1,082
Views
4
CrossRef citations to date
0
Altmetric
Review

Quorum Sensing of Lactic Acid Bacteria: Progress and Insights

ORCID Icon, , , , ORCID Icon &

References

  • Piewngam, P.; Zheng, Y.; Nguyen, T. H.; Dickey, S. W.; Joo, H. S.; Villaruz, A. E.; Glose, K. A.; Fisher, E. L.; Hunt, R. L.; Li, B.; et al. Pathogen Elimination by Probiotic Bacillus via Signalling Interference. Nature. 2018, 562(7728), 532–537.
  • Fuqua, W. C.; Winans, S. C.; Greenberg, E. P. Quorum Sensing in Bacteria: The Luxr-Luxi Family of Cell Density-Responsive Transcriptional Regulators. J. Bacteriol. 1994, 176(2), 269–275. DOI: 10.1128/jb.176.2.269-275.1994.
  • Kareb, O.; Ader, M. Quorum Sensing Circuits in the Communicating Mechanisms of Bacteria and Its Implication in the Biosynthesis of Bacteriocins by Lactic Acid Bacteria: A Review. Probiotics Antimicrob. Proteins. 2020, 12(1), 5–17. DOI: 10.1007/s12602-019-09555-4.
  • Reading, N. C.; Sperandio, V. Quorum Sensing: The Many Languages of Bacteria. FEMS Microbiol. Lett. 2006, 254(1), 1–11. DOI: 10.1111/j.1574-6968.2005.00001.x.
  • Atkinson, S.; Williams, P. Quorum Sensing and Social Networking in the Microbial World. J. R. Soc. Interface. 2009, 6(40), 959–978. DOI: 10.1098/rsif.2009.0203.
  • Yong, Y. C.; Zhong, J. J. Impacts of Quorum Sensing on Microbial Metabolism and Human Health. Adv. Biochem. Eng. Biotechnol. 2012, 131, 25–61. DOI: 10.1007/10_2012_138.
  • Kumar, L.; Brenner, N.; Brice, J.; Klein-Seetharaman, J.; Sarkar, S. K. Cephalosporins Interfere with Quorum Sensing and Improve the Ability of Caenorhabditis Elegans to Survive Pseudomonas Aeruginosa Infection. Front. Microbiol. 2021, 12, 598498. DOI: 10.3389/fmicb.2021.598498.
  • Parsek, M. R.; Greenberg, E. P. Sociomicrobiology: The Connections Between Quorum Sensing and Biofilms. Trends Microbiol. 2005, 13(1), 27–33. DOI: 10.1016/j.tim.2004.11.007.
  • Connell, J. L.; Whiteley, M.; Shear, J. B. Sociomicrobiology in Engineered Landscapes. Nat. Chem. Biol. 2011, 8(1), 10. DOI: 10.1038/nchembio.749.
  • Xavier, J. B.; Kudva, I. T.; Plummer, P. J. Sociomicrobiology and Pathogenic Bacteria. Microbiol. Spectr. 2016, 4(3), 89–101. DOI: 10.1128/microbiolspec.VMBF-0019-2015.
  • Tran, K. T. M.; May, B. K.; Smooker, P. M.; Van, T. T. H.; Coloe, P. J. Distribution and Genetic Diversity of Lactic Acid Bacteria from Traditional Fermented Sausage. Food. Res. Int. 2011, 44(1), 338–344. DOI: 10.1016/j.foodres.2010.10.010.
  • Calo-Mata, P.; Arlindo, S.; Boehme, K.; Miguel, T. D.; Barros-Velazquez, P. J. Current Applications and Future Trends of Lactic Acid Bacteria and Their Bacteriocins for the Biopreservation of Aquatic Food Products. Food Bioproc. Tech. 2008, 1(1), 43–63. DOI: 10.1007/s11947-007-0021-2.
  • Weizman, Z.; Asli, G.; Alsheikh, A. Effect of a Probiotic Infant Formula on Infections in Child Care Centers: Comparison of Two Probiotic Agents. Pediatrics. 2005, 115(1), 5–9. DOI: 10.1542/peds.2004-1815.
  • Wilck, N.; Matus, M. G.; Kearney, S. M.; Olesen, S. W.; Forslund, K.; Bartolomaeus, H.; Haase, S.; Mähler, A.; Balogh, A.; Markó, L.; et al. Salt-Responsive Gut Commensal Modulates Th17 Axis and Disease. Nature. 2017, 551(7682), 585–589. DOI: 10.1038/nature24628.
  • Kareb, O.; Aïder, M. Quorum Sensing Circuits in the Communicating Mechanisms of Bacteria and Its Implication in the Biosynthesis of Bacteriocins by Lactic Acid Bacteria: A Review. Probiotics Antimicrob. Proteins. 2020, 12(1), 5–17.
  • Pang, X.; Liu, C.; Lyu, P.; Zhang, S.; Liu, L.; Lu, J.; Ma, C.; Lv, J. Identification of Quorum Sensing Signal Molecule of Lactobacillus Delbrueckii Subsp. Bulgaricus. J. Supercond. Nov. Magn. 2016, 28(6), 1835–1841. DOI: 10.1021/acs.jafc.6b04016.
  • Kiymaci, M. E.; Altanlar, N.; Gumustas, M.; Ozkan, S. A.; Akin, A. Quorum Sensing Signals and Related Virulence Inhibition of Pseudomonas Aeruginosa by a Potential Probiotic Strain’s Organic Acid. Microb. Pathog. 2018, 121, S0882401017317503. DOI: 10.1016/j.micpath.2018.05.042.
  • Xavier, K. B.; Bassler, B. L. Luxs Quorum Sensing: More Than Just a Numbers Game. Curr. Opin. Microbiol. 2003, 6(2), 191–197. DOI: 10.1016/S1369-5274(03)00028-6.
  • Wright, G. S. A.; Saeki, A.; Hikima, T.; Nishizono, Y.; Hisano, T.; Kamaya, M.; Nukina, K.; Nishitani, H.; Nakamura, H.; Yamamoto, M. Architecture of the Complete Oxygen-Sensing Fixl-Fixj Two-Component Signal Transduction System. Sci. Signal. 2018, 11(525). DOI: 10.1126/scisignal.aaq0825.
  • Singh, A. R. Regulation of Streptomyces Chitinases by Two-Component Signal Transduction Systems and Their Post Translational Modifications: A Review. J. Pure Appl. Microbiol. 2018, 12(3), 1417–1433. DOI: 10.22207/JPAM.12.3.45.
  • Maldonado, A.; Jimenez-Diaz, R.; Ruiz-Barba, J. L. Induction of Plantaricin Production in Lactobacillus Plantarum Nc8 After Coculture with Specific Gram-Positive Bacteria is Mediated by an Autoinduction Mechanism. J. Bacteriol. 2004, 186(5), 1556–1564. DOI: 10.1128/Jb.186.5.1556-1564.2004.
  • Maldonado-Barragan, A.; Caballero-Guerrero, B.; Lucena-Padros, H.; Ruiz-Barba, J. L. Induction of Bacteriocin Production by Coculture is Widespread Among Plantaricin-Producing Lactobacillus Plantarum Strains with Different Regulatory Operons. Food Microbiol. 2013, 33(1), 40–47. DOI: 10.1016/j.fm.2012.08.009.
  • Monedero, V.; Revilla-Guarinos, A.; Zúiga, M. Physiological Role of Two-Component Signal Transduction Systems in Food-Associated Lactic Acid Bacteria. Adv. Appl. Microbiol. 2017, 99(1). DOI: 10.1016/bs.aambs.2016.12.002.
  • Grebe, T. W.; Stock, J. B. The Histidine Protein Kinase Superfamily. Adv. Microb. Physiol. 1999, 41, 139. DOI: 10.1016/s0065-2911(08)60167-8.
  • Villa, T. G.; Vinas, M. New Weapons to Control Bacterial Growth || Antimicrobial Peptides Produced by Bacteria: The Bacteriocins. 2016, 2, 15–38. Doi:10.1007/978-3-319-28368-5
  • Zhang, X.; Shang, N.; Zhang, X.; Gui, M.; Li, P. Role of Plnb Gene in the Regulation of Bacteriocin Production in Lactobacillus Paraplantarum L-Xm1. Microbiol. Res. 2013, 168(5), 305–310. DOI: 10.1016/j.micres.2012.11.008.
  • Tai, H. F.; Foo, H. L.; Abdul Rahim, R.; Loh, T. C.; Abdullah, M. P., Yoshinobu, K. Molecular Characterisation of New Organisation of Plnef and Plw Loci of Bacteriocin Genes Harbour Concomitantly in Lactobacillus Plantarum I-Ul4. Microb. Cell Fact. 2015, 14(1), 89. DOI: 10.1186/s12934-015-0280-y.
  • Johnsborg, O.; Diep, D. B.; Nes, I. F. Structural Analysis of the Peptide Pheromone Receptor Plnb, a Histidine Protein Kinase from Lactobacillus Plantarum. J. Bacteriol. 2003, 185(23), 6913–6920. DOI: 10.1128/jb.185.23.6913-6920.2003.
  • Nikolskaya, A. N.; Galperin, M. Y. A Novel Type of Conserved DNA-Binding Domain in the Transcriptional Regulators of the Algr/agra/lytr Family. Nucleic Acids Res. 2002, 30(11), 2453–2459. DOI: 10.1093/nar/30.11.2453.
  • Syvitski, R. T.; Tian, X.; Sampara, K.; Salman, A.; Lee, S. F.; Jakeman, D. L.; Li, Y. Structure-Activity Analysis of Quorum-Sensing Signaling Peptides from Streptococcus Mutans. J. Bacteriol. 2006, 189(4), 24. DOI: 10.1128/JB.00832-06.
  • Turan, N. B.; Chormey, D. S.; Büyükpinar, Ç.; Engin, G. O.; Bakirdere, S. Quorum Sensing: Little Talks for an Effective Bacterial Coordination. TrAc Trends Anal. Chem. 2017, 91, 1–11. DOI: 10.1016/j.trac.2017.03.007.
  • Sperandio, V.; Li, C. C.; Kaper, J. B. Quorum-Sensing Escherichia Coli Regulator A: A Regulator of the Lysr Family Involved in the Regulation of the Locus of Enterocyte Effacement Pathogenicity Island in Enterohemorrhagic E. Coli. Infect. Immun. 2002, 70(6), 3085–3093. DOI: 10.1128/iai.70.6.3085-3093.2002.
  • Sztajer, H.; Lemme, A.; Vilchez, R.; Schulz, S.; Geffers, R.; Yip, C. Y. Y.; Levesque, C. M.; Cvitkovitch, D. G.; Wagner-Dobler, I. Autoinducer-2-Regulated Genes in Streptococcus Mutans Ua159 and Global Metabolic Effect of the Luxs Mutation. J. Bacteriol. 2008, 190(1), 401–415. DOI: 10.1128/JB.01086-07.
  • Lebeer, S.; De Keersmaecker, S. C. J.; Verhoeven, T. L. A.; Fadda, A. A.; Marchal, K.; Vanderleyden, J. Functional Analysis of luxS in the Probiotic Strain Lactobacillus Rhamnosus GG Reveals a Central Metabolic Role Important for Growth and Biofilm Formation. J. Bacteriol. 2007, 189(3), 860–871. DOI: 10.1128/JB.01394-06.
  • Christiaen, S. E. A.; Mary, O. C. M.; Francesca, B.; Noreen, L.; Casey, P. G.; Geert, H.; Nelis, H. J.; Douwe, V. S.; Tom, C.; Riedel, C. U. Autoinducer-2 Plays a Crucial Role in Gut Colonization and Probiotic Functionality of Bifidobacterium Breve Ucc2003. PLoS One. 2014, 9(5), e98111. DOI: 10.1371/journal.pone.0098111.
  • Lei, L.; Ruiyun, J.; Zhang, P. Overexpression of Luxs Promotes Stress Resistance and Biofilm Formation of Lactobacillus Paraplantarum L-Zs9 by Regulating the Expression of Multiple Genes. Front. Microbiol. 2018, 9, 2628. DOI: 10.3389/fmicb.2018.02628.
  • Jia, F.-F.; Pang, X.-H.; Zhu, D.-Q.; Zhu, Z.-T.; Sun, S.-R.; Meng, X.-C. Role of the Luxs Gene in Bacteriocin Biosynthesis by Lactobacillus Plantarum Klds1.0391: A Proteomic Analysis. Sci. Rep. 2017, 7(1), 13871. DOI: 10.1038/s41598-017-13231-4.
  • De Keersmaecker, S. C. J.; Varszegi, C.; van Boxel, N.; Habel, L. W.; Metzger, K.; Daniels, R.; Marchal, K.; De Vos, D.; Vanderleyden, J. Chemical Synthesis of (S)-4,5-Dihydroxy-2,3-Pentanedione, a Bacterial Signal Molecule Precursor, and Validation of Its Activity in Salmonella Typhimurium. J. Biol. Chem. 2005, 280(20), 19563–19568. DOI:10.1074/jbc.M412660200.
  • Moslehi-Jenabian, S.; Klaus, G.; Lene, J. Ai-2 Signalling is Induced by Acidic Shock in Probiotic Strains of Lactobacillus Spp. Int. J. Food Microbiol. 2009, 135(3), 295–302. DOI: 10.1016/j.ijfoodmicro.2009.08.011.
  • Maldonado-Barragán, A.; Caballero-Guerrero, B.; Martín, V.; Ruiz-Barba, J. L.; Rodríguez, J. M. Purification and Genetic Characterization of Gassericin E, a Novel Co-Culture Inducible Bacteriocin from Lactobacillus Gasseri Ev1461 Isolated from the Vagina of a Healthy Woman. BMC Microbiol. 2016, 16(1), 37. DOI: 10.1186/s12866-016-0663-1.
  • Mei, L.; Guang-Hong, Z.; Zhi-Geng, W.; Bai, Y. Functional Analysis of Ai-2/luxs from Bacteria in Chinese Fermented Meat After High Nitrate Concentration Shock. Eur. Food Res. Technol. 2015, 240, 119–127. DOI: 10.1007/s00217-014-2313-x.
  • Gu, Y.; Li, B.; Tian, J.; Wu, R.; He, Y. The Response of Luxs/ai-2 Quorum Sensing in Lactobacillus Fermentum 2-1 to Changes in Environmental Growth Conditions. Ann. Microbiol. 2018, 68(5), 287–294. DOI: 10.1007/s13213-018-1337-z.
  • Lima, E. M. F.; Quecán, B. X. V.; Cunha, L. R.; Franco, B. D. G. M.; Pinto, U. M. P. Cell-Cell Communication in Lactic Acid Bacteria: Potential Mechanisms. In Lactic Acid Bacteria: A Functional Approach, 1st ed.; Albuquerque, M.A.C., LeBlanc, A.M., LeBlanc, J.G., Eds.; CRC Press: Boca Raton, Americia, 2020; pp. 1–14. DOI: 10.1201/9780429422591.
  • Lebeer, S.; Claes, I. J.; Verhoeven, T. L.; Shen, C.; Lambrichts, I.; Ceuppens, J. L.; Vanderleyden, J.; De Keersmaecker, S. C. Impact of Luxs and Suppressor Mutations on the Gastrointestinal Transit of Lactobacillus Rhamnosus Gg. Appl. Environ. Microbiol. 2008, 74(15), 4711–4718. DOI: 10.1128/AEM.00133-08.
  • Moslehi-Jenabian, S.; Vogensen, F. K.; Jespersen, L. The Quorum Sensing Luxs Gene is Induced in Lactobacillus Acidophilus Ncfm in Response to Listeria Monocytogenes. Int. J. Food Microbiol. 2011, 151(2), 257. DOI: 10.1016/j.ijfoodmicro.2011.08.018.
  • Hardie, K. R.; Heurlier, K. Establishing Bacterial Communities by ‘Word of Mouth’: Luxs and Autoinducer 2 in Biofilm Development. Nat. Rev. Microbiol. 2008, 6(8), 635. DOI: 10.1038/nrmicro1916.
  • Maldonado, A.; Ruiz-Barba, J.; Jiménez-Díaz, R. Production of Plantaricin Nc8 by Lactobacillus Plantarum Nc8 is Induced in the Presence of Different Types of Gram-Positive Bacteria. Arch. Microbiol. 2004, 181(1), 8–16. DOI: 10.1007/s00203-003-0606-8.
  • Rojo-Bezares, B.; Sáenz, Y.; Navarro, L.; Zarazaga, M.; Ruiz-Larrea, F.; Torres, C. Coculture-Inducible Bacteriocin Activity of Lactobacillus Plantarum Strain J23 Isolated from Grape Must. Food Microbiol. 2007, 24(5), 482–491. DOI: 10.1016/j.fm.2006.09.003.
  • Tabasco, R.; García-Cayuela, T.; Peláez, C.; Requena, T. Lactobacillus Acidophilus la-5 Increases Lactacin B Production When It Senses Live Target Bacteria. Int. J. Food Microbiol. 2009, 132(2–3), 109–116. DOI: 10.1016/j.ijfoodmicro.2009.04.004.
  • Cagno, R. D.; Angelis, M. D.; Calasso, M.; Vincentini, O.; Vernocchi, P.; Ndagijimana, M.; Vincenzi, M. D.; Dessã, M. R.; Guerzoni, M. E.; Gobbetti, M. Quorum Sensing in Sourdough Lactobacillus Plantarum Dc400: Induction of Plantaricin a (Plna) Under Co-Cultivation with Other Lactic Acid Bacteria and Effect of Plna on Bacterial and Caco-2 Cells. Proteomics. 2010, 10(11), 2175–2190. DOI: 10.1002/pmic.200900565.
  • Svetoch, E. A.; Eruslanov, B. V.; Perelygin, V. V.; Levchuk, V. P.; Stern, N. J. Inducer Bacteria, Unique Signal Peptides, and Low-Nutrient Media Stimulate in vitro Bacteriocin Production by Lactobacillus Spp. and Enterococcus Spp. Strains. J. Agric. Food. Chem. 2010, 58(10), 6033–6038. DOI: 10.1021/jf902802z.
  • Xiao-Yang, P.; Wen-Ming, C.; Lu, L.; Zhang, S.-W.; Jia-Ping, L. Gene Knockout and Overexpression Analysis Revealed the Role of N-Acetylmuramidase in Autolysis of Lactobacillus Delbrueckii Subsp. Bulgaricus Ljj-6. PLoS One. 2014, 9(8), e104829. DOI: 10.1371/journal.pone.0104829.
  • Pang, X.; Liu, C.; Lv, P.; Zhang, S.; Liu, L.; Lu, J.; Ma, C.; Lv, J. Identification of Quorum Sensing Signal Molecule of Lactobacillus Delbrueckii Subsp Bulgaricus. J. Agric. Food. Chem. 2016, 64(49), 9421–9427.
  • Azcarate-Peril, M. A.; Mcauliffe, O.; Altermann, E.; Lick, S.; Russell, W. M.; Klaenhammer, T. R. Microarray Analysis of a Two-Component Regulatory System Involved in Acid Resistance and Proteolytic Activity in Lactobacillus Acidophilus. Appl. Environ. Microbiol. 2005, 71(10), 5794–5804. DOI: 10.1128/AEM.71.10.5794-5804.2005.
  • Pereira, C. S.; Thompson, J. A.; Xavier, K. B. Ai-2-Mediated Signalling in Bacteria. FEMS Microbiol. Rev. 2013, 37(2), 156–181. DOI: 10.1111/j.1574-6976.2012.00345.x.
  • Buck, B. L.; Azcarateperil, M. A.; Klaenhammer, T. R. Role of Autoinducer-2 on the Adhesion Ability of Lactobacillus Acidophilus. J. Appl. Microbiol. 2010, 107(1), 269–279. DOI: 10.1111/j.1365-2672.2009.04204.x.
  • Sun, Z.; He, X.; Brancaccio, V. F.; Yuan, J.; Riedel, C. U. Bifidobacteria Exhibit Luxs-Dependent Autoinducer 2 Activity and Biofilm Formation. PLoS One. 2014, 9(2), e88260. DOI: 10.1371/journal.pone.0088260.
  • Navarro, L.; Rojo-Bezares, B.; Sáenz, Y.; Díez, L.; Zarazaga, M.; Ruiz-Larrea, F.; Torres, C. Comparative Study of the Pln Locus of the Quorum-Sensing Regulated Bacteriocin-Producing L. Plantarum J51 Strain. Int. J. Food Microbiol. 2008, 128(2), 390–394. DOI: 10.1016/j.ijfoodmicro.2008.08.004.
  • Kleerebezem, M. Quorum Sensing Control of Lantibiotic Production; Nisin and Subtilin Autoregulate Their Own Biosynthesis. Peptides. 2004, 25(9), 1405–1414. DOI: 10.1016/j.peptides.2003.10.021.
  • Rojo-Bezares, B.; Sáenz, Y.; Navarro, L.; Jiménez-Díaz, R.; Zarazaga, M.; Torres, R. L. Characterization of a New Organization of the Plantaricin Locus in the Inducible Bacteriocin-Producing Lactobacillus Plantarum J23 of Grape Must Origin. Arch. Microbiol. 2008, 189(5), 491–499. DOI: 10.1007/s00203-007-0342-6.
  • Wang, G.; Yu, Y.; Garcia-Gutierrez, E.; Jin, X.; He, Y.; Wang, L.; Tian, P.; Liu, Z.; Zhao, J.; Zhang, H. Lactobacillus Acidophilus Jcm 1132 Strain and Its Mutant with Different Bacteriocin-Producing Behaviour Have Various in situ Effects on the Gut Microbiota of Healthy Mice. Microorganisms. 2020, 8(1), 49. DOI: 10.3390/microorganisms8010049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.