660
Views
4
CrossRef citations to date
0
Altmetric
Review

The Pros and Cons of Soybean Bioactive Compounds: An Overview

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Friedman, M.; Brandon, D. L. Nutritional and Health Benefits of Soy Proteins. J. Agric. Food Chem. 2001, 49(3), 1069–1086. DOI: 10.1021/jf0009246.
  • Lee, K. J.; Baek, D.-Y.; Lee, G.-A.; Cho, G.-T.; So, Y.-S.; Lee, J.-R.; Ma, K.-H.; Chung, J.-W.; Hyun, D. Y. Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine Max L.) Landraces. Antioxidants. 2020, 9(3), 213. DOI: 10.3390/antiox9030213.
  • Lu, Y.-B., and C, P.A.N. Research Progress of Soybean Functional Factors [J]. Modern Food Sci. Technol. 2007, 2, 105–108. DOI: 10.13982/j.mfst.1673-9078.2007.02.036.
  • Li, Y.; Guan, R.; Liu, Z.; Ma, Y.; Wang, L.; Li, L.; Lin, F.; Luan, W.; Chen, P.; Yan, Z. Genetic Structure and Diversity of Cultivated Soybean (Glycine Max (L.) Merr.) Landraces in China. Theor. Appl. Genet. 2008, 117(6), 857–871. DOI: 10.1007/s00122-008-0825-0.
  • Qiu, L., and Chang, R.The Origin and History of SoybeanThe Soybean: Botany, Production and Uses. In Singh, G. (Ed.), CAB International, Cambridge, MA. 2010; pp 1–23.
  • Vernaza, M. G.; Schmiele, M.; Paucar-Menacho, L. M.; Steel, C. J., and Chang, Y. K. Brazilian Soybean Products: Functional Properties and Bioactive Compounds. In Hispanic Foods: Chemistry and Bioactive Compounds 16. In Tunick, M. H, de Mejía, G. (Eds.), Washington, DC, ACSSymposium Series; American Chemical Society; 2012, pp 259–277. DOI: 10.1021/bk-2012-1109.ch016.
  • Feng, J.-Y.; Wang, R.; Thakur, K.; Ni, Z.-J.; Zhu, Y.-Y.; Hu, F.; Zhang, J.-G.; Wei, Z.-J. Evolution of Okara from Waste to Value Added Food Ingredient: An Account of Its Bio-Valorization for Improved Nutritional and Functional Effects. Trends Food Sci. Technol. 2021, 116, 669–680. DOI: 10.1016/j.tifs.2021.08.011.
  • Swallah, M. S.; Yu, H.; Piao, C.; Fu, H.; Yakubu, Z., and Sossah, F. L. Synergistic Two-Way Interactions of Dietary Polyphenols and Dietary Components on the Gut Microbial Composition: Is There a Positive, Negative, or Neutralizing Effect in the Prevention and Management of Metabolic Diseases? Curr. Protein Pept. Sci 2021, 22(4), 313–327. DOI: 10.2174/1389203722666210122143840.
  • Messina, M. A Brief Historical Overview of the Past Two Decades of Soy and Isoflavone Research. J. Nutr. 2010, 140(7), 1350S–1354S. DOI: 10.3945/jn.109.118315.
  • Zhu, Y.-Y.; Thakur, K.; Feng, J.-Y.; Cai, J.-S.; Zhang, J.-G.; Hu, F.; Russo, P.; Spano, G.; Wei, Z.-J. Riboflavin-Overproducing Lactobacilli for the Enrichment of Fermented Soymilk: Insights into Improved Nutritional and Functional Attributes. Appl. Microbiol. Biotechnol. 2020, 104(13), 5759–5772. DOI: 10.1007/s00253-020-10649-1.
  • Wu, H.; Zhang, Z.; Huang, H.; Li, Z. Health Benefits of Soy and Soy Phytochemicals. AME Med. J. 2017, 2, 162. DOI: 10.21037/amj.2017.10.04.
  • Min, S.; Yu, Y.; Martin, S. S. Effect of Soybean Varieties and Growing Locations on the Physical and Chemical Properties of Soymilk and Tofu. J. Food Sci. 2005, 70(1), C8–C21. DOI: 10.1111/j.1365-2621.2005.tb09026.x.
  • Kerwin, S. M. Soy Saponins and the Anticancer Effects of Soybeans and Soy-Based Foods. Curr. Med. Chem-Anti-Cancer Agents. 2004, 4(3), 263–272. DOI: 10.2174/1568011043352993.
  • Hwang, Y. W.; Kim, S. Y.; Jee, S. H.; Kim, Y. N.; Nam, C. M. Soy Food Consumption and Risk of Prostate Cancer: A Meta-Analysis of Observational Studies. Nutr. Cancer. 2009, 61(5), 598–606. DOI: 10.1080/01635580902825639.
  • Prabhakaran, M. P.; Perera, C. O.; Valiyaveettil, S. Quantification of Isoflavones in Soymilk and Tofu from South East Asia. Int. J. Food Prop. 2005, 8(1), 113–123. DOI: 10.1081/JFP-200048055.
  • Food Administration, D. Food Labeling Health Claims; Soy Protein and Coronary Heart Disease. Fed. Regist. 1999, 64, 57699–57733.
  • Nurmi, T.; Mazur, W.; Heinonen, S.; Kokkonen, J.; Adlercreutz, H. Isoflavone Content of the Soy Based Supplements. J. Pharm. Biomed. Anal. 2002, 28(1), 1–11. DOI: 10.1016/S0731-7085(01)00612-4.
  • Anderson, R. L.; Wolf, W. J. Compositional Changes in Trypsin Inhibitors, Phytic Acid, Saponins and Isoflavones Related to Soybean Processing. J. Nutr. 1995, 125(suppl_3), 581S–588S. DOI: 10.1093/jn/125.3_Suppl.581S.
  • Messina, M.; Watanabe, S.; Setchell, K. D. Report on the 8th International Symposium on the Role of Soy in Health Promotion and Chronic Disease Prevention and Treatment. J. Nutr. 2009, 139(4), 796S–802S. DOI: 10.3945/jn.108.104182.
  • Xiao, C. 22-Functional Foods, Elsevier. In Saarela, M. (Ed.), Sawston, UK, Woodhead Publishing. 2011, pp 534–556. DOI: 10.1533/9780857092557.3.534.
  • Nakamori, T. Soy Peptides as Functional Food Materials. In Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals. In Mine, Y., Li-Chan, ECY., Jiang, B. (Eds.), Wiley-Blackwell Publishing; 2010, pp 265–271.
  • Gonzalez-Soto, M.; Abdelmagid, S. A.; Ma, D. W.; El-Sohemy, A.; Mutch, D. M. Soy Consumption, but Not Dairy Consumption, is Inversely Associated with Fatty Acid Desaturase Activity in Young Adults. Nutrients. 2021, 13(8), 2817. DOI: 10.3390/nu13082817.
  • Swallah, M. S.; Fu, H.; Sun, H.; Affoh, R.; Yu, H. The Impact of Polyphenol on General Nutrient Metabolism in the Monogastric Gastrointestinal Tract. J. Food Qual. 2020, 2020, 1–12. DOI: 10.1155/2020/5952834.
  • Mariane, L. Soy Isoflavones as Bioactive Ingredients of Functional Foods. Soybean Health. 2011, 1, 329–360. Accessed 20th January 2021.
  • Garg, S.; Lule, V. K.; Malik, R. K.; Tomar, S. K. Soy Bioactive Components in Functional Perspective: A Review. Int. J. Food Prop. 2016, 19(11), 2550–2574. DOI: 10.1080/10942912.2015.1136936.
  • Thakur, A.; Sharma, V.; Thakur, A. An Overview of Anti-Nutritional Factors in Food. Int. J. Chem. Stud. 2019, 7(1), 2472–2479.
  • Anta, L.; Marina, M. L.; García, M. C. Simultaneous and Rapid Determination of the Anticarcinogenic Proteins Bowman-Birk Inhibitor and Lectin in Soybean Crops by Perfusion RP-HPLC. J. Chromatogr. A. 2010, 1217(45), 7138–7143. DOI: 10.1016/j.chroma.2010.09.026.
  • Hall, C.; Hillen, C.; Garden Robinson, J. Composition, Nutritional Value, and Health Benefits of Pulses. Cereal Chem. 2017, 94(1), 11–31. DOI: 10.1094/CCHEM-03-16-0069-FI.
  • Central, F. D. USDA and U.S. Department of Health and Human Services Dietary Guidelines for Americans, 7th ed; Washington, DC: U.S. Government Printing Office, 2010.
  • Southgate, D. Nature and Variability of Human Food Consumption. Philosophical Trans Royal Soc London. Ser B. 1991, 334(1270), 281–288.
  • Slavin, J. L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3(4), 506–516. DOI: 10.3945/an.112.002154.
  • Siriwardhana, N.; Kalupahana, N. S.; Cekanova, M.; LeMieux, M.; Greer, B.; Moustaid-Moussa, N. Modulation of Adipose Tissue Inflammation by Bioactive Food Compounds. J. Nutr. Biochem. 2013, 24(4), 613–623. DOI: 10.1016/j.jnutbio.2012.12.013.
  • Ng, T. B.; Cheung, R. C. F., and Wong, J. H. . In: Board, J. E. , editor. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. Biologically Active Constituents of Soybean. London: IntechOpen. 2013, pp 239–260. DOI: 10.5772/52526.
  • Singh, B.; Yadav, D., and Vij, S. Soybean Bioactive Molecules: Current Trend and Future Prospective. eds., Mérillon, JM., Ramawat, K., Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. 2017, pp 1–29. DOI: 10.1007/978-3-319-78030-6_4.
  • Chatterjee, C.; Gleddie, S.; Xiao, C.-W. Soybean Bioactive Peptides and Their Functional Properties. Nutrients. 2018, 10(9), 1211. DOI: 10.3390/nu10091211.
  • Zaheer, K.; Humayoun Akhtar, M. An Updated Review of Dietary Isoflavones: Nutrition, Processing, Bioavailability and Impacts on Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1280–1293. DOI: 10.1080/10408398.2014.989958.
  • Sakamoto, T.; Horiguchi, H.; Oguma, E.; Kayama, F. Effects of Diverse Dietary Phytoestrogens on Cell Growth, Cell Cycle and Apoptosis in Estrogen-Receptor-Positive Breast Cancer Cells. J. Nutr. Biochem. 2010, 21(9), 856–864. DOI: 10.1016/j.jnutbio.2009.06.010.
  • Andres, S.; Abraham, K.; Appel, K. E.; Lampen, A. Risks and Benefits of Dietary Isoflavones for Cancer. Critical Rev. Toxicol. 2011, 41(6), 463–506. DOI: 10.3109/10408444.2010.541900.
  • Bustamante‐rangel, M.; Delgado‐zamarreño, M. M.; Pérez‐martín, L.; Rodríguez‐gonzalo, E.; Domínguez‐álvarez, J. Analysis of Isoflavones in Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17(2), 391–411. DOI: 10.1111/1541-4337.12325.
  • Swallah, M. S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. Int. J. Food Sci. 2020, 2020, 1–8. DOI: 10.1155/2020/9081686.
  • Swallah, M. S.; Fan, H.; Wang, S.; Yu, H.; Piao, C. Prebiotic Impacts of Soybean Residue (Okara) on Eubiosis/dysbiosis Condition of the Gut and the Possible Effects on Liver and Kidney Functions. Molecules. 2021, 26(2), 326. DOI: 10.3390/molecules26020326.
  • (NCI), N. C. I. Antioxidants and Cancer Prevention; 2017.
  • Isanga, J.; Zhang, G.-N. Soybean Bioactive Components and Their Implications to Health—a Review. Food Rev. Int. 2008, 24(2), 252–276. DOI: 10.1080/87559120801926351.
  • Marazza, J. A.; Garro, M. S.; de Giori, G. S. Aglycone Production by Lactobacillus Rhamnosus CRL981 During Soymilk Fermentation. Food Microbiol. 2009, 26(3), 333–339. DOI: 10.1016/j.fm.2008.11.004.
  • Yun, D.-Y.; Kang, Y.-G.; Kim, M.; Kim, D.; Kim, E.-H.; Hong, Y.-S. Metabotyping of Different Soybean Genotypes and Distinct Metabolism in Their Seeds and Leaves. Food Chem. 2020, 330, 127198. DOI: 10.1016/j.foodchem.2020.127198.
  • Yuksekdag, Z.; Cinar Acar, B.; Aslim, B.; Tukenmez, U. β-Glucosidase Activity and Bioconversion of Isoflavone Glycosides to Aglycones by Potential Probiotic Bacteria. Int. J. Food Prop. 2017, 20(sup3), S2878–S2886. DOI: 10.1080/10942912.2017.1382506.
  • Son, S.-H.; Jeon, H.-L.; Yang, S.-J.; Sim, M.-H.; Kim, Y.-J.; Lee, N.-K.; Paik, H.-D. Probiotic Lactic Acid Bacteria Isolated from Traditional Korean Fermented Foods Based on β-Glucosidase Activity. Food Sci. Biotechnol. 2018, 27(1), 123–129. DOI: 10.1007/s10068-017-0212-1.
  • Rekha, C.; Vijayalakshmi, G. Isoflavone Phytoestrogens in Soymilk Fermented with β-Glucosidase Producing Probiotic Lactic Acid Bacteria. Int. J. Food Sci. Nutr. 2011, 62(2), 111–120. DOI: 10.3109/09637486.2010.513680.
  • Kim, I.-S. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants. 2021, 10(7), 1064. DOI: 10.3390/antiox10071064.
  • Rietjens, I. M.; Sotoca, A. M.; Vervoort, J.; Louisse, J. Mechanisms Underlying the Dualistic Mode of Action of Major Soy Isoflavones in Relation to Cell Proliferation and Cancer Risks. Mol. Nutr. Food Res. 2013, 57(1), 100–113. DOI: 10.1002/mnfr.201200439.
  • Seibold, P.; Vrieling, A.; Johnson, T. S.; Buck, K.; Behrens, S.; Kaaks, R.; Linseisen, J.; Obi, N.; Heinz, J.; Flesch‐janys, D. Enterolactone Concentrations and Prognosis After Postmenopausal Breast Cancer: Assessment of Effect Modification and Meta‐analysis. Int. J. Cancer. 2014, 135(4), 923–933. DOI: 10.1002/ijc.28729.
  • Jungbauer, A.; Medjakovic, S. Phytoestrogens and the Metabolic Syndrome. J. Steroid Biochem. Mol. Biol. 2014, 139, 277–289. DOI: 10.1016/j.jsbmb.2012.12.009.
  • Cederroth, C. R.; Nef, S. Soy, Phytoestrogens and Metabolism: A Review. Mol. Cell. Endocrinol. 2009, 304(1–2), 30–42. DOI: 10.1016/j.mce.2009.02.027.
  • Duncan, A. M.; Phipps, W. R.; Kurzer, M. S. Phyto-Oestrogens. Best Pract. Res. Clin. Endocrinol. Metab. 2003, 17(2), 253–271. DOI: 10.1016/S1521-690X(02)00103-3.
  • Jargin, S. V. Soy and Phytoestrogens: Possible Side Effects. GMS German Med. Sci. 2014, 12. DOI: 10.3205/000203. PMID: 25587246.
  • Luo, Q.; Cheng, D.; Huang, C.; Li, Y.; Lao, C.; Xia, Y.; Liu, W.; Gong, X.; Hu, D.; Li, B. Improvement of Colonic Immune Function with Soy Isoflavones in High-Fat Diet-Induced Obese Rats. Molecules. 2019, 24(6), 1139. DOI: 10.3390/molecules24061139.
  • Masilamani, M.; Wei, J.; Sampson, H. A. Regulation of the Immune Response by Soybean Isoflavones. Immunol. Res. 2012, 54(1–3), 95–110. DOI: 10.1007/s12026-012-8331-5.
  • Millas, I.; Duarte Barros, M. Estrogen Receptors and Their Roles in the Immune and Respiratory Systems. Anat. Rec. 2021, 304(6), 1185–1193. DOI: 10.1002/ar.24612.
  • Prada, G. Immunosenescence and Inflamm-Ageing. Acta Endocrinologica (18410987). 2014, 10(4).
  • Bauer, M. E. The Role of Stress and Adrenal Hormones in Immunosenescence. In Bosch, JA., Phillips, AC., Lord, JM. (Eds.), Immunosenescence: Psychosocial and Behavioral Determinants; Springer, New York, NY: Springer, 2013; pp 221–239.
  • Porter, V.; Greendale, G.; Schocken, M.; Zhu, X.; Effros, R. Immune Effects of Hormone Replacement Therapy in Post-Menopausal Women. Exp. Gerontology. 2001, 36(2), 311–326. DOI: 10.1016/S0531-5565(00)00195-9.
  • Carbonel, A. A. F.; Baracat, M. C. P.; Simoes, R. S.; Simoes, M. J.; Baracat, E. C.; Soares, J. M., Jr. The Soybean Concentrated Extract Proliferates the Vagina of Adult Rats. Menopause. 2011, 18(1), 93–101. DOI: 10.1097/gme.0b013e3181e5ee25.
  • Chiu, T.-M.; Huang, C.-C.; Lin, T.-J.; Fang, J.-Y.; Wu, N.-L.; Hung, C.-F. In vitro and in vivo Anti-Photoaging Effects of an Isoflavone Extract from Soybean Cake. J. Ethnopharmacol. 2009, 126(1), 108–113. DOI: 10.1016/j.jep.2009.07.039.
  • Sethi, S.; Tyagi, S. K.; Anurag, R. K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53(9), 3408–3423. DOI: 10.1007/s13197-016-2328-3.
  • Wang, B.; Wu, C. Dietary Soy Isoflavones Alleviate Dextran Sulfate Sodium‑induced Inflammation and Oxidative Stress in Mice. Exp. Ther. Med. 2017, 14(1), 276–282. DOI: 10.3892/etm.2017.4469.
  • Noda, S.; Tanabe, S.; Suzuki, T. Differential Effects of Flavonoids on Barrier Integrity in Human Intestinal Caco-2 Cells. J. Agric. Food Chem. 2012, 60(18), 4628–4633. DOI: 10.1021/jf300382h.
  • Blay, M.; Espinel, A.; Delgado, M.; Baiges, I.; Blade, C.; Arola, L.; Salvado, J. Isoflavone Effect on Gene Expression Profile and Biomarkers of Inflammation. J. Pharm. Biomed. Anal. 2010, 51(2), 382–390. DOI: 10.1016/j.jpba.2009.03.028.
  • Seibel, J.; Molzberger, A. F.; Hertrampf, T.; Laudenbach-Leschowski, U.; Diel, P. Oral Treatment with Genistein Reduces the Expression of Molecular and Biochemical Markers of Inflammation in a Rat Model of Chronic TNBS-Induced Colitis. Eur. J. Nutr. 2009, 48(4), 213–220. DOI: 10.1007/s00394-009-0004-3.
  • Dijsselbloem, N.; Goriely, S.; Albarani, V.; Gerlo, S.; Francoz, S.; Marine, J.-C.; Goldman, M.; Haegeman, G.; Berghe, W. V. A Critical Role for P53 in the Control of NF-κB-Dependent Gene Expression in TLR4-Stimulated Dendritic Cells Exposed to Genistein. J. Immunol. 2007, 178(8), 5048–5057. DOI: 10.4049/jimmunol.178.8.5048.
  • Satsu, H.; Hyun, J. S.; Shin, H. S.; Shimizu, M. Suppressive Effect of an Isoflavone Fraction on Tumor Necrosis Factor-α-Induced Interleukin-8 Production in Human Intestinal Epithelial Caco-2 Cells. J. Nutr. Sci. Vitaminol. 2009, 55(5), 442–446. DOI: 10.3177/jnsv.55.442.
  • Zhang, R.; Xu, J.; Zhao, J.; Chen, Y. Genistein Improves Inflammatory Response and Colonic Function Through NF-κB Signal in DSS-Induced Colonic Injury. Oncotarget. 2017, 8(37), 61385. DOI: 10.18632/oncotarget.18219.
  • Calvello, R.; Aresta, A.; Trapani, A.; Zambonin, C.; Cianciulli, A.; Salvatore, R.; Clodoveo, M. L.; Corbo, F.; Franchini, C.; Panaro, M. A. Bovine and Soybean Milk Bioactive Compounds: Effects on Inflammatory Response of Human Intestinal Caco-2 Cells. Food Chem. 2016, 210, 276–285. DOI: 10.1016/j.foodchem.2016.04.067.
  • Vagadia, B. H.; Vanga, S. K.; Raghavan, V. Inactivation Methods of Soybean Trypsin Inhibitor–a Review. Trends Food Sci. Technol. 2017, 64, 115–125. DOI: 10.1016/j.tifs.2017.02.003.
  • Singh, B. P.; Vij, S.; Hati, S. Functional Significance of Bioactive Peptides Derived from Soybean. Peptides. 2014, 54, 171–179. DOI: 10.1016/j.peptides.2014.01.022.
  • Sarmadi, B. H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides. 2010, 31(10), 1949–1956. DOI: 10.1016/j.peptides.2010.06.020.
  • Chaudhary, A.; Bhalla, S.; Patiyal, S.; Raghava, G. P.; Sahni, G. FermFoodb: A Database of Bioactive Peptides Derived from Fermented Foods. Heliyon. 2021, 7(4), e06668. DOI: 10.1016/j.heliyon.2021.e06668.
  • Jia, L.; Wang, L.; Liu, C.; Liang, Y., and Lin, Q. Bioactive Peptides from Foods: Production, Function, and Application. Food & Function. 2021, 12, 7108–7125.
  • Quintal-Bojórquez, N.; Segura-Campos, M. R. Bioactive Peptides as Therapeutic Adjuvants for Cancer. Nutr. Cancer. 2021, 73(8), 1309–1321. DOI: 10.1080/01635581.2020.1813316.
  • Sanjukta, S.; Rai, A. K. Production of Bioactive Peptides During Soybean Fermentation and Their Potential Health Benefits. Trends Food Sci. Technol. 2016, 50, 1–10. DOI: 10.1016/j.tifs.2016.01.010.
  • Agyei, D.; Danquah, M. K. Industrial-Scale Manufacturing of Pharmaceutical-Grade Bioactive Peptides. Biochem. Adv. 2011, 29(3), 272–277. DOI: 10.1016/j.biotechadv.2011.01.001.
  • Nongonierma, A. B.; FitzGerald, R. J. The Scientific Evidence for the Role of Milk Protein-Derived Bioactive Peptides in Humans: A Review. J. Funct. Foods. 2015, 17, 640–656. DOI: 10.1016/j.jff.2015.06.021.
  • Fekete, A. A.; Givens, D. I.; Lovegrove, J. A. The Impact of Milk Proteins and Peptides on Blood Pressure and Vascular Function: A Review of Evidence from Human Intervention Studies. Nutr. Res. Rev. 2013, 26(2), 177–190. DOI: 10.1017/S0954422413000139.
  • Li-Chan, E. C. Bioactive Peptides and Protein Hydrolysates: Research Trends and Challenges for Application as Nutraceuticals and Functional Food Ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37. DOI: 10.1016/j.cofs.2014.09.005.
  • Sirtori, C. R.; Galli, C.; Anderson, J. W.; Sirtori, E.; Arnoldi, A. Functional Foods for Dyslipidaemia and Cardiovascular Risk Prevention. Nutr. Res. Rev. 2009, 22(2), 244–261. DOI: 10.1017/S0954422409990187.
  • Lammi, C.; Zanoni, C.; Arnoldi, A.; Vistoli, G. Two Peptides from Soy β-Conglycinin Induce a Hypocholesterolemic Effect in HepG2 Cells by a Statin-Like Mechanism: Comparative in vitro and in silico Modeling Studies. J. Agric. Food Chem. 2015, 63(36), 7945–7951. DOI: 10.1021/acs.jafc.5b03497.
  • Nishi, H.; Higashihara, T.; Inagi, R. Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction. Nutrients. 2019, 11(7), 1664. DOI: 10.3390/nu11071664.
  • Power, O.; Jakeman, P.; FitzGerald, R. Antioxidative Peptides: Enzymatic Production, in vitro and in vivo Antioxidant Activity and Potential Applications of Milk-Derived Antioxidative Peptides. Amino Acids. 2013, 44(3), 797–820. DOI: 10.1007/s00726-012-1393-9.
  • Roopashree, K.; Naik, D. Saponins: Properties, Applications and as Insecticides: A Review. Biosci. Trends. 2019, 8, 1–14.
  • Guang, C.; Chen, J.; Sang, S.; Cheng, S. Biological Functionality of Soyasaponins and Soyasapogenols. J. Agric. Food Chem. 2014, 62(33), 8247–8255. DOI: 10.1021/jf503047a.
  • He, Y.; Hu, Z.; Li, A.; Zhu, Z.; Yang, N.; Ying, Z.; He, J.; Wang, C.; Yin, S.; Cheng, S. Recent Advances in Biotransformation of Saponins. Molecules. 2019, 24(13), 2365. DOI: 10.3390/molecules24132365.
  • Tsai, C.-Y.; Chen, Y.-H.; Chien, Y.-W.; Huang, W.-H.; Lin, S.-H. Effect of Soy Saponin on the Growth of Human Colon Cancer Cells. World J. Gastroenterol. 2010, 16(27), 3371. DOI: 10.3748/wjg.v16.i27.3371.
  • Juritsch, A. F.; Moreau, R. Role of Soybean-Derived Bioactive Compounds in Inflammatory Bowel Disease. Nutr. Rev. 2018, 76(8), 618–638. DOI: 10.1093/nutrit/nuy021.
  • Lee, I.-A.; Park, Y.-J.; Yeo, H.-K.; Han, M. J.; Kim, D.-H. Soyasaponin I Attenuates TNBS-Induced Colitis in Mice by Inhibiting NF-κB Pathway. J. Agric. Food Chem. 2010, 58(20), 10929–10934. DOI: 10.1021/jf102296y.
  • Kang, J.-H.; Sung, M.-K.; Kawada, T.; Yoo, H.; Kim, Y.-K.; Kim, J.-S.; Yu, R. Soybean Saponins Suppress the Release of Proinflammatory Mediators by LPS-Stimulated Peritoneal Macrophages. Cancer Lett. 2005, 230(2), 219–227. DOI: 10.1016/j.canlet.2004.12.041.
  • Liu, M.-J.; Wang, Z.; Ju, Y.; Wong, R.-N.-S.; Wu, Q.-Y. Diosgenin Induces Cell Cycle Arrest and Apoptosis in Human Leukemia K562 Cells with the Disruption of Ca 2+ Homeostasis. Cancer Chemother. Pharmacol. 2005, 55(1), 79–90. DOI: 10.1007/s00280-004-0849-3.
  • Carbonell‐capella, J. M.; Buniowska, M.; Barba, F. J.; Esteve, M. J.; Frígola, A. Analytical Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds from Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13(2), 155–171. DOI: 10.1111/1541-4337.12049.
  • Van Buggenhout, S.; Alminger, M.; Lemmens, L.; Colle, I.; Knockaert, G.; Moelants, K.; Van Loey, A.; Hendrickx, M. In vitro Approaches to Estimate the Effect of Food Processing on Carotenoid Bioavailability Need Thorough Understanding of Process Induced Microstructural Changes. Trends Food Sci. Technol. 2010, 21(12), 607–618. DOI: 10.1016/j.tifs.2010.09.010.
  • Shahidi, F.; Peng, H. Bioaccessibility and Bioavailability of Phenolic Compounds. J. Food Bioactives. 2018, 4, 11–68. DOI: 10.31665/JFB.2018.4162.
  • Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and Vegetables, as a Source of Nutritional Compounds and Phytochemicals: Changes in Bioactive Compounds During Lactic Fermentation. Food Res. Int. 2018, 104, 86–99. DOI: 10.1016/j.foodres.2017.09.031.
  • Bao, C.; Jiang, P.; Chai, J.; Jiang, Y.; Li, D.; Bao, W.; Liu, B.; Liu, B.; Norde, W.; Li, Y. The Delivery of Sensitive Food Bioactive Ingredients: Absorption Mechanisms, Influencing Factors, Encapsulation Techniques and Evaluation Models. Food Res. Int. 2019, 120, 130–140. DOI: 10.1016/j.foodres.2019.02.024.
  • Bohn, T.; McDougall, G. J.; Alegría, A.; Alminger, M.; Arrigoni, E.; Aura, A. M.; Brito, C.; Cilla, A.; El, S. N.; Karakaya, S. Mind the Gap—deficits in Our Knowledge of Aspects Impacting the Bioavailability of Phytochemicals and Their Metabolites—a Position Paper Focusing on Carotenoids and Polyphenols. Mol. Nutr. Food Res. 2015, 59(7), 1307–1323. DOI: 10.1002/mnfr.201400745.
  • Palafox‐carlos, H.; Ayala‐zavala, J. F.; González‐aguilar, G. A. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J. Food Sci. 2011, 76(1), R6–R15. DOI: 10.1111/j.1750-3841.2010.01957.x.
  • Swallah, M. S.; Yu, H.; Piao, C.; Fu, H.; Yakubu, Z.; Sossah, F. L. Synergistic Two-Way Interactions of Dietary Polyphenols and Dietary Components on the Gut Microbial Composition: Is There a Positive, Negative, or Neutralizing Effect in the Prevention and Management of Metabolic Diseases? Curr. Protein Pept. Sci. 2021, 22(4), 313–327. DOI: 10.2174/1389203722666210122143840.
  • Neilson, A. P.; Ferruzzi, M. G. Influence of Formulation and Processing on Absorption and Metabolism of Flavan-3-Ols from Tea and Cocoa. Annual Review of Food Science and Technology. 2011, 2, 125–151.
  • Mondal, S.; Soumya, N. P. P.; Mini, S.; Sivan, S. K. Bioactive Compounds in Functional Food and Their Role as Therapeutics. Bioact. Compd. Health Dis. 2021, 4(3), 24–39. DOI: 10.31989/bchd.v4i3.786.
  • Kamble, D. B.; Rani, S. Bioactive Components, in vitro Digestibility, Microstructure and Application of Soybean Residue (Okara): A Review. Legume Sci. 2020, 2(1), e32. DOI: 10.1002/leg3.32.
  • Bhattacharya, S. Reactive Oxygen Species and Cellular Defense System. In Rani, V, Yadav, U (Eds.), Free Radicals in Human Health and Disease; Springer, 2015; pp 17–29.
  • Birch‐machin, M.; Bowman, A. Oxidative Stress and Ageing. British J. Dermatol. 2016, 175, 26–29. DOI: 10.1111/bjd.14906.
  • De Rosa, V.; Galgani, M.; Santopaolo, M.; Colamatteo, A.; Laccetti, R.; Matarese, G. In Nutritional Control of Immunity: Balancing the Metabolic Requirements with an Appropriate Immune Function. Seminars Immunol. Elsevier. 2015, 27(5), 300–309. DOI: 10.1016/j.smim.2015.10.001.
  • Chandra, P.; Sharma, R. K.; Arora, D. S. Antioxidant Compounds from Microbial Sources: A Review. Food Res. Int. 2020, 129, 108849. DOI: 10.1016/j.foodres.2019.108849.
  • Bitzer, Z. T.; Wopperer, A. L.; Chrisfield, B. J.; Tao, L.; Cooper, T. K.; Vanamala, J.; Elias, R. J.; Hayes, J. E.; Lambert, J. D. Soy Protein Concentrate Mitigates Markers of Colonic Inflammation and Loss of Gut Barrier Function in vitro and in vivo. J. Nutr. Biochem. 2017, 40, 201–208. DOI: 10.1016/j.jnutbio.2016.11.012.
  • Rohr, M. W.; Narasimhulu, C. A.; Rudeski-Rohr, T. A.; Parthasarathy, S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv. Nutr. 2020, 11(1), 77–91. DOI: 10.1093/advances/nmz061.
  • Landy, J.; Ronde, E.; English, N.; Clark, S. K.; Hart, A. L.; Knight, S. C.; Ciclitira, P. J.; Al-Hassi, H. O. Tight Junctions in Inflammatory Bowel Diseases and Inflammatory Bowel Disease Associated Colorectal Cancer. World J. Gastroenterol. 2016, 22(11), 3117. DOI: 10.3748/wjg.v22.i11.3117.
  • Wang, W.; De Mejia, E. G. A New Frontier in Soy Bioactive Peptides That May Prevent Age‐related Chronic Diseases. Comprehensive Reviews in Food Science and Food Safety. 2005, 4(4), 63–78. DOI: 10.1111/j.1541-4337.2005.tb00075.x.
  • Mercier, A.; Gauthier, S. F.; Fliss, I. L. Immunomodulating Effects of Whey Proteins and Their Enzymatic Digests. Int. Dairy J. 2004, 14(3), 175–183. DOI: 10.1016/j.idairyj.2003.08.003.
  • Zhang, Q.; Tong, X.; Li, Y.; Wang, H.; Wang, Z.; Qi, B.; Sui, X.; Jiang, L. Purification and Characterization of Antioxidant Peptides from Alcalase-Hydrolyzed Soybean (Glycine Max L.) Hydrolysate and Their Cytoprotective Effects in Human Intestinal Caco-2 Cells. J. Agric. Food Chem. 2019, 67(20), 5772–5781. DOI: 10.1021/acs.jafc.9b01235.
  • Jiang, S.; Cai, W.; Xu, B. Food Quality Improvement of Soy Milk Made from Short-Time Germinated Soybeans. Foods. 2013, 2(2), 198–212. DOI: 10.3390/foods2020198.
  • Indiano-Romacho, P.; Fernández-Tomé, S.; Amigo, L.; Hernández-Ledesma, B. Multifunctionality of Lunasin and Peptides Released During Its Simulated Gastrointestinal Digestion. Food Res. Int. 2019, 125, 108513. DOI: 10.1016/j.foodres.2019.108513.
  • Tung, C.-Y.; Flores, S.; Han, L.; Yao, S.; Zhou, B.; Sun, J., and Chang, H.-C. Activation of Dendritic Cells by Soypeptide Lunasin as a Novel Vaccine Adjuvant (VAC6P. 942). Am. Assoc. Immnol. 2014; pp 140–3.
  • Udenigwe, C. C.; Rouvinen-Watt, K. The Role of Food Peptides in Lipid Metabolism During Dyslipidemia and Associated Health Conditions. Int. J. Mol. Sci. 2015, 16(5), 9303–9313. DOI: 10.3390/ijms16059303.
  • Xiao, C. W. Health Effects of Soy Protein and Isoflavones in Humans. J. Nutr. 2008, 138(6), 1244S–1249S. DOI: 10.1093/jn/138.6.1244S.
  • Rao, R. K.; Basuroy, S.; Rao, V. U.; Karnaky, K. J., Jr; Gupta, A. Tyrosine Phosphorylation and Dissociation of Occludin–zo-1 and E-cadherin–β-Catenin Complexes from the Cytoskeleton by Oxidative Stress. Biochem. J. 2002, 368(2), 471–481. DOI: 10.1042/bj20011804.
  • Donovan, S. M.; Andres, A.; Mathai, R. A.; Kuhlenschmidt, T. B.; Kuhlenschmidt, M. S. Soy Formula and Isoflavones and the Developing Intestine. Nutr. Rev. 2009, 67(suppl_2), S192–S200. DOI: 10.1111/j.1753-4887.2009.00240.x.
  • Martino, H. S. D.; Cardoso, L. D. M.; Ribeiro, S. M. R.; Dantas, M. D. S.; Piovesan, N. D., and De Mejía, E. Soybean Health IntechOpen. London, UK. 2011; pp 465–488. DOI:10.5772/17575.
  • Zhong, C.; Schleifenbaum, J. Genetically Encoded Calcium Indicators: A New Tool in Renal Hypertension Research. Front. Med. 2019, 6, 128. DOI: 10.3389/fmed.2019.00128.
  • De Mejia, E.; Ben, O. Soybean Bioactive Peptides: A New Horizon in Preventing Chronic Diseases. Sex. Reprod. Menopause. 2006, 4(2), 91–95. DOI: 10.1016/j.sram.2006.08.012.
  • Natesh, R.; Schwager, S. L.; Sturrock, E. D.; Acharya, K. R. Crystal Structure of the Human Angiotensin-Converting Enzyme–lisinopril Complex. Nature. 2003, 421(6922), 551–554. DOI: 10.1038/nature01370.
  • Margatan, W.; Ruud, K.; Wang, Q.; Markowski, T.; Ismail, B. Angiotensin Converting Enzyme Inhibitory Activity of Soy Protein Subjected to Selective Hydrolysis and Thermal Processing. J. Agric. Food Chem. 2013, 61(14), 3460–3467. DOI: 10.1021/jf4001555.
  • Welty, F. K.; Lee, K. S.; Lew, N. S.; Zhou, J.-R. Effect of Soy Nuts on Blood Pressure and Lipid Levels in Hypertensive, Prehypertensive, and Normotensive Postmenopausal Women. Arch. Internal. Med. 2007, 167(10), 1060–1067. DOI: 10.1001/archinte.167.10.1060.
  • Zhao, W.; Xue, S.; Yu, Z.; Ding, L.; Li, J.; Liu, J. Novel ACE Inhibitors Derived from Soybean Proteins Using in silico and in vitro Studies. J. Food Biochem. 2019, 43(9), e12975. DOI: 10.1111/jfbc.12975.
  • Kim, K.; Lim, K.-M.; Kim, C.-W.; Shin, H.-J.; Seo, D.-B.; Lee, S.-J.; Noh, J.-Y.; Bae, O.-N.; Shin, S.; Chung, J.-H. Black Soybean Extract Can Attenuate Thrombosis Through Inhibition of Collagen-Induced Platelet Activation. J. Nutr. Biochem. 2011, 22(10), 964–970. DOI: 10.1016/j.jnutbio.2010.08.008.
  • Lassissi, T. A.; Hettiarachchy, N. S.; Rayaprolu, S. J.; Kannan, A.; Davis, M. Functional Properties and Angiotensin-I Converting Enzyme Inhibitory Activity of Soy–whey Proteins and Fractions. Food Res. Int. 2014, 64, 598–602. DOI: 10.1016/j.foodres.2014.07.015.
  • Singh, B. P.; Vij, S. Growth and Bioactive Peptides Production Potential of Lactobacillus Plantarum Strain C2 in Soy Milk: A LC-MS/MS Based Revelation for Peptides Biofunctionality. Lwt. 2017, 86, 293–301. DOI: 10.1016/j.lwt.2017.08.013.
  • Acharjee, S.; Zhou, J.-R.; Elajami, T. K.; Welty, F. K. Effect of Soy Nuts and Equol Status on Blood Pressure, Lipids and Inflammation in Postmenopausal Women Stratified by Metabolic Syndrome Status. Metabolism. 2015, 64(2), 236–243. DOI: 10.1016/j.metabol.2014.09.005.
  • Hu, X.; Gao, J.; Zhang, Q.; Fu, Y.; Li, K.; Zhu, S.; Li, D. Soy Fiber Improves Weight Loss and Lipid Profile in Overweight and Obese Adults: A Randomized Controlled Trial. Mol. Nutr. Food Res. 2013, 57(12), 2147–2154. DOI: 10.1002/mnfr.201300159.
  • Bonacasa, B.; Siow, R. C.; Mann, G. E. Impact of Dietary Soy Isoflavones in Pregnancy on Fetal Programming of Endothelial Function in Offspring. Microcirculation. 2011, 18(4), 270–285. DOI: 10.1111/j.1549-8719.2011.00088.x.
  • Messina, M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients. 2016, 8(12), 754. DOI: 10.3390/nu8120754.
  • Duewell, P.; Kono, H.; Rayner, K. J.; Sirois, C. M.; Vladimer, G.; Bauernfeind, F. G.; Abela, G. S.; Franchi, L.; Nunez, G.; Schnurr, M. NLRP3 Inflammasomes are Required for Atherogenesis and Activated by Cholesterol Crystals. Nature. 2010, 464(7293), 1357–1361. DOI: 10.1038/nature08938.
  • Progatzky, F.; Sangha, N. J.; Yoshida, N.; McBrien, M.; Cheung, J.; Shia, A.; Scott, J.; Marchesi, J. R.; Lamb, J. R.; Bugeon, L. Dietary Cholesterol Directly Induces Acute Inflammasome-Dependent Intestinal Inflammation. Nat. Commun. 2014, 5(1), 1–14. DOI: 10.1038/ncomms6864.
  • Du, Q.; Wang, Q.; Fan, H.; Wang, J.; Liu, X.; Wang, H.; Wang, Y.; Hu, R. Dietary Cholesterol Promotes AOM-Induced Colorectal Cancer Through Activating the NLRP3 Inflammasome. Biochem. Pharmacol. 2016, 105, 42–54. DOI: 10.1016/j.bcp.2016.02.017.
  • Zhang, X.; Veliky, C. V.; Birru, R. L.; Barinas-Mitchell, E.; Magnani, J. W.; Sekikawa, A. Potential Protective Effects of Equol (Soy Isoflavone Metabolite) on Coronary Heart Diseases—from Molecular Mechanisms to Studies in Humans. Nutrients. 2021, 13(11), 3739. DOI: 10.3390/nu13113739.
  • Torres, N.; Guevara-Cruz, M.; Velázquez-Villegas, L. A.; Tovar, A. R. Nutrition and Atherosclerosis. Arch. Med. Res. 2015, 46(5), 408–426. DOI: 10.1016/j.arcmed.2015.05.010.
  • Millar, C. L.; Duclos, Q.; Blesso, C. N. Effects of Dietary Flavonoids on Reverse Cholesterol Transport, HDL Metabolism, and HDL Function. Adv. Nutr. 2017, 8(2), 226–239. DOI: 10.3945/an.116.014050.
  • Tall, A. R.; Yvan-Charvet, L. Cholesterol, Inflammation and Innate Immunity. Nat. Rev. Immunol. 2015, 15(2), 104–116. DOI: 10.1038/nri3793.
  • Bensinger, S. J.; Bradley, M. N.; Joseph, S. B.; Zelcer, N.; Janssen, E. M.; Hausner, M. A.; Shih, R.; Parks, J. S.; Edwards, P. A.; Jamieson, B. D. LXR Signaling Couples Sterol Metabolism to Proliferation in the Acquired Immune Response. Cell. 2008, 134(1), 97–111. DOI: 10.1016/j.cell.2008.04.052.
  • Kloudova, A.; Guengerich, F. P.; Soucek, P. The Role of Oxysterols in Human Cancer. Trends Endocrinol. Metab. 2017, 28(7), 485–496. DOI: 10.1016/j.tem.2017.03.002.
  • Bhoite, R.; Chandrasekaran, A.; Pratti, V. L.; Satyavrat, V.; Aacharya, S.; Mane, A.; Mehta, S.; Kale, R. M.; Nagamuthu, G.; Selvaraj, S. Effect of a High-Protein High-Fibre Nutritional Supplement on Lipid Profile in Overweight/obese Adults with Type 2 Diabetes Mellitus: A 24-Week Randomized Controlled Trial. J. Nutr. Metab. 2021, 2021, 1–9. DOI: 10.1155/2021/6634225.
  • Wang, Q.; Ge, X.; Tian, X.; Zhang, Y.; Zhang, J.; Zhang, P. Soy Isoflavone: The Multipurpose Phytochemical. Biomed. Rep. 2013, 1(5), 697–701. DOI: 10.3892/br.2013.129.
  • Koutelidakis, A., and Dimou, C. The Effects of Functional Food and Bioactive Compounds on Biomarkers of Cardiovascular Diseases. In Functional Foods Text Book, 1st ed.; Martirosyan, D. (Eds.), Dallas, TX, USA, 2016; pp 89–117.
  • Torre-Villalvazo, I.; Gonzalez, F.; Aguilar-Salinas, C. A.; Tovar, A. R.; Torres, N. Dietary Soy Protein Reduces Cardiac Lipid Accumulation and the Ceramide Concentration in High-Fat Diet-Fed Rats and Ob/ob Mice. J. Nutr. 2009, 139(12), 2237–2243. DOI: 10.3945/jn.109.109769.
  • Lule, V. K.; Garg, S.; Pophaly, S. D.; Tomar, S. K. Potential Health Benefits of Lunasin: A Multifaceted Soy‐derived Bioactive Peptide. J. Food Sci. 2015, 80(3), R485–R494. DOI: 10.1111/1750-3841.12786.
  • Adams, M. R.; Golden, D. L.; Franke, A. A.; Potter, S. M.; Smith, H. S.; Anthony, M. S. Dietary Soy β-Conglycinin (7S Globulin) Inhibits Atherosclerosis in Mice. J. Nutr. 2004, 134(3), 511–516. DOI: 10.1093/jn/134.3.511.
  • Kwon, D. Y.; Oh, S. W.; Lee, J. S.; Yang, H. J.; Lee, S. H.; Lee, J. H.; Lee, Y. B.; Sohn, H. S. Amino Acid Substitution of Hypocholesterolemic Peptide Originated from Glycinin Hydrolyzate. Food Sci. Biotechnol. 2002, 11(1), 55–61.
  • Mangano, K. M.; Hutchins-Wiese, H. L.; Kenny, A. M.; Walsh, S. J.; Abourizk, R. H.; Bruno, R. S.; Lipcius, R.; Fall, P.; Kleppinger, A.; Kenyon-Pesce, L. Soy Proteins and Isoflavones Reduce Interleukin-6 but Not Serum Lipids in Older Women: A Randomized Controlled Trial. Nutr. Res. 2013, 33(12), 1026–1033. DOI: 10.1016/j.nutres.2013.08.009.
  • Pak, V. V.; Koo, M.; Kwon, D. Y.; Yun, L. Design of a Highly Potent Inhibitory Peptide Acting as a Competitive Inhibitor of HMG-CoA Reductase. Amino Acids. 2012, 43(5), 2015–2025. DOI: 10.1007/s00726-012-1276-0.
  • Galvez, A. F. Identification of Lunasin as the Active Component in Soy Protein Responsible for Reducing LDL Cholesterol and Risk of Cardiovascular Disease. Am. Heart Assoc. 2012, 126, A10693–A10693.
  • Udenigwe, C. C., and Aluko, R. E. Hypolipidemic and Hypocholesterolemic Food Proteins and Peptides. In Bioactive Food Proteins and Peptides. Applications in Human Health. In Hettiarachchy, N. (Eds.), Applications in human health, New York: Applications in human health, 2011.
  • Bhandari, P. Dietary Botanicals for Chemoprevention of Prostate Cancer. J. Traditional Complementary Med. 2014, 4(2), 75. DOI: 10.4103/2225-4110.130371.
  • Nagata, C.; Wada, K.; Tamura, T.; Konishi, K.; Goto, Y.; Koda, S.; Kawachi, T.; Tsuji, M.; Nakamura, K. Dietary Soy and Natto Intake and Cardiovascular Disease Mortality in Japanese Adults: The Takayama Study. Am. J. Clin. Nutr. 2017, 105(2), 426–431. DOI: 10.3945/ajcn.116.137281.
  • Kim, S.-H.; Kim, C.-W.; Jeon, S.-Y.; Go, R.-E.; Hwang, K.-A.; Choi, K.-C. Chemopreventive and Chemotherapeutic Effects of Genistein, a Soy Isoflavone, Upon Cancer Development and Progression in Preclinical Animal Models. Lab. Anim. Res. 2014, 30(4), 143–150. DOI: 10.5625/lar.2014.30.4.143.
  • Banerjee, S.; Li, Y.; Wang, Z.; Sarkar, F. H. Multi-Targeted Therapy of Cancer by Genistein. Cancer Lett. 2008, 269(2), 226–242. DOI: 10.1016/j.canlet.2008.03.052.
  • Varinska, L.; Gal, P.; Mojzisova, G.; Mirossay, L.; Mojzis, J. Soy and Breast Cancer: Focus on Angiogenesis. Int. J. Mol. Sci. 2015, 16(5), 11728–11749. DOI: 10.3390/ijms160511728.
  • Chen, F.; Chien, M. Phytoestrogens Induce Differential Effects on Both Normal and Malignant Human Breast Cells in vitro. Climacteric. 2014, 17(6), 682–691. DOI: 10.3109/13697137.2014.937688.
  • Gertz, J.; Reddy, T. E.; Varley, K. E.; Garabedian, M. J.; Myers, R. M. Genistein and Bisphenol a Exposure Cause Estrogen Receptor 1 to Bind Thousands of Sites in a Cell Type-Specific Manner. Genome Res. 2012, 22(11), 2153–2162. DOI: 10.1101/gr.135681.111.
  • Fürst, R. W.; Kliem, H.; Meyer, H. H.; Ulbrich, S. E. A Differentially Methylated Single CpG-Site is Correlated with Estrogen Receptor Alpha Transcription. J. Steroid Biochem. Mol. Biol. 2012, 130(1–2), 96–104. DOI: 10.1016/j.jsbmb.2012.01.009.
  • Shu, X. O.; Jin, F.; Dai, Q.; Wen, W.; Potter, J. D.; Kushi, L. H.; Ruan, Z.; Gao, Y.-T.; Zheng, W. Soyfood Intake During Adolescence and Subsequent Risk of Breast Cancer Among Chinese Women. Cancer Epidemiol. Prev. Biomarkers. 2001, 10(5), 483–488.
  • Masaoka, Y.; Watanabe, H.; Katoh, O.; Ito, A., and Dohi, K. Effects of Miso and NaCl on the Development of Colonic Aberrant Crypt Foci Induced by Azoxymethane in F344 Rats. 1998; pp. 25-28. DOI: 10.1080/01635589809514712.
  • Masaoka, Y.; Katoh, O.; Watanabe, H. Inhibitory Effects of Crude Salts on the Induction and Development of Colonic Aberrant Crypt Foci in F-344 Rats Given Azoxymethane. Nutr. Cancer. 2000, 37(1), 78–81. DOI: 10.1207/S15327914NC3701_10.
  • Nishio, K.; Niwa, Y.; Toyoshima, H.; Tamakoshi, K.; Kondo, T.; Yatsuya, H.; Yamamoto, A.; Suzuki, S.; Tokudome, S.; Lin, Y. Consumption of Soy Foods and the Risk of Breast Cancer: Findings from the Japan Collaborative Cohort (JACC) Study. Cancer Causes Control. 2007, 18(8), 801–808. DOI: 10.1007/s10552-007-9023-7.
  • Wu, S. H.; Shu, X. O.; Chow, W.-H.; Xiang, Y.-B.; Zhang, X.; Li, H.-L.; Cai, Q.; Ji, B.-T.; Cai, H.; Rothman, N. Soy Food Intake and Circulating Levels of Inflammatory Markers in Chinese Women. J. Acad. Nutr. Diet. 2012, 112(7), 996–1004. e4. DOI: 10.1016/j.jand.2012.04.001.
  • Yan, L.; Spitznagel, E. L.; Bosland, M. C. Soy Consumption and Colorectal Cancer Risk in Humans: A Meta-Analysis. Cancer Epidemiol. Prev. Biomarkers. 2010, 19(1), 148–158. DOI: 10.1158/1055-9965.EPI-09-0856.
  • Ryan-Borchers, T. A.; Park, J. S.; Chew, B. P.; McGuire, M. K.; Fournier, L. R.; Beerman, K. A. Soy Isoflavones Modulate Immune Function in Healthy Postmenopausal Women. Am. J. Clin. Nutr. 2006, 83(5), 1118–1125. DOI: 10.1093/ajcn/83.5.1118.
  • MacGregor, C.; Canney, P.; Patterson, G.; McDonald, R.; Paul, J. A Randomised Double-Blind Controlled Trial of Oral Soy Supplements versus Placebo for Treatment of Menopausal Symptoms in Patients with Early Breast Cancer. Euro. J. Cancer. 2005, 41(5), 708–714. DOI: 10.1016/j.ejca.2005.01.005.
  • Pabona, J. M. P.; Dave, B.; Su, Y.; Montales, M. T. E.; Ben, O.; De Mejia, E. G.; Rahal, O. M.; Simmen, R. C. The Soybean Peptide Lunasin Promotes Apoptosis of Mammary Epithelial Cells via Induction of Tumor Suppressor PTEN: Similarities and Distinct Actions from Soy Isoflavone Genistein. Genes Nutr. 2013, 8(1), 79–90. DOI: 10.1007/s12263-012-0307-5.
  • Chen, Y.; Xu, Z.; Zhang, C.; Kong, X.; Hua, Y. Heat-Induced Inactivation Mechanisms of Kunitz Trypsin Inhibitor and Bowman-Birk Inhibitor in Soymilk Processing. Food Chem. 2014, 154, 108–116. DOI: 10.1016/j.foodchem.2013.12.092.
  • Fereidunian, A.; Sadeghalvad, M.; Oscoie, M. O.; Mostafaie, A. Soybean Bowman-Birk Protease Inhibitor (BBI): Identification of the Mechanisms of BBI Suppressive Effect on Growth of Two Adenocarcinoma Cell Lines: AGS and HT29. Arch. Med. Res. 2014, 45(6), 455–461. DOI: 10.1016/j.arcmed.2014.07.001.
  • Clemente, A.; Marín-Manzano, M. C.; Jiménez, E.; Arques, M. C.; Domoney, C. The Anti-Proliferative Effect of TI1B, a Major Bowman–birk Isoinhibitor from Pea (Pisum Sativum L.), on HT29 Colon Cancer Cells is Mediated Through Protease Inhibition. Br. J. Nutr. 2012, 108(S1), S135–S144. DOI: 10.1017/S000711451200075X.
  • Clemente, A.; Del Carmen Arques, M. Bowman-Birk Inhibitors from Legumes as Colorectal Chemopreventive Agents. World J. Gastroenterol. 2014, 20(30), 10305. DOI: 10.3748/wjg.v20.i30.10305.
  • da Costa Souza, L.; Camargo, R.; Demasi, M.; Santana, J. M.; de Sa, C. M., and de Freitas, S. M. Effects of an Anticarcinogenic Bowman-Birk Protease Inhibitor on Purified 20S Proteasome and MCF-7 Breast Cancer Cells. PLoS One. 2014, 9(1), p.e86600.
  • Cruz-Huerta, E.; Fernández-Tomé, S.; Arques, M. C.; Amigo, L.; Recio, I.; Clemente, A.; Hernández-Ledesma, B. The Protective Role of the Bowman-Birk Protease Inhibitor in Soybean Lunasin Digestion: The Effect of Released Peptides on Colon Cancer Growth. Food Function. 2015, 6(8), 2626–2635. DOI: 10.1039/C5FO00454C.
  • Cavazos, A.; Morales, E.; Dia, V. P.; De Mejia, E. G. Analysis of Lunasin in Commercial and Pilot Plant Produced Soybean Products and an Improved Method of Lunasin Purification. J. Food Sci. 2012, 77(5), C539–C545. DOI: 10.1111/j.1750-3841.2012.02676.x.
  • Dia, V. P.; de Mejia, E. G. Differential Gene Expression of RAW 264.7 Macrophages in Response to the RGD Peptide Lunasin with and Without Lipopolysaccharide Stimulation. Peptides. 2011, 32(10), 1979–1988. DOI: 10.1016/j.peptides.2011.09.009.
  • Chang, H.-C.; Lewis, D.; Tung, C.-Y.; Han, L.; Henriquez, S. M.; Voiles, L.; Lupov, I. P.; Pelloso, D.; Sinn, A. L.; Pollok, K. E. Soypeptide Lunasin in Cytokine Immunotherapy for Lymphoma. Cancer Immunol. Immunother. 2014, 63(3), 283–295. DOI: 10.1007/s00262-013-1513-8.
  • Fernández-Tomé, S.; Ramos, S.; Cordero-Herrera, I.; Recio, I.; Goya, L.; Hernández-Ledesma, B. In vitro Chemo-Protective Effect of Bioactive Peptide Lunasin Against Oxidative Stress in Human HepG2 Cells. Food Res. Int. 2014, 62, 793–800. DOI: 10.1016/j.foodres.2014.04.054.
  • Hamid, H.; Yusoff, M.; Liu, M.; Karim, M. α-Glucosidase and α-Amylase Inhibitory Constituents of Tinospora Crispa: Isolation and Chemical Profile Confirmation by Ultra-High Performance Liquid Chromatography-Quadrupole Time-Of-Flight/mass Spectrometry. J. Funct. Foods. 2015, 16, 74–80. DOI: 10.1016/j.jff.2015.04.011.
  • Mohamed, S. Functional Foods Against Metabolic Syndrome (Obesity, Diabetes, Hypertension and Dyslipidemia) and Cardiovasular Disease. Trends Food Sci. Technol. 2014, 35(2), 114–128. DOI: 10.1016/j.tifs.2013.11.001.
  • Hunter, P. M.; Hegele, R. A. Functional Foods and Dietary Supplements for the Management of Dyslipidaemia. Nat. Rev. Endocrinol. 2017, 13(5), 278–288. DOI: 10.1038/nrendo.2016.210.
  • Yang, H.-Y.; Tzeng, Y.-H.; Chai, C.-Y.; Hsieh, A.-T.; Chen, J.-R.; Chang, L.-S.; Yang, S.-S. Soy Protein Retards the Progression of Non-Alcoholic Steatohepatitis via Improvement of Insulin Resistance and Steatosis. Nutrition. 2011, 27(9), 943–948. DOI: 10.1016/j.nut.2010.09.004.
  • Niamnuy, C.; Nachaisin, M.; Laohavanich, J.; Devahastin, S. Evaluation of Bioactive Compounds and Bioactivities of Soybean Dried by Different Methods and Conditions. Food Chem. 2011, 129(3), 899–906. DOI: 10.1016/j.foodchem.2011.05.042.
  • Tsou, M.-J.; Lin, S.-B.; Chao, C.-H.; Chiang, W.-D. Enhancing the Lipolysis-Stimulating Activity of Soy Protein Using Limited Hydrolysis with Flavourzyme and Ultrafiltration. Food Chem. 2012, 134(3), 1564–1570. DOI: 10.1016/j.foodchem.2012.03.093.
  • Lammi, C.; Zanoni, C.; Arnoldi, A. IAVPGEVA, IAVPTGVA, and LPYP, Three Peptides from Soy Glycinin, Modulate Cholesterol Metabolism in HepG2 Cells Through the Activation of the LDLR-SREBP2 Pathway. J. Funct. Foods. 2015, 14, 469–478. DOI: 10.1016/j.jff.2015.02.021.
  • Lammi, C.; Zanoni, C.; Arnoldi, A.; Vistoli, G. Peptides Derived from Soy and Lupin Protein as Dipeptidyl-Peptidase IV Inhibitors: In vitro Biochemical Screening and in silico Molecular Modeling Study. J. Agric. Food Chem. 2016, 64(51), 9601–9606. DOI: 10.1021/acs.jafc.6b04041.
  • Moghaddam, A. S.; Entezari, M. H.; Iraj, B.; Askari, G. R.; Maracy, M. R. The Effects of Consumption of Bread Fortified with Soy Bean Flour on Metabolic Profile in Type 2 Diabetic Women: A Cross-Over Randomized Controlled Clinical Trial. Int. J. Preventive Med. 2014, 5(12), 1529.
  • Pabich, M.; Materska, M. Biological Effect of Soy Isoflavones in the Prevention of Civilization Diseases. Nutrients. 2019, 11(7), 1660. DOI: 10.3390/nu11071660.
  • Testa, I.; Salvatori, C.; Di Cara, G.; Latini, A.; Frati, F.; Troiani, S.; Principi, N., and Esposito, S. Soy-Based Infant Formula: Are Phyto-Oestrogens Still in Doubt? Front. Nutr. 2018, 5, 110. DOI: 10.3389/fnut.2018.00110.
  • Squadrito, F., and Bitto, A. Isoflavones and Thyroid Function: An Overview. In Preedy, V.R. (Ed.), Isoflavones: Chemistry, analysis, function, and effects. 2012; pp 423–437.
  • Guo, R. Isoflavones in Soy-Based Infant Formulas and Effects on Thyroid Function; University of Pittsburgh, 2014.
  • Zhang, J.; Zhang, X.; Li, Y.; Zhou, Z.; Wu, C.; Liu, Z.; Hao, L.; Fan, S.; Jiang, F.; Xie, Y. Low Dose of Bisphenol a Enhance the Susceptibility of Thyroid Carcinoma Stimulated by DHPN and Iodine Excess in F344 Rats. Oncotarget. 2017, 8(41), 69874. DOI: 10.18632/oncotarget.19434.
  • Šošić-Jurjević, B.; Lütjohann, D.; Jarić, I.; Miler, M.; Milutinović, D. V.; Filipović, B.; Ajdžanović, V.; Renko, K.; Wirth, E. K.; Janković, S. Effects of Age and Soybean Isoflavones on Hepatic Cholesterol Metabolism and Thyroid Hormone Availability in Acyclic Female Rats. Exp. Gerontol. 2017, 92, 74–81. DOI: 10.1016/j.exger.2017.03.016.
  • Chang, H. C.; Doerge, D. R. Dietary Genistein Inactivates Rat Thyroid Peroxidase in vivo Without an Apparent Hypothyroid Effect. Toxicol. Appl. Pharmacol. 2000, 168(3), 244–252. DOI: 10.1006/taap.2000.9019.
  • Patterson, C. A.; Curran, J.; Der, T. Effect of Processing on Antinutrient Compounds in Pulses. Cereal Chem. 2017, 94(1), 2–10. DOI: 10.1094/CCHEM-05-16-0144-FI.
  • Ao, T.; Cantor, A.; Pescatore, A.; Pierce, J.; Dawson, K. Effects of Citric Acid, Alpha-Galactosidase and Protease Inclusion on in vitro Nutrient Release from Soybean Meal and Trypsin Inhibitor Content in Raw Whole Soybeans. Anim. Feed Sci. Technol. 2010, 162(1–2), 58–65. DOI: 10.1016/j.anifeedsci.2010.08.014.
  • Colletti, A.; Attrovio, A.; Boffa, L.; Mantegna, S.; Cravotto, G. Valorisation of By-Products from Soybean (Glycine Max (L.) Merr.). Proc. Mol. 2020, 25(9), 2129. DOI: 10.3390/molecules25092129.
  • Sleiman, H. K.; de Oliveira, J. M.; de Freitas, G. B. L. Isoflavones Alter Male and Female Fertility in Different Development Windows. Biomed. Pharmacother. 2021, 140, 111448. DOI: 10.1016/j.biopha.2021.111448.
  • Patisaul, H. B.; Jefferson, W. The Pros and Cons of Phytoestrogens. Front. Neuroendocrinol. 2010, 31(4), 400–419. DOI: 10.1016/j.yfrne.2010.03.003.
  • Chavarro, J. E.; Mínguez-Alarcón, L.; Chiu, Y.-H.; Gaskins, A. J.; Souter, I.; Williams, P. L.; Calafat, A. M.; Hauser, R.; Team, E. S. Soy Intake Modifies the Relation Between Urinary Bisphenol a Concentrations and Pregnancy Outcomes Among Women Undergoing Assisted Reproduction. J. Clin. Endocrinol. Metab. 2016, 101(3), 1082–1090. DOI: 10.1210/jc.2015-3473.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.