289
Views
0
CrossRef citations to date
0
Altmetric
Review

ΒN-Alkanoyl-5-Hydroxytryptamines (Cn-5HTs) in Coffee: A Review

, , , , , , , , & show all

References

  • Durán, C. A. .; Tsukui, A.; dos Santos, F. K. F.; Martinez, S. T.; Bizzo, H. R.; de Rezende, C.M. Coffee: General Aspects and Its Use Beyond Drink. Rev. Virtual Quím. 2017, 9(1), 107–134. DOI: 10.21577/1984-6835.20170010.
  • International Coffee Organization. Exports of Coffee by Exporting Countries. http://www.ico.org/trade_statistics.asp?section=Statistics (accessed Dec 27, 2020).
  • Folstar, P.; Van der Plas, H. C.; Pilnik, W.; Schols, H. A.; Melger, P. Liquid Chromatographic Analysis of N-Beta-Alkanoyl-5-Hydroxytryptamine (C-5-HT) in Green Coffee Beans. J. Agric. Food. Chem. 1979, 27(1), 12–15. DOI: 10.1021/jf60221a031.
  • Speer, K.; Kölling-Speer, I. The Lipid Fraction of the Coffee Bean. Braz. J. Plant Physiol. 2006, 18(1), 201–216. DOI: 10.1590/S1677-04202006000100014.
  • Van der Stegen, G. The Effect of Dewaxing of Green Coffee on the Coffee Brew. Food Chem. 1979, 4(1), 23–29. DOI: 10.1016/0308-8146(79)90027-X.
  • Lang, R.; Bardelmeier, I.; Weiss, C.; Rubach, M.; Somoza, V.; Hofmann, T. Quantitation of β N -Alkanoyl-5-Hydroxytryptamides in Coffee by Means of LC-MS/MS-SIDA and Assessment of Their Gastric Acid Secretion Potential Using the HGT-1 Cell Assay. J. Agric. Food. Chem. 2010, 58(3), 1593–1602. DOI: 10.1021/jf903612h.
  • Yoo, J. M.; Sok, D. E.; Kim, M. R. Effect of Endocannabinoids on IgE-Mediated Allergic Response in RBL-2H3 Cells. Int. Immunopharmacol. 2013, 17(1), 123–131. DOI: 10.1016/j.intimp.2013.05.013.
  • Poland, M.; ten Klooster, J. P.; Wang, Z.; Pieters, R.; Boekschoten, M.; Witkamp, R.; Meijerink, J. Docosahexaenoyl Serotonin, an Endogenously Formed N-3 Fatty Acid-Serotonin Conjugate Has Anti-Inflammatory Properties by Attenuating IL-23–IL-17 Signaling in Macrophages. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2016, 1861(12), 2020–2028. DOI: 10.1016/j.bbalip.2016.09.012.
  • Giorno, T. B. S.; Moreira, I. G. D. S.; Rezende, C. M.; Fernandes, P. D. New ΒN-Octadecanoyl-5-Hydroxytryptamide: Antinociceptive Effect and Possible Mechanism of Action in Mice. Sci. Rep. 2018, 8(1), 10027. DOI: 10.1038/s41598-018-28355-4.
  • Maione, S.; Petrocellis, L.; Novellis, V.; Moriello, A. S.; Petrosino, S.; Palazzo, E.; Rossi, F. S.; Woodward, D. F.; Marzo, V. Analgesic Actions of N -Arachidonoyl-Serotonin, a Fatty Acid Amide Hydrolase Inhibitor with Antagonistic Activity at Vanilloid TRPV1 Receptors. Br. J. Pharmacol. 2007, 150(6), 766–781. DOI: 10.1038/sj.bjp.0707145.
  • Kirkedal, C.; Wegener, G.; Moreira, F.; Joca, S. R. L.; Liebenberg, N. A Dual Inhibitor of FAAH and TRPV1 Channels Shows Dose-Dependent Effect on Depression-Like Behaviour in Rats. Acta Neuropsychiatr. 2017, 29(6), 324–329. DOI: 10.1017/neu.2016.68.
  • Micale, V.; Cristino, L.; Tamburella, A.; Petrosino, S.; Leggio, G. M.; Drago, F.; Di Marzo, V. Anxiolytic Effects in Mice of a Dual Blocker of Fatty Acid Amide Hydrolase and Transient Receptor Potential Vanilloid Type-1 Channels. Neuropsychopharmacology. 2009, 34(3), 593–606. DOI: 10.1038/npp.2008.98.
  • Vilela, L. R.; Medeiros, D. C.; de Oliveira, A. C. P.; Moraes, M. F.; Moreira, F. A. Anticonvulsant Effects of N -Arachidonoyl-Serotonin, a Dual Fatty Acid Amide Hydrolase Enzyme and Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channel Blocker, on Experimental Seizures: The Roles of Cannabinoid CB1 Receptors and TRPV1 Channels. Basic Clin. Pharmacol. Toxicol. 2014, 115(4), 330–334. DOI: 10.1111/bcpt.12232.
  • Basurto-Islas, G.; Blanchard, J.; Tung, Y. C.; Fernandez, J. R.; Voronkov, M.; Stock, M.; Zhang, S.; Stock, J. B.; Iqbal, K. Therapeutic Benefits of a Component of Coffee in a Rat Model of Alzheimer’s Disease. Neurobiol. Aging. 2014, 35(12), 2701–2712. DOI: 10.1016/j.neurobiolaging.2014.06.012.
  • Lee, K. W.; Im, J. Y.; Woo, J. M.; Grosso, H.; Kim, Y. S.; Cristovao, A. C.; Sonsalla, P. K.; Schuster, D. S.; Jalbut, M. M.; Fernandez, J. R., et al. Neuroprotective and Anti-Inflammatory Properties of a Coffee Component in the MPTP Model of Parkinson’s Disease. Neurotherapeutics. 2013, 10(1), 143–153.
  • Wurziger, J.; Harms, U. Über Carbonsäurehydroxy-Tryptamide in Ölhaltigen Samen. Fette. Seifen. Anstr. 1973, 75(2), 121–126. DOI: 10.1002/lipi.19730750214.
  • Speer, K.; Zahm, A. Sterols and Carboxylic Acid-5-Hydroxytrypt-Amides in Selected Tree Nuts. Lipid Technol. 2011, 23(6), 127–130. DOI: 10.1002/lite.201100112.
  • Harms, U.; Wurziger, J. Carbonsäure-5-(Hydroxy)-Tryptamide in Kaffeebohnen. Z. Lebensm. Unters. Forsch. 1968, 138(2), 75–80. DOI: 10.1007/BF02341897.
  • Folstar, P.; Schols, H. A.; Van der Plas, H. C.; Pilnik, W.; Landheer, C. A.; Van Veldhuizen, A. New Tryptamine Derivatives Isolated from Wax of Green Coffee Beans. J. Agric. Food. Chem. 1980, 28(4), 872–874. DOI: 10.1021/jf60230a022.
  • Lang, R.; Hofmann, T. A Versatile Method for the Quantitative Determination of ΒN-Alkanoyl-5-Hydroxytryptamides in Roasted Coffee. Eur. Food Res. Technol. 2005, 220(5–6), 638–643. DOI: 10.1007/s00217-004-1123-y.
  • Kele, M.; Ohmacht, R. Determination of Serotonin Released from Coffee Wax by Liquid Chromatography. J. Chromatogr. A. 1996, 730(1–2), 59–62. DOI: 10.1016/0021-9673(95)01186-2.
  • Laganà, A.; Curini, L.; de Angelis Curtis, S.; Marino, A. Rapid Liquid Chromatographic Analysis of Carboxylic Acid-5-Hydroxytryptamides in Coffee. Chromatographia. 1989, 28(11–12), 593–596. DOI: 10.1007/BF02260684.
  • Garrett, R.; Schwab, N. V.; Cabral, E. C.; Henrique, B. V. M.; Ifa, D. R.; Eberlin, M. N.; Rezende, C. M. Ambient Mass Spectrometry Employed for Direct Analysis of Intact Arabica Coffee Beans. J. Braz. Chem. Soc. 2014, 25(7), 1172–1177. DOI: 10.5935/0103-5053.20140094.
  • Tinoco, N. A. B.; Pacheco, S.; Godoy, R. L. O.; Bizzo, H. R.; de Aguiar, P. F.; Leite, S. G. F.; Rezende, C. M. Reduction of N-Alkanoyl-5-Hydroxytryptamides and Diterpenes by Yeast Supplementation to Green Coffee During Wet Processing. Food. Res. Int. 2019, 115(June), 487–492. DOI: 10.1016/j.foodres.2018.10.007.
  • Fabbri, A.; Cevoli, C.; Alessandrini, L.; Romani, S. Numerical Modeling of Heat and Mass Transfer During Coffee Roasting Process. J. Food Eng. 2011, 105(2), 264–269. DOI: 10.1016/j.jfoodeng.2011.02.030.
  • Farah, A.; de Paulis, T.; Trugo, L. C.; Martin, P. R. Effect of Roasting on the Formation of Chlorogenic Acid Lactones in Coffee. J. Agric. Food. Chem. 2005, 53(5), 1505–1513. DOI: 10.1021/jf048701t.
  • Dias, R. C. E.; de Faria-Machado, A. F.; Mercadante, A. Z.; Bragagnolo, N.; Benassi, M. D. T. Roasting Process Affects the Profile of Diterpenes in Coffee. Eur. Food Res. Technol. 2014, 239(6), 961–970. DOI: 10.1007/s00217-014-2293-x.
  • Nebesny, E.; Budryn, G. Effect of the Roasting Method on the Content of 5-Hydroxytryptamides of Carboxylic Acids in Roasted Coffee Beans. Nahrung/food. 2002, 46(4), 279. DOI: 10.1002/1521-3803(20020701)46:4<279:AID-FOOD279>3.0.CO;2-R.
  • da Rosa, J. S.; Freitas-Silva, O.; Rouws, J. R. C.; da Silva Moreira, I. G.; Novaes, F. J. M.; de Almeida Azevedo, D.; Schwab, N.; de Oliveira Godoy, R. L.; Eberlin, M. N.; de Rezende, C. M. Mass Spectrometry Screening of Arabica Coffee Roasting: A Non-Target and Non-Volatile Approach by EASI-MS and ESI-MS. Food. Res. Int. 2016, 89, 967–975. DOI: 10.1016/j.foodres.2016.03.021.
  • Viani, R.; Horman, I. Thermal Behavior of Trigonelline. J. Food Sci. 1974, 39(6), 1216–1217. DOI: 10.1111/j.1365-2621.1974.tb07357.x.
  • Zahm, A.; Peters, J.; Speer, K. Identification of C-5-HT Degradation Products Using Pyrolysis-GC/MS. ASIC 23rd International Conference on Coffee Science, Paris, 2010; pp 244–247.
  • Weiss, C.; Rubach, M.; Lang, R.; Seebach, E.; Blumberg, S.; Frank, O.; Hofmann, T.; Somoza, V. Measurement of the Intracellular PH in Human Stomach Cells: A Novel Approach to Evaluate the Gastric Acid Secretory Potential of Coffee Beverages. J. Agric. Food. Chem. 2010, 58(3), 1976–1985. DOI: 10.1021/jf903614d.
  • Cordoba, N.; Pataquiva, L.; Osorio, C.; Moreno, F. L. M.; Ruiz, R. Y. Effect of Grinding, Extraction Time and Type of Coffee on the Physicochemical and Flavour Characteristics of Cold Brew Coffee. Sci. Rep. 2019, 9(1), 1–12. DOI: 10.1038/s41598-019-44886-w.
  • Toci, A.; Farah, A.; Trugo, L. C. Effect of Decaffeination Using Dichloromethane on the Chemical Composition of Arabica and Robusta Raw and Roasted Coffees. Quim. Nova. 2006, 29(5), 965–971. DOI: 10.1590/s0100-40422006000500015.
  • Lendrich, K. Process of Improving Coffee Beans. 1931, 1822227. DOI: 10.1145/178951.178972.
  • Darboven, A. Process for Improving the Quality of Green Coffee by Treatment with Steam and Water, 1997.
  • Ludwig, R.; Hans-Albert Kurzhals, H.; Peter Hubert, B. Method for the Selective Extraction of Caffeine from Vegetable Materials. US4255458, 1981.
  • Meyer, J. F.; Roselius, L.; Wimmer, K.; Bremen, O. F. Treatment of Coffee, 1908; pp 897733.
  • Zhang, C.; Linforth, R.; Fisk, I. D. Cafestol Extraction Yield from Different Coffee Brew Mechanisms. Food. Res. Int. 2012, 49(1), 27–31. DOI: 10.1016/j.foodres.2012.06.032.
  • Moeenfard, M.; Silva, J. A.; Borges, N.; Santos, A.; Alves, A. Quantification of Diterpenes and Their Palmitate Esters in Coffee Brews by HPLC-DAD. Int. J. Food. Prop. 2015, 18(10), 2284–2299. DOI: 10.1080/10942912.2014.933351.
  • Rendón, M. Y.; dos Santos Scholz, M. B.; Bragagnolo, N. Physical Characteristics of the Paper Filter and Low Cafestol Content Filter Coffee Brews. Food. Res. Int. 2018, 108(January), 280–285. DOI: 10.1016/j.foodres.2018.03.041.
  • Hubert, P.; Kwasny, H.; Werkhoff, P.; Turner, U. Analytik von Carbonsaurehydroxytryptamiden in Kaffee. Fresenius Z. Für Anal. Chem. 1977, 285(3–4), 242–250. DOI: 10.1007/BF00453570.
  • Bezuglov, V. V.; Manevich, E. M.; Archakov, A. V.; Bobrov, M. I.; Kuklev, D. V.; Petrukhina, G. N.; Makarov, V. A.; Buznikov, G. A. Artificially Functionalized Polyenoic Fatty Acids–a New Lipid Bioregulators. Bioorg. Khim. 1997, 23(3), 211–220.
  • Ortar, G.; Cascio, M. G.; De Petrocellis, L.; Morera, E.; Rossi, F.; Schiano-Moriello, A.; Nalli, M.; De Novellis, V.; Woodward, D. F.; Maione, S., et al. New N -Arachidonoyl serotonin Analogues with Potential “Dual. Mechanism of Action Against Pain 2007, 6554–6569.
  • Reddy, S. T.; Swamy, M. J. Synthesis, Physicochemical Characterization and Membrane Interactions of a Homologous Series of N-Acylserotonins: Bioactive, Endogenous Conjugates of Serotonin with Fatty Acids. Biochim. Biophys. Acta - Biomembr. 2015, 1848(1), 95–103. DOI: 10.1016/j.bbamem.2014.09.012.
  • Jain, P.; Bhagat, S.; Tunki, L.; Jangid, A. K.; Singh, S.; Pooja, D.; Kulhari, H. Serotonin-Stearic Acid Bioconjugate-Coated Completely Biodegradable Mn3o4 Nanocuboids for Hepatocellular Carcinoma Targeting. ACS Appl. Mater. Interfaces. 2020, 12(9), 10170–10182. DOI: 10.1021/acsami.0c00331.
  • Giorno, T. B. S.; Lima, F. A.; Brand, A. L. M.; De Oliveira, C. M.; Rezende, C. M.; Fernandes, P. D. Characterization of ΒN-Octadecanoyl-5-Hydroxytryptamide Anti-Inflammatory Effect. Molecules. 2021, 26(12), 3709. DOI: 10.3390/molecules26123709.
  • Amorim, J. L.; Lima, F. A.; Brand, A. L. M.; Cunha, S.; Rezende, C. M.; Fernandes, P. D. Two New β N -Alkanoyl-5-Hydroxytryptamides with Relevant Antinociceptive Activity. Biomedines. 2021, 9(5), 455. DOI: 10.3390/biomedicines9050455.
  • Fehlau, R.; Netter, K. J. Effect of Untreated and Non-Irritating Purified Coffee and Carbonic Acid Hydroxytryptamides on the Gastric Mucosa in the Rat. Z. Gastroenterol. 1990, 28(5), 234–238.
  • Rubach, M.; Lang, R.; Skupin, C.; Hofmann, T.; Somoza, V. Activity-Guided Fractionation to Characterize a Coffee Beverage That Effectively Down-Regulates Mechanisms of Gastric Acid Secretion as Compared to Regular Coffee. J. Agric. Food. Chem. 2010, 58(7), 4153–4161. DOI: 10.1021/jf904493f.
  • Rubach, M.; Lang, R.; Seebach, E.; Somoza, M. M.; Hofmann, T.; Somoza, V. Multi-Parametric Approach to Identify Coffee Components That Regulate Mechanisms of Gastric Acid Secretion. Mol. Nutr Food Res. 2012, 56(2), 325–335. DOI: 10.1002/mnfr.201100453.
  • Rubach, M.; Lang, R.; Bytof, G.; Stiebitz, H.; Lantz, I.; Hofmann, T.; Somoza, V. A Dark Brown Roast Coffee Blend is Less Effective at Stimulating Gastric Acid Secretion in Healthy Volunteers Compared to a Medium Roast Market Blend. Mol. Nutr Food Res. 2014, 58(6), 1370–1373. DOI: 10.1002/mnfr.201300890.
  • Devane, W. A.; Dysarz, F. A.; Johnson, M. R.; Melvin, L. S.; Howlett, A. C. Determination and Characterization of a Cannabinoid Receptor in Rat Brain. Mol. Pharmacol. 1988, 34(5), 605–613.
  • Lu, H. C.; MacKie, K. An Introduction to the Endogenous Cannabinoid System. Biol. Psychiatry. 2016, 79(7), 516–525. DOI: 10.1016/j.biopsych.2015.07.028.
  • Pacher, P.; Bátkai, S.; Kunos, G. The Endocannabinoid System as an Emerging Target of Pharmacotherapy. Pharmacol. Rev. 2006, 58(3), 389–462. DOI: 10.1124/pr.58.3.2.
  • Ross, R. A. Anandamide and Vanilloid TRPV1 Receptors. Br. J. Pharmacol. 2003, 140(5), 790–801. DOI: 10.1038/sj.bjp.0705467.
  • Tóth, A.; Czikora, Á.; Pásztor, E. T.; Dienes, B.; Bai, P.; Csernoch, L.; Rutkai, I.; Csató, V.; Mányiné, I. S.; Pórszász, R., et al. Vanilloid Receptor-1 (TRPV1) Expression and Function in the Vasculature of the Rat. J. Histochem Cytochem. 2014, 62(2), 129–144.
  • Barrie, N.; Manolios, N. The Endocannabinoid System in Pain and Inflammation: Its Relevance to Rheumatic Disease. Eur. J. Rheumatol. 2017, 4(3), 210–218. DOI: 10.5152/eurjrheum.2017.17025.
  • Bisogno, T.; Petrocellis, L.; Marzo, V. Fatty Acid Amide Hydrolase, an Enzyme with Many Bioactive Substrates. Possible Therapeutic Implications. Curr. Pharm. Des. 2002, 8(7), 533–547. DOI: 10.2174/1381612023395655.
  • Fowler, C.; Naidu, P.; Lichtman, A.; Onnis, V. The Case for the Development of Novel Analgesic Agents Targeting Both Fatty Acid Amide Hydrolase and Either Cyclooxygenase or TRPV1. Br. J. Pharmacol. 2009, 156(3), 412–419. DOI: 10.1111/j.1476-5381.2008.00029.x.
  • Bisogno, T.; Melck, D.; De Petrocellis, L.; Bobrov, M. Y.; Gretskaya, N. M.; Bezuglov, V. V.; Sitachitta, N.; Gerwick, W. H.; Marzo, V. D. Arachidonoyl serotonin and Other Novel Inhibitors of Fatty Acid Amide Hydrolase. Biochem. Biophys. Res. Commun. 1998, 248(3), 515–522. DOI: 10.1006/bbrc.1998.8874.
  • Fowler, C. J.; Tiger, G.; López-Rodríguez, M. L.; Viso, A.; Ortega-Gutiérrez, S.; Ramos, J. A. Inhibition of Fatty Acid Amidohydrolase, the Enzyme Responsible for the Metabolism of the Endocannabinoid Anandamide, by Analogues of Arachidonoyl-Serotonin. J. Enzyme Inhib. Med. Chem. 2003, 18(3), 225–231. DOI: 10.1080/1475636031000080216.
  • de Novellis, V.; Palazzo, E.; Rossi, F.; De Petrocellis, L.; Petrosino, S.; Guida, F.; Luongo, L.; Migliozzi, A.; Cristino, L.; Marabese, I., et al. The Analgesic Effect of N-Arachidonoyl-Serotonin, a FAAH Inhibitor and TRPV1 Receptor Antagonist, Associated with Changes in Rostral Ventromedial Medulla and Locus Coeruleus Cell Activity in Rats. Neuropharmacology. 2008, 55(7), 1105–1113.
  • Costa, B.; Bettoni, I.; Petrosino, S.; Comelli, F.; Giagnoni, G.; Di Marzo, V. The Dual Fatty Acid Amide Hydrolase/trpv1 Blocker, N-Arachidonoyl-Serotonin, Relieves Carrageenan-Induced Inflammation and Hyperalgesia in Mice. Pharmacol. Res. 2010, 61(6), 537–546. DOI: 10.1016/j.phrs.2010.02.001.
  • Malek, N.; Kostrzewa, M.; Makuch, W.; Pajak, A.; Kucharczyk, M.; Piscitelli, F.; Przewlocka, B.; Di Marzo, V.; Starowicz, K. The Multiplicity of Spinal AA-5-HT Anti-Nociceptive Action in a Rat Model of Neuropathic Pain. Pharmacol. Res. 2016, 111, 251–263. DOI: 10.1016/j.phrs.2016.06.012.
  • Huang, W. J.; Chen, W. W.; Zhang, X. Endocannabinoid System: Role in Depression, Reward and Pain Control (Review). Mol. Med. Rep. 2016, 14(4), 2899–2903. DOI: 10.3892/mmr.2016.5585.
  • Papagianni, E. P.; Stevenson, C. W. Cannabinoid Regulation of Fear and Anxiety: An Update. Curr. Psychiatr. Rep. 2019, 21(6). DOI: 10.1007/s11920-019-1026-z.
  • John, C. S.; Currie, P. J. N-Arachidonoyl-Serotonin in the Basolateral Amygdala Increases Anxiolytic Behavior in the Elevated Plus Maze. Behav. Brain Res. 2012, 233(2), 382–388. DOI: 10.1016/j.bbr.2012.05.025.
  • Navarria, A.; Tamburella, A.; Iannotti, F. A.; Micale, V.; Camillieri, G.; Gozzo, L.; Verde, R.; Imperatore, R.; Leggio, G. M.; Drago, F., et al. The Dual Blocker of FAAH/TRPV1 N-Arachidonoylserotonin Reverses the Behavioral Despair Induced by Stress in Rats and Modulates the HPA-Axis. Pharmacol. Res. 2014, 87, 151–159. DOI: 10.1016/j.phrs.2014.04.014.
  • Gobira, P. H.; Lima, I. V.; Batista, L. A.; de Oliveira, A. C.; Resstel, L. B.; Wotjak, C. T.; Aguiar, D. C.; Moreira, F. A. N-Arachidonoyl-Serotonin, a Dual FAAH and TRPV1 Blocker, Inhibits the Retrieval of Contextual Fear Memory: Role of the Cannabinoid CB1 Receptor in the Dorsal Hippocampus. J. Psychopharmacol. 2017, 31(6), 750–756. DOI: 10.1177/0269881117691567.
  • Cheung, K. A. K.; Peiris, H.; Wallace, G.; Holland, O. J.; Mitchell, M. D. The Interplay Between the Endocannabinoid System, Epilepsy and Cannabinoids. Int. J. Mol. Sci. 2019, 20(23). DOI: 10.3390/ijms20236079.
  • Cho, S. J.; Vaca, M. A.; Miranda, C. J.; N’-Gouemo, P. Inhibition of Transient Potential Receptor Vanilloid Type 1 Suppresses Seizure Susceptibility in the Genetically Epilepsy-Prone Rat. CNS Neurosci. Ther. 2018, 24(1), 18–28. DOI: 10.1111/cns.12770.
  • Lee, K. W.; Chen, W.; Junn, E.; Im, J. Y.; Grosso, H.; Sonsalla, P. K.; Feng, X.; Ray, N.; Fernandez, J. R.; Chao, Y., et al. Enhanced Phosphatase Activity Attenuates α-Synucleinopathy in a Mouse Model. J. Neurosci. 2011, 31(19), 6963–6971.
  • Min, A. Y.; Doo, C. N.; Son, E. J.; Sung, N. Y.; Lee, K. J.; Sok, D. E.; Kim, M. R. N-Palmitoyl Serotonin Alleviates Scopolamine-Induced Memory Impairment via Regulation of Cholinergic and Antioxidant Systems, and Expression of BDNF and P-CREB in Mice. Chem. Biol. Interact. 2015, 242, 153–162. DOI: 10.1016/j.cbi.2015.09.016.
  • Jin, M. C.; Yoo, J. M.; Sok, D. E.; Kim, M. R. Neuroprotective Effect of N-Acyl 5-Hydroxytryptamines on Glutamate-Induced Cytotoxicity in HT-22 Cells. Neurochem. Res. 2014, 39(12), 2440–2451. DOI: 10.1007/s11064-014-1448-2.
  • Gaffen, S. L.; Jain, R.; Garg, A. V.; Cua, D. J. The IL-23-IL-17 Immune Axis: From Mechanisms to Therapeutic Testing. Nat. Rev. Immunol. 2014, 14(9), 585–600. DOI: 10.1038/nri3707.
  • Rostami, A.; Ciric, B. Role of Th17 Cells in the Pathogenesis of CNS Inflammatory Demyelination. J. Neurol. Sci. 2013, 333(1–2), 76–87. DOI: 10.1016/j.jns.2013.03.002.
  • Mease, P. J. Inhibition of Interleukin-17, Interleukin-23 and the TH17 Cell Pathway in the Treatment of Psoriatic Arthritis and Psoriasis. Curr. Opin. Rheumatol. 2015, 27(2), 127–133. DOI: 10.1097/BOR.0000000000000147.
  • Verhoeckx, K. C. M.; Voortman, T.; Balvers, M. G. J.; Hendriks, H. F. J.; Wortelboer, M.; Witkamp, H.; Presence, R. F. Formation and Putative Biological Activities of N-Acyl Serotonins, a Novel Class of Fatty-Acid Derived Mediators, in the Intestinal Tract. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2011, 1811(10), 578–586. DOI: 10.1016/j.bbalip.2011.07.008.
  • Wang, Y.; Balvers, M. G. J.; Hendriks, H. F. J.; Wilpshaar, T.; van Heek, T.; Witkamp, R. F.; Meijerink, J. Docosahexaenoyl Serotonin Emerges as Most Potent Inhibitor of IL-17 and CCL-20 Released by Blood Mononuclear Cells from a Series of N-Acyl Serotonins Identified in Human Intestinal Tissue. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2017, 1862(9), 823–831. DOI: 10.1016/j.bbalip.2017.05.008.
  • Bashashati, M.; Fichna, J.; Piscitelli, F.; Capasso, R.; Izzo, A. A.; Sibaev, A.; Timmermans, J.-P.; Cenac, N.; Vergnolle, N.; Di Marzo, V., et al. Targeting Fatty Acid Amide Hydrolase and Transient Receptor Potential Vanilloid-1 Simultaneously to Modulate Colonic Motility and Visceral Sensation in the Mouse: A Pharmacological Intervention with N-Arachidonoyl-Serotonin (AA-5-HT). Neurogastroenterol. Motil. 2017, 29(12), e13148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.