Spp. Lett. Appl. Microbiol. 2017, 64(5), 350–354. DOI: 10.1111/lam.12711.
  • Javed, M. A.; Naeem, M.; Amjad, R. Studies on the Lipolytic Enzymes of Carica Papaya Seed Powder. Pak. J. Sci. Ind. Res. 2005, 48(1), 47.
  • Zunjar, V.; Mammen, D.; Trivedi, B. M. Antioxidant Activities and Phenolics Profiling of Different Parts of Carica Papaya by LCMS-MS. Nat. Prod. Res. 2015, 29(22), 2097–2099. DOI: 10.1080/14786419.2014.986658.
  • Rossetto, M. R. M.; Do Nascimento, J. R. O.; Purgatto, E.; Fabi, J. P.; Lajolo, F. M.; Cordenunsi, B. R. Benzylglucosinolate, Benzylisothiocyanate, and Myrosinase Activity in Papaya Fruit During Development and Ripening. J. Agric. Food. Chem. 2008, 56(19), 9592–9599. DOI: 10.1021/jf801934x.
  • Isabelle, M.; Lee, B. L.; Lim, M. T.; Koh, W. P.; Huang, D.; Ong, C. N. Antioxidant Activity and Profiles of Common Fruits in Singapore. Food Chem. 2010, 123(1), 77–84. DOI: 10.1016/j.foodchem.2010.04.002.
  • Pathak, P. D.; Mandavgane, S. A.; Kulkarni, B. D. Waste to Wealth: A Case Study of Papaya Peel. Waste Biomass Valorization. 2019, 10(6), 1755–1766. DOI: 10.1007/s12649-017-0181-x.
  • Kuddus, M., et al. Chemical Fingerprinting of Bioactive Compounds of Carica Papaya Linn (Indian Variety) Seed Oil. Biochem. Cell. Arch. 2016, 16(1), 9–20.
  • Edori, O. S.; Nwineewii, J. D., and Nwoke, I. B. METALS and PHYTOCHEMICAL COMPOSITION of LEAVES and PEELS of PAWPAW (Carica Papaya) SOLD WITHIN PORT HARCOURT, RIVERS STATE, NIGERIA. Pharmacophore. 2019, 10(4), 57–61.
  • Dos Santos, C. M., et al. Preparation, Characterization and Sensory Analysis of Whole Bread Enriched with Papaya Byproducts Flour. Braz. J. Food Technol. 2018, 21, 1–9. DOI: 10.1590/1981-6723.12017.
  • Cruz, V. A., et al. Manufacturing of Formosa Papaya (Carica Papaya L.) Jam Containing Different Concentrations of Dehydrated Papaya Seed Flour. Int. Food Res. J. 2019, 26(3), 849–857.
  • Ávila, S.; Kugo, M.; Silveira Hornung, P.; Apea-Bah, F. B.; Songok, E. M.; Beta, T. Carica Papaya Seed Enhances Phytochemicals and Functional Properties in Cornmeal Porridges. Food Chem. 2020, 323(November 2019), 126808. DOI: 10.1016/j.foodchem.2020.126808.
  • Madhuvanthi, S. et al.(2022). Extraction and characterization of pectin derived from underutilized papaya seeds as a value-added product. Journal of Applied and Natural Science and , 14(1), 127–132. https://doi.org/10.31018/jans.v14i1.3269
  • Subandi; Nurowidah, A. The Potency of Carica Papaya L. Seeds Powder as Anti− Obesity ‘Coffee’ Drinks. IOP Conf. Ser Mater. Sci. Eng. 2019, 515(1), 1–7. DOI: 10.1088/1757-899X/515/1/012098.
  • Velasco-Arango, V. A.; Hleap-Zapata, J. I.; Ordóñez-Santos, L. E. Nitrite Reduction in Beef Burger Using Papaya (Carica Papaya L.) Epicarp. Food Sci. Technol. Int. 2020. DOI: 10.1177/1082013220959976.
  • Kang, H. Y.; Yang, P. Y.; Dominy, W. G.; Lee, C. S. Bioprocessing Papaya Processing Waste for Potential Aquaculture Feed Supplement − Economic and Nutrient Analysis with Shrimp Feeding Trial. Bioresour. Technol. 2010, 101(20), 7973–7979. DOI: 10.1016/j.biortech.2010.05.058.
  • Castro-Vargas, H. I.; Baumann, W.; Parada-Alfonso, F. Valorization of Agroindustrial Wastes: Identification by LC-MS and NMR of Benzylglucosinolate from Papaya (Carica Papaya L.) Seeds, a Protective Agent Against Lipid Oxidation in Edible Oils. Electrophoresis. 2016, 37(13), 1930–1937. DOI: 10.1002/elps.201500499.
  • Sofi, F. R.; Raju, C. V.; Lakshmisha, I. P.; Singh, R. R. Antioxidant and Antimicrobial Properties of Grape and Papaya Seed Extracts and Their Application on the Preservation of Indian Mackerel (Rastrelliger Kanagurta) During Ice Storage. J. Food Sci. Technol. 2016, 53(1), 104–117. DOI: 10.1007/s13197-015-1983-0.
  • Anwar, M.; Rasul, M. G.; Ashwath, N. Production Optimization and Quality Assessment of Papaya (Carica Papaya) Biodiesel with Response Surface Methodology. Energy Convers. Manag. 2018, 156(October 2017), 103–112. DOI: 10.1016/j.enconman.2017.11.004.
  • Anwar, M.; Rasul, M. G.; Ashwath, N. Optimization of Biodiesel Production Process from Papaya (Carica Papaya) Seed Oil. 2017 IEEE 7th Int. Conf. Power Energy Syst. ICPES 2017, vol. 2017 December, pp. 131–134, 2017, doi: 10.1109/ICPESYS.2017.8215935.
  • Sagiroglu, A.; Isbilir, Ş. S.; Ozcan, H. M.; Paluzar, H.; Toprakkiran, N. M. Comparison of Biodiesel Productivities of Different Vegetable Oils by Acidic Catalysis. Chem. Ind. Chem. Eng. Q. 2011, 17(1), 53–58. DOI: 10.2298/CICEQ100114054S.
  • Anwar, M.; Rasul, M. G.; Ashwath, N.; Nabi, M. D. N. The Potential of Utilising Papaya Seed Oil and Stone Fruit Kernel Oil as Non-Edible Feedstock for Biodiesel Production in Australia—a Review. Energy Rep. 2019, 5, 280–297. DOI: 10.1016/j.egyr.2019.02.007.
  • Nayak, M. G.; Vyas, A. P. Optimization of Microwave-Assisted Biodiesel Production from Papaya Oil Using Response Surface Methodology. Renewable Energy 2019, 138, 18–28. DOI: 10.1016/j.renene.2019.01.054.
  • Agunbiade, F. O.; Adewole, T. A. Methanolysis of Carica Papaya Seed Oil for Production of Biodiesel. J. Fuels. 2014, 2014, 1–6. DOI: 10.1155/2014/904076.
  • Anwar, M.; Rasul, M. G.; Ashwath, N. A Systematic Multivariate Analysis of Carica Papaya Biodiesel Blends and Their Interactive Effect on Performance. Energies. 2018, 11(11). DOI: 10.3390/en11112931.
  • Asokan, M. A.; Senthur Prabu, S.; Kamesh, S.; Khan, W. Performance, Combustion and Emission Characteristics of Diesel Engine Fuelled with Papaya and Watermelon Seed Oil Bio-Diesel/diesel Blends. Energy. 2018, 145, 238–245. DOI: 10.1016/j.energy.2017.12.140.
  • Etim, A. O.; Eloka-Eboka, A. C.; Musonge, P. Potential of Carica Papaya Peels as Effective Biocatalyst in the Optimized Parametric Transesterification of Used Vegetable Oil. Environ. Eng. Res. 2020, 26(4), 0–1. DOI: 10.4491/eer.2020.299.
  • Valdivia-Rivera, S.; Varela-Santos, E. D. C.; Quiñones-Muñoz, T. A.; Hernández-Martínez, R.; Lizardi-Jiménez, M. A. Production of Hydrocarbon-Degrading Microorganisms Using Agricultural Residues of Mangifera Indica L. and Carica Papaya as Carbon Source. 3 Biotech. 2019, 9(2), 1–8. DOI: 10.1007/s13205-019-1574-2.
  • Dahunsi, S. O.; Oranusi, S.; Efeovbokhan, V. E. Cleaner Energy for Cleaner Production: Modeling and Optimization of Biogas Generation from Carica Papayas (Pawpaw) Fruit Peels. J. Clean. Prod. 2017, 156, 19–29. DOI: 10.1016/j.jclepro.2017.04.042.
  • Dahunsi, S. O.; Oranusi, S.; Efeovbokhan, V. E.; Adesulu-Dahunsi, A. T.; Ogunwole, J. O. Crop Performance and Soil Fertility Improvement Using Organic Fertilizer Produced from Valorization of Carica Papaya Fruit Peel. Sci. Rep. 2021, 11(1), 1–16. DOI: 10.1038/s41598-021-84206-9.
  • Figueroa-Brito, R.; Huerta-De La Peña, A.; Moreno, I. P.; Mancebón, V. S. M.; López-Olguín, J. F. Insecticidal Activity of Seed Extracts of Carica Papaya (L.) Against the Fall Armyworm Spodoptera Frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Interciencia. 2011, 36(10), 752–756.
  • Gomes, V. A.; Campos, V. P.; da Silva, J. C. P.; de Jesus Silva, F.; de Freitas Silva, M.; Pedroso, M. P. Activity of Papaya Seeds (Carica Papaya) Against Meloidogyne Incognita as a Soil Biofumigant. J. Pest Sci. 2004, 93(2), 783–792. 2020. DOI: 10.1007/s10340-020-01192-z.
  • Nagesh, M.; Chandravadana, M. V.; Sreeja, V. G.; Babu, C. S. B. Benzyl Isothiocyanate from Carica Papaia Seed. a Potential Nematicide Against Meloidogyne Incognita. Nematol. Mediterr. 2002, 30(2), 155–157.
  • Torres, L.; Cotes, A. M. Efecto de la crioconservación Sobre la Viabilidad Y Actividad Biocontroladora de Nomuraea Rileyi Contra Spodoptera Frugiperda (Lepidoptera: Noctuidae). Rev. Colomb. Entomol. 2005, 31(2), 133–138.
  • Figueroa-Brito, R.; Villa-Ayala, P.; López-Olguín, J. F.; Huerta-de la Peña, A.; Pacheco-Aguilar, J. R.; Ramos-López, M. A. Nitrogen Fertilization Sources and Insecticidal Activity of Aqueous Seeds Extract of Carica Papaya Against Spodoptera Frugiperda in Maize. Cienc. E Investig. Agrar. 2013, 40(3), 571–580. DOI: 10.4067/s0718-16202013000300009.
  • Chowdhury, M. R.; Tonni, R. A. H.; Nasiruddin, M.; Azadi, M. A. Larvicidal Effects of Some Plant Seed Extracts on Anopheles Annularis Vander Wulp and Culex Quinquefasciatus Say (DIPTERA: CULICIDAE). J. Biodivers. Conserv. Bioresour. Manag. 2019, 5, 5–10.
  • Farias, L. R.; Costa, F. T.; Souza, L. A.; Pelegrini, P. B.; Grossi-de-Sá, M. F.; Neto, S. M.; Bloch, C.; Laumann, R. A.; Noronha, E. F.; Franco, O. L., et al. Isolation of a Novel Carica Papaya α-Amylase Inhibitor with Deleterious Activity Toward Callosobruchus Maculatus. Pestic. Biochem. Physiol. 2007, 87(3), 255–260.
  • Egila, J. N.; Dauda, B. E. N.; Iyaka, Y. A.; Jimoh, T. Agricultural Waste as a Low Cost Adsorbent for Heavy Metal Removal from Wastewater. Int. J. Phys. Sci. 2011, 6(8), 2152–2157. DOI: 10.5897/IJPS10.251.
  • Adie Gilbert, U.; Unuabonah Emmanuel, I.; Adeyemo Adebanjo, A.; Adeyemi Olalere, G. Biosorptive Removal of Pb2+ and Cd2+ Onto Novel Biosorbent: Defatted Carica Papaya Seeds. Biomass Bioenergy. 2011, 35(7), 2517–2525. DOI: 10.1016/j.biombioe.2011.02.024.
  • Chithra, K.; Lakshmi, S.; Jain, A. Carica Papaya Seed as a Biosorbent for Removal of Cr (VI) and Ni (II) Ions from Aqueous Solution: Thermodynamics and Kinetic Analysis of Experimental Data. Int. J. Chem. React. Eng. , 2014, 12(1). DOI:10.1515/ijcre-2013-0096.
  • Pooja, D.; Singh, L.; Thakur, A.; Kumar, P. Green Synthesis of Glowing Carbon Dots from Carica Papaya Waste Pulp and Their Application as a Label-Freechemo Probe for Chromium Detection in Water. Sens. Actuators B Chem. 2019, 283(June 2018), 363–372. DOI: 10.1016/j.snb.2018.12.027.
  • Unuabonah, E. I.; Adie, G. U.; Onah, L. O.; Adeyemi, O. G. Multistage Optimization of the Adsorption of Methylene Blue Dye Onto Defatted Carica Papaya Seeds. Chem. Eng. J. 2009, 155(3), 567–579. DOI: 10.1016/j.cej.2009.07.012.
  • Unnisa, S. A.; Bi, S. Z. Carica Papaya Seeds Effectiveness as Coagulant and Solar Disinfection in Removal of Turbidity and Coliforms. Appl. Water. Sci. 2018, 8(6), 1–8. DOI: 10.1007/s13201-018-0791-x.
  • Krishnaiah, D.; Joseph, C. G.; Anisuzzaman, S. M.; Daud, W. M. A. W.; Sundang, M.; Leow, Y. C. Removal of Chlorinated Phenol from Aqueous Solution Utilizing Activated Carbon Derived from Papaya (Carica Papaya) Seeds. Korean J. Chem. Eng. 2017, 34(5), 1377–1384. DOI: 10.1007/s11814-016-0337-6.
  • Julaeha, E.; Permatasari, Y.; Mayanti, T.; Diantini, A. Antifertility Compound from the Seeds of Carica Papaya. Procedia Chem. 2015, 17, 66–69. DOI: 10.1016/j.proche.2015.12.135.
  • Aly, I., Gouida, M. S., Sayed, H. E. L., Attiyah, S. M. N., Shaker, S., Elleboudy, N. A., Ghoname, S. I.; et al. Efficiency of Three Extracts of Carica Papaya as Molluscicidal and Anti-Schistosomal Agents Against Biomphalaria Alexandrina and Schistosoma Mansoni by Flow Cytometry. J. Pharm. Res. Int. 2020, 32(11), 31–41.
  • Jimenez-Coello, M.; Acosta-Viana, K. Y.; Ortega-Pacheco, A.; Perez-Gutierrez, S.; Guzman-Marin, E. In vivo Antiprotozoal Activity of the Chloroform Extract from Carica Papaya Seeds Against Amastigote Stage of Trypanosoma Cruzi During Indeterminate and Chronic Phase of Infection. Evidence-Based Complement. Altern. Med. 2014, 2014, 1–7. DOI: 10.1155/2014/458263.
  • Jiménez-Coello, M.; Guzman-Marín, E.; Ortega-Pacheco, A.; Perez-Gutiérrez, S.; Acosta-Viana, K. Y. Assessment of the Anti-Protozoal Activity of Crude Carica Papaya Seed Extract Against Trypanosoma Cruzi. Molecules. 2013, 18(10), 12621–12632. DOI: 10.3390/molecules181012621.
  • Cabral, E. R. M.; Moraes, D.; Levenhagen, M. A.; de Matos, R. A. F.; Costa-Cruz, J. M.; Rodrigues, R. M. In vitro Ovicidal and Larvicidal Activity of Carica Papaya Seed Hexane Extract Against Strongyloides Venezuelensis. Rev. Inst. Med. Trop. Sao Paulo. 2019, 61, 1–7. DOI: 10.1590/s1678-9946201961059.
  • Muhamad, S. A. S.; Jamilah, B.; Russly, A. R.; Faridah, A. In vitro Antibacterial Activities and Composition of Carica Papaya Cv. Sekaki/hong Kong Peel Extracts. Int. Food Res. J. 2017, 24(3), 976–984.
  • Nguyen, T. T. T.; Shaw, P. N.; Parat, M. O.; Hewavitharana, A. K. Anticancer Activity of Carica Papaya: A Review. Mol. Nutr Food Res. 2013, 57(1), 153–164. DOI: 10.1002/mnfr.201200388.
  • Kumar, N. S.; Sreeja, P. S. D. The Surprising Health Benefits of Papaya Seeds: A Review. J. Pharmacogn. Phytochem. 2017, 6(1), 424–429. [Online]. Available http://www.phytojournal.com/archives/2017/vol6issue1/PartF/5-6-25-896.pdf
  • Oloyede, H. O. B.; Adaja, M. C.; Ajiboye, T. O.; Salawu, M. O. Anti-Ulcerogenic Activity of Aqueous Extract of Carica Papaya Seed on Indomethacin-Induced Peptic Ulcer in Male Albino Rats. J. Integr. Med. 2015, 13(2), 105–114. DOI: 10.1016/S2095-4964(15)60160-1.
  • Pinto, L. A.; Cordeiro, K. W.; Carrasco, V.; Carollo, C. A.; Cardoso, C. A. L.; Argadoña, E. J. S.; Freitas, K. D. C., et al. Antiulcerogenic Activity of Carica Papaya Seed in Rats. Naunyn Schmiedebergs Arch Pharmacol. 2015, 388(3), 305–317.
  • Martín, Á.; Navarrete, A. Microwave-Assisted Process Intensification Techniques. Curr. Opin. Green Sustain. Chem. 2018, 11, 70–75. DOI: 10.1016/j.cogsc.2018.04.019.
  • Panzarini, E.; Dwikat, M.; Mariano, S.; Vergallo, C.; Dini, L. Administration Dependent Antioxidant Effect of Carica Papaya Seeds Water Extract. Evidence-Based Complement. Altern. Med. 2014, 2014, 1–13. DOI: 10.1155/2014/281508.
  • Heung, T. Y., Huong, J. Y. S., Chen, W. Y., Loh, Y. W., Khaw, K. Y., Goh, B.-H., Ong, Y. S., et al. Anticancer Potential of Carica Papaya Through Modulation of Cancer Hallmarks. Food Rev. Int. , 2021, 1–19.10.1080/87559129.2021.1928181
  • Pathak, N., Khan, S., Bhargava, A., Raghuram, G. V., Jain, D., Panwar, H., Samarth, R. M., Jain, S. K., Maudar, K. K., Mishra, D. K.; et al. Cancer Chemopreventive Effects of the Flavonoid-Rich Fraction Isolated from Papaya Seeds. Nutr. Cancer. 2014, 66(5), 857–871.
  • Nayak, B. S.; Ramdeen, R.; Adogwa, A.; Ramsubhag, A.; Marshall, J. R. Wound-Healing Potential of an Ethanol Extract of Carica Papaya (Caricaceae) Seeds. Int. Wound J. 2012, 9(6), 650–655. DOI: 10.1111/j.1742-481X.2011.00933.x.
  • Amin, A. H.; Bughdadi, F. A.; Abo‐zaid, M. A.; Ismail, A. H.; El‐Agamy, S. A.; Alqahtani, A.; El‐Sayyad, H. I. H.; Rezk, B. M.; Ramadan, M. F., et al. Immunomodulatory Effect of Papaya (Carica Papaya) Pulp and Seed Extracts as a Potential Natural Treatment for Bacterial Stress. J. Food Biochem. 2019, 43(12), 1–11.
  • Pandey, S.; Cabot, P. J.; Shaw, P. N.; Hewavitharana, A. K. Anti-Inflammatory and Immunomodulatory Properties of Carica Papaya. J. Immunotoxicol. 2016, 13(4), 590–602. DOI: 10.3109/1547691X.2016.1149528.
  • Siddique, S.; Nawaz, S.; Muhammad, F.; Akhtar, B.; Aslam, B. Phytochemical Screening and in-Vitro Evaluation of Pharmacological Activities of Peels of Musa Sapientum and Carica Papaya Fruit. Nat. Prod. Res. 2018, 32(11), 1333–1336. DOI: 10.1080/14786419.2017.1342089.
  • Senrayan, J.; Venkatachalam, S. Solvent-Assisted Extraction of Oil from Papaya (Carica Papaya L.) Seeds: Evaluation of Its Physiochemical Properties and Fatty-Acid Composition. Sep. Sci. Technol. 2018, 53(17), 2852–2859. DOI: 10.1080/01496395.2018.1480632.
  • Yogeesha, H. S.; Vasugi, C.; Somashekhar, K. B.; Naik, L. B. Papaya (Carica Papaya) Seed Quality as Influenced by Stage of Fruit Harvest, Postharvest Ripening and Seed Extraction. Indian J. Agric. Sci. 2013, 83(9), 928–932.
  • Puangsri, T.; Abdulkarim, S. M. M.; Ghazali, H. M. M. Properties of Carica Papaya L. (Papaya) Seed Oil Following Extraction Using Solvent and Aqueous Enzymatic Methods. J. Food Lipids. 2005, 12(1), 62–76. DOI: 10.1111/j.1745-4522.2005.00006.x.
  • Devi, V.; Khanam, S. Development of Generalized and Simplified Models for Supercritical Fluid Extraction: Case Study of Papaya (Carica Papaya) Seed Oil. Chem. Eng. Res. Des. 2019, 150, 341–358. DOI: 10.1016/j.cherd.2019.08.006.
  • Zhang, W.; Pan, Y. G.; Huang, W.; Chen, H.; Yang, H. Optimized Ultrasonic-Assisted Extraction of Papaya Seed Oil from Hainan/eksotika Variety. Food Sci. Nutr. 2019, 7(8), 2692–2701. DOI: 10.1002/fsn3.1125.
  • Lee, W. J.; Lee, M. H.; Su, N. W. Characteristics of Papaya Seed Oils Obtained by Extrusion-Expelling Processes. J. Sci. Food Agric. 2011, 91(13), 2348–2354. DOI: 10.1002/jsfa.4466.
  • Bualuang, O., Onwude, D. I., Uso, A., Peerachaakkarachai, K., Mora, P., Dulsamphan, S., Sena, P.; et al. Determination of Drying Kinetics, Some Physical, and Antioxidant Properties of Papaya Seeds Undergoing Microwave Vacuum Drying. J. Food Process. Eng. 2019, 42(6), 1–12.
  • Parniakov, O.; Roselló-Soto, E.; Barba, F. J.; Grimi, N.; Lebovka, N.; Vorobiev, E. New Approaches for the Effective Valorization of Papaya Seeds: Extraction of Proteins, Phenolic Compounds, Carbohydrates, and Isothiocyanates Assisted by Pulsed Electric Energy. Food. Res. Int. 2015, 77, 711–717. DOI: 10.1016/j.foodres.2015.03.031.
  • Hall, R. M.; Mayer, D. A.; Mazzutti, S.; Ferreira, S. R. S. Simulating Large Scale SFE Applied to Recover Bioactive Compounds from Papaya Seeds. J. Supercrit. Fluids. , 2018, 140, 302–309. DOI: 10.1016/j.supflu.2018.07.013.
  • Ng, L. Y.; Ang, Y. K.; Khoo, H. E.; Yim, H. S. Influence of Different Extraction Parameters on Antioxidant Properties of Carica Papaya Peel and Seed. Res. J. Phytochem. 2012, 6(3), 61–74. DOI: 10.3923/rjphyto.2012.61.74.
  • Sultana, N., Hossain, S. M. Z., Taher, S., Khan, A., Razzak, S. A., Haq, B., et al. Modeling and Optimization of Non-Edible Papaya Seed Waste Oil Synthesis Using Data Mining Approaches. South Afr. J. Chem. Eng. , 2020, 33, 151–159.DOI:10.1016/j.sajce.2020.07.009.
  • Barroso, P. T. W.; de Carvalho, P. P.; Rocha, T. B.; Pessoa, F. L. P.; Azevedo, D. A.; Mendes, M. F. Evaluation of the Composition of Carica Papaya L. Seed Oil Extracted with Supercritical CO2. Biotechnol. Rep. 2016, 11, 110–116. DOI: 10.1016/j.btre.2016.08.004.
  • Samaram, S.; Mirhosseini, H.; Tan, C. P.; Ghazali, H. M.; Bordbar, S.; Serjouie, A. Optimisation of Ultrasound-Assisted Extraction of Oil from Papaya Seed by Response Surface Methodology: Oil Recovery, Radical Scavenging Antioxidant Activity, and Oxidation Stability. Food Chem. , 2015, 172, 7–17. DOI: 10.1016/j.foodchem.2014.08.068.
  • Li, A. N., Li, S., Xu, D.-P., Xu, X.-R., Chen, Y.-M., Ling, W.-H., Chen, F., Li, H.-B.; et al. Optimization of Ultrasound-Assisted Extraction of Lycopene from Papaya Processing Waste by Response Surface Methodology. Food Anal. Methods. 2015, 8(5), 1207–1214.
  • McGlone, O. C.; Canales, A.-L.-M.; Carter, J. V. Coconut Oil Extraction by a New Enzymatic Process. J. Food Sci. 1986, 51(3), 695–697. DOI: 10.1111/j.1365-2621.1986.tb13914.x.
  • Maran, J. P.; Prakash, K. A. Process Variables Influence on Microwave Assisted Extraction of Pectin from Waste Carcia Papaya L. Peel. Int. J. Biol. Macromol. 2015, 73, 202–206. DOI: 10.1016/j.ijbiomac.2014.11.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.