392
Views
1
CrossRef citations to date
0
Altmetric
Review

A Review of Ginkgo biloba L. Seed’s Protein; Physicochemical Properties, Bioactivity, and Allergic Glycoprotein

ORCID Icon

References

  • Kumar, M.; Tomar, M.; Punia, S.; Dhakane-Lad, J.; Dhumal, S.; Changan, S.; Senapathy, M.; Berwal, M. K.; Sampathrajan, V.; Sayed, A. A. S., et al. Plant-Based Proteins and Their Multifaceted Industrial Applications. Lwt. 2022, 154 ( July 2021), 112620. DOI: 10.1016/j.lwt.2021.112620.
  • Lehikoinen, E.; Salonen, A. O. Food Preferences in Finland: Sustainable Diets and Their Differences Between Groups. Sustainability. 2019, 11(5), 1–18. DOI: 10.3390/su11051259.
  • Tubb, C.; Seba, T. Rethinking Food and Agriculture 2020-2030: The Second Domestication of Plants and Animals, the Disruption of the Cow, and the Collapse of Industrial Livestock Farming. Ind. Biotechnol. 2021, 17(2), 57–72. DOI: 10.1089/ind.2021.29240.ctu.
  • Gençdağ, E.; Görgüç, A.; Yılmaz, F. M. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. Food Rev. Int. 2021, 37(4), 447–468. DOI: 10.1080/87559129.2019.1709203.
  • Balandrán-Quintana, R. R.; Mendoza-Wilson, A. M.; Ramos-Clamont Montfort, G.; Huerta-Ocampo, J. Á. Plant-Based Proteins, 2019. doi:10.1016/b978-0-12-816695-6.00004-0.
  • Boateng, I. D.; Yang, X. Effect of Different Drying Methods on Product Quality, Bioactive and Toxic Components of Ginkgo Biloba L. Seed. J. Sci. Food Agric. 2020, November. DOI: 10.1002/jsfa.10958.
  • Wang, H.-Y.; Zhang, Y.-Q. The Main Active Constituents and Detoxification Process of Ginkgo Biloba Seeds and Their Potential Use in Functional Health Foods. J. Food Compos. Anal. 2019, 83(July), 103247. DOI: 10.1016/j.jfca.2019.103247.
  • Liu, X.-G.; Lu, X.; Gao, W.; Li, P.; Yang, H. S. Structure, Synthesis, Biosynthesis, and Activity of the Characteristic Compounds from Ginkgo Biloba L. Nat Prod. Rep. 2022, 39(3), 474–511. DOI: 10.1039/d1np00026h.
  • Boateng, I. D.; Yang, X. G. B.; Seed, L. A Comprehensive Review of Bioactives, Toxicants, and Processing Effects. Ind. Crop Prod. 2022, 176, 114281. DOI: 10.1016/j.indcrop.2021.114281.
  • Leistner, E.; Drewke, C. Ginkgo Biloba and Ginkgotoxin. J. Nat. Prod. 2010, 73(1), 86–92. DOI: 10.1021/np9005019.
  • Boateng, I. D.; Soetanto, D. A.; Li, F.; Yang, X.; Li, Y. Separation and Purification of Polyprenols from Ginkgo Biloba L. Leaves by Bulk Ionic Liquid Membrane and Optimizing Parameters. Ind. Crop Prod. 2021, 170, 113828. DOI: 10.1016/j.indcrop.2021.113828.
  • Boateng, I. D.; Soetanto, D. A.; Yang, X.; Zhou, C.; Saalia, F. K.; Li, F. Effect of Pulsed-Vacuum, Hot-Air, Infrared, and Freeze-Drying on Drying Kinetics, Energy Efficiency, and Physicochemical Properties of Ginkgo Biloba L. Seed. J. Food Process. Eng. 2021, e13655. DOI: 10.1111/jfpe.13655.
  • Liu, W.; Zou, M.; Wang, Y.; Cao, F.; Su, E. Ginkgo Seed Proteins: Characteristics, Functional Properties and Bioactivities. Plant Foods Hum. Nutr. 2021, 76(3), 281–291. DOI: 10.1007/s11130-021-00916-5.
  • Shen, L.; Li, J.; Lv, L.; Zhang, L.; Bai, R.; Zheng, T.; Zhang, Q. Comparison of Functional and Structural Properties of Ginkgo Seed Protein Dried by Spray and Freeze Process. J. Food Sci. Technol. 2021, 58(1), 175–185. DOI: 10.1007/s13197-020-04527-x.
  • Zhou, H.; Chen, X.; Wang, C.; Ye, J.; Chen, H. Purification and Characterization of a Novel Similar to 18 Kda Anti-Oxidant Protein from Ginkgo Biloba Seeds. Molecuoles. 2012, 17(12), 14778–14794. DOI: 10.3390/molecules171214778.
  • Zhou, H.; Wang, C.; Ye, J.; Chen, H.; Tao, R.; Cao, F. Effects of High Hydrostatic Pressure Treatment on Structural, Allergenicity, and Functional Properties of Proteins from Ginkgo Seeds. Innov. Food Sci. Emerg. Technol. 2016, 34, 187–195. DOI: 10.1016/j.ifset.2016.02.001.
  • Gorissen, S. H. M.; Crombag, J. J. R.; Senden, J. M. G.; Waterval, W. A. H.; Bierau, J.; Verdijk, L. B.; van Loon, L. J. C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids. 2018, 50(12), 1685–1695. DOI: 10.1007/s00726-018-2640-5.
  • Yang, J.; Wu, C. E.; Li, Y. Y.; Jia, S. Q.; Fan, G. J.; Peng, F. R. Identification and Purification of an Allergic Glycoprotein from Ginkgo Biloba Kernel. Agric. Sci. China. 2011, 10(4), 631–641. DOI: 10.1016/S1671-2927(11)60045-X.
  • Masaomi, A.; Chikafusa, F. Ginkgo LlS Seed Storage Protein Family MRNA: Unusual Asn-Asn Linkage as Post-Translational Cleavage Site. Plant Mol. Biol. 1994, 25(4), 597–605. DOI: 10.1007/BF00029599.
  • Wu, C. E.; Yang, J. T.; Fan, G. J.; Li, T. T.; Tang, Z. X.; Cao, F. L. Allergic Identification for Ginkgo Kernel Protein in Guinea Pigs. Food Sci. Biotechnol. 2016, 25(3), 915–919. DOI: 10.1007/s10068-016-0150-3.
  • JianTing, Y.; Caie, W.; YingYing, L.; ShaoQian, J.; GongJian, F.; HongMei, P. Study on Animal Model of Allergy Provoked by Ginkgo Kernel Protein. Sci. Agric. Sin. 2010, 43(17), 3616–3623.
  • Costa, J.; Villa, C.; Verhoeckx, K.; Cirkovic-Velickovic, T.; Schrama, D.; Roncada, P.; Rodrigues, P. M.; Piras, C.; Martín-Pedraza, L.; Monaci, L., et al. Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens? Clin. Rev. Allergy Immunol. 2021. DOI: 10.1007/s12016-020-08826-1.
  • Mendes, C.; Costa, J.; Vicente, A. A.; Oliveira, M. B. P. P.; Mafra, I. Cashew Nut Allergy: Clinical Relevance and Allergen Characterisation. Clin. Rev. Allergy Immunol. 2019, 57(1), 1. DOI: 10.1007/s12016-016-8580-5.
  • Costa, J.; Mafra, I.; Carrapatoso, I.; Oliveira, M. B. P. P. A. A. Molecular Characterization, Detection, and Clinical Relevance. J. Agric. Food. Chem. 2012, 60(6), 1337–1349. DOI: 10.1021/jf2044923.
  • Costa, J.; Oliveira, M. B. P. P.; Mafra, I. Effect of Thermal Processing on the Performance of the Novel Single-Tube Nested Real-Time PCR for the Detection of Walnut Allergens in Sponge Cakes. Food. Res. Int. 2013, 54(2), 1722–1729. DOI: 10.1016/j.foodres.2013.09.047.
  • Costa, J.; Mafra, I.; Carrapatoso, I.; Oliveira, M. B. P. P. Hazelnut Allergens: Molecular Characterization, Detection, and Clinical Relevance. Crit. Rev. Food Sci. Nutr. 2016, 56(15), 2579–2605. DOI: 10.1080/10408398.2013.826173.
  • Zhou, M.; Hua, T.; Ma, X.; Sun, H.; Xu, L. Protein Content and Amino Acids Profile in 10 Cultivars of Ginkgo (Ginkgo Biloba L.) Nut from China. R. Soc. Open Sci. 2019, 6(3), 3. DOI: 10.1098/rsos.181571.
  • Huang, W. Studies on Separation, Purification and Structure of GSP and Its Biologic Activities. PhD Thesis, Huazhong Agriculture University, 2002.
  • Huang, W.; Xie, B.; Wang, Y.; EN Yang, E.; Luo, R. Study on Separation and Purification of Protein from Ginkgo Seed and Its Anti-Oxidant Activity. Sci. Agric. Sin. 2004, 37, 1537–1543.
  • Wang, H. H.; Ng, T. B. Ginkbilobin, a Novel Antifungal Protein from Ginkgo Biloba Seeds with Sequence Similarity to Embryo-Abundant Protein. Biochem. Biophys. Res. Commun. 2000, 279(2), 407–411. DOI: 10.1006/bbrc.2000.3929.
  • Sawano, Y.; Miyakawa, T.; Yamazaki, H.; Tanokura, M.; Hatano, K. I. P. Characterization, and Molecular Gene Cloning of an Antifungal Protein from Ginkgo Biloba Seeds. Biol. Chem. 2007, 388(3), 273–280. DOI: 10.1515/BC.2007.030.
  • Wang, G.; Ling, H.; Xie, L.; Li, R. Fast Preparation of Anti-Oxidant Proteins from Ginkgo and Soybean by Using Affinity Chromatography. Sci Tech Food Ind. 2012, 33, 278–281.
  • Li, P.; Dong, H.; Liu, C.; Wang, Z.; Zhang, P. Optimization of Ultrasonic‑assisted Extraction Technology of Protein from Ginkgo Biloba. J. Chinese Inst. Food Sci. Technol. 2012, 12, 88–95.
  • Deng, Q.; Wang, L.; Wei, F.; Xie, B.; Huang, F.; Huang, W., Shi, J., Huang, Q., Tian, B., Xue, S. Functional Properties of Protein Isolates, Globulin and Albumin Extracted from Ginkgo Biloba Seeds. Food Chem. 2011, 124(4), 1458–1465. DOI: 10.1016/j.foodchem.2010.07.108.
  • Li, Y.; Wu, C.; Yang, J.; Jia, S.; Xu, W.; Peng, F. Extraction and SDS‑PAGE Analysis of Proteins from Ginkgo Biloba Seed. Food Sci. 2010, 31, 36–40.
  • Huang, W.; Deng, Q. C.; Shi, B. J.; John, H.; Tian, F. H.; Huang, B. Q.; Xue, Q. D.; Xie, S. Purification and Characterization of an Anti-Oxidant Protein from Ginkgo Biloba Seeds. Food. Res. Int. 2010, 43(1), 86–94C. DOI: 10.1016/j.foodres.2009.08.015.
  • Miyakawa, T.; Miyazono, K. I.; Sawano, Y.; Hatano, K. I.; Tanokura, M. Crystal Structure of Ginkbilobin-2 with Homology to the Extracellular Domain of Plant Cysteine-Rich Receptor-Like Kinases. Proteins Struct. Funct. Bioinforma. 2009, 77(1), 247–251. DOI: 10.1002/prot.22494.
  • Wu, H. Study on Antimicrobial Activity and Mechanism of Protein from Ginkgo Biloba Seeds. Phd Thesis, Nanjing For University, 2014.
  • Meng, R.; Tian, Y. Purification and Characterization of an Anti-Oxidant Active Protein from Ginkgo Biloba Seed. Nat. Prod. Res. Dev. 2010, 22, 388–391.
  • Nunes, Â. A.; Favaro, S. P.; Miranda, C. H. B.; Neves, V. A. Preparation and Characterization of Baru (Dipteryx Alata Vog) Nut Protein Isolate and Comparison of Its Physico-Chemical Properties with Commercial Animal and Plant Protein Isolates. J. Sci. Food Agric. 2017, 97(1), 151–157. DOI: 10.1002/jsfa.7702.
  • Li, C.; Yang, J.; Yao, L.; Qin, F.; Hou, G.; Chen, B.; Jin, L.; Deng, J.; Shen, Y. C. Physicochemical and Functional Properties of Protein Isolates from Amygdalus Pedunculata Pall Seeds. Food Chem. 2020, 311, 125888. DOI: 10.1016/j.foodchem.2019.125888.
  • Jain, A.; Subramanian, R.; Manohar, B.; Radha, C. P. Characterization and Functional Properties of Moringa Oleifera Seed Protein Isolate. J. Food Sci. Technol. 2019, 56(4), 2093–2104. DOI: 10.1007/s13197-019-03690-0.
  • Gao, L. L.; Li, Y. Q.; Wang, Z. S.; Sun, G. J.; Qi, X. M.; Mo, H. Z. Physicochemical Characteristics and Functionality of Tree Peony (Paeonia Suffruticosa Andr.) Seed Protein. Food Chem. 2018, 240, 980–988. DOI: 10.1016/j.foodchem.2017.07.124.
  • Elsohaimy, S. A.; Refaay, T. M.; Zaytoun, M. A. M. Physicochemical and Functional Properties of Quinoa Protein Isolate. Ann. Agric. Sci. 2015, 60(2), 297–305. DOI: 10.1016/j.aoas.2015.10.007.
  • Ulloa, J. A.; Villalobos Barbosa, M. C.; Resendiz Vazquez, J. A.; Rosas Ulloa, P.; Ramírez Ramírez, J. C.; Silva Carrillo, Y.; González Torres, L. P. Physico-Chemical and Functional Characterization of a Protein Isolate from Jackfruit (Artocarpus Heterophyllus) Seeds. CyTa - J. Food. 2017, 15(4), 497–507. DOI: 10.1080/19476337.2017.1301554.
  • Yu, M.; Zeng, M.; Qin, F.; He, Z.; Chen, J. Physicochemical and Functional Properties of Protein Extracts from Torreya Grandis Seeds. Food Chem. 2017, 227, 453–460. DOI: 10.1016/j.foodchem.2017.01.114.
  • Timilsena, Y. P.; Adhikari, R.; Barrow, C. J.; Adhikari, B. Physicochemical and Functional Properties of Protein Isolate Produced from Australian Chia Seeds. Food Chem. 2016, 212, 648–656. DOI: 10.1016/j.foodchem.2016.06.017.
  • Khalid, E. K.; Babiker, E. E.; Tinay, E.L.; H, A. Solubility and Functional Properties of Sesame Seed Proteins as Influenced by PH And/or Salt Concentration. Food Chem. 2003, 82(3), 361–366. DOI: 10.1016/S0308-8146(02)00555-1.
  • Barac, M. B.; Pesic, M. B.; Stanojevic, S. P.; Kostic, A. Z.; Bivolarevic, V. Comparative Study of the Functional Properties of Three Legume Seed Isolates: Adzuki, Pea and Soy Bean. J. Food Sci. Technol. 2015, 52(5), 2779–2787. DOI: 10.1007/s13197-014-1298-6.
  • Zhang, W.; Liu, C.; Zhao, J.; Ma, T.; He, Z.; Huang, M.; Wang, Y. Modification of Structure and Functionalities of Ginkgo Seed Proteins by PH-Shifting Treatment. Food Chem. 2021, 358(March), 129862. DOI: 10.1016/j.foodchem.2021.129862.
  • Segura-Campos, M. R. Isolation and Functional Caharacterization of Chia (Salvia Hispanica) Proteins. Food Sci. Technol. 2020, 40(2), 334–339. DOI: 10.1590/fst.41618.
  • Sun, X.; Qiao, Y. Effect of Different Factors on Oil‑ Absorbing, Water‑holding and Foaming Capacities of Ginkgo Protein. Food Mach. 2012, 28, 17–20.
  • Zhang, W.; Huang, L.; Chen, W.; Wang, J.; Wang, S. Influence of Ultrasound-Assisted Ionic Liquid Pretreatments on the Functional Properties of Soy Protein Hydrolysates. Ultrason. Sonochem. 2021, 73, 105546. DOI: 10.1016/j.ultsonch.2021.105546.
  • Fan, L.; Ding, S.; Liu, Y.; Ai, L. Dehydration of Crude Protein from Ginkgo Biloba L. by Microwave Freeze Drying. Int. J. Biol. Macromol. 2012, 50(4), 1008–1010. DOI: 10.1016/j.ijbiomac.2012.02.027.
  • Chen, C. The Effect of Heating on Protein Properties Extracted from Ginkgo Biloba Seeds. Food Ferment. Ind. 2014, 40, 51–56.
  • Niu, W.; Guo, W. Purification and Characterization of an Anti‑ Microbial Protein from Seeds of Ginkgo Biloba. Acta Bot. Boreali-Occidentalia Sin. 2003, 23, 1545–1549.
  • Jia, S.; Wu, C.; Fan, G.; Li, T. Functional Properties of Enzymatic Hydrolysate from Ginkgo Biloba Seeds Protein. Value Eng. 2016, 35, 231–234.
  • Ruan, G.; Chen, Z.; Wei, M.; Liu, Y.; Li, H.; Du, F. The Study on Microwave Assisted Enzymatic Digestion of Ginkgo Protein. J. Mol. Catal. B Enzym. 2013, 94, 23–28. DOI: 10.1016/j.molcatb.2013.04.010.
  • Caie, W.; Shao, Q. J.; Gong, J. F.; Ting, T. L.; Ruifeng, Y.; Jian, T. Y. Purification and Identification of Novel Anti-Oxidant Peptides from Enzymatic Hydrolysate of Ginkgo Biloba Seed Proteins. Food Sci. Technol. Res. 2013, 19(6), 1029–1035. DOI: 10.3136/fstr.19.1029.
  • Deng, Q.; Chen, C.; Pan, X.; Ian, B.; Xie, B. Enzymic Hydrolysis of Ginkgo Albumin Protein and Its Anti-Oxidant Activity. Trans. Chinese Soc. Agric. Eng. 2005, 21, 155–159.
  • Sun, H. J.; Chen, Z.; Wen, P.; Lei, H.; Shi, J.; Huang, M.; Wang, J. Optimization of Enzymatic Hydrolysis Conditions for Preparation of Gingko Peptides from Ginkgo Nuts. Int. J. Food Eng. 2012, 8(1), 1. DOI: 10.1515/1556-3758.2582.
  • Zhang, X.; Li, D. Kinetic Model of Controllable‑enzymatic Hydrolysis of Ginkgo Protein. Food Res. Dev. 2016, 37, 35–38. DOI: 10.3969/j.issn.1005‑6521.2016.22.009.
  • Jiao, S. Study on Extraction Technology of Antibacterial Protein from Ginkgo by Response Surface Methodology and Anti‑ Bacterial Activity. Food Ind. 2014, 35, 131–134.
  • Shan, S. J.; Luo, J.; Xu, D. R.; Niu, X. L.; Xu, D. Q.; Zhang, P. P.; Kong, L. Y. Elucidation of Micromolecular Phenylpropanoid and Lignan Glycosides as the Main Anti-Oxidants of Ginkgo Seeds. Ind. Crops Prod. 2018, 112(July), 830–838. DOI: 10.1016/j.indcrop.2017.12.013.
  • Huang, W.; Xie, B.; Yao, P.; Wang, Y. Studies on Antibiooxi‑ Dation of Ginkgo Protein. Acta Nutr Sin. 2002, 24, 192–194.
  • Lam, S. K.; Ng, T. B. First Report of an Antifungal Amidase from Peltophorum Ptercoarpum. Biomed. Chromatogr. 2010, 24(5), 458–464. DOI: 10.1002/bmc.1312.
  • Liu, J.; Han, D.; Shi, Y. Gene Cloning, Expression, and Antifungal Activities of Permatin from Naked Oat (Avena Nuda). Probiotics Antimicrob. Proteins. 2019, 11(1), 299–309. DOI: 10.1007/s12602-018-9422-y.
  • Ye, X. Y.; Wang, H. X.; Ng, T. B. Sativin: A Novel Antifungal Miraculin-Like Protein Isolated from Legumes of the Sugar Snap Pisum Sativum Var. Macrocarpon. Life Sci. 2000, 67(7), 775–781. DOI: 10.1016/S0024-3205(00)00672-X.
  • Ranilla, L. G.; Genovese, M. I.; Lajolo, F. M. Effect of Different Cooking Conditions on Phenolic Compounds and Anti-Oxidant Capacity of Some Selected Brazilian Bean (Phaseolus Vulgaris L.) Cultivars. J. Agric. Food. Chem. 2009, 57(13), 5734–5742. DOI: 10.1021/jf900527v.
  • Tam, J. P.; Wang, S.; Wong, K. H.; Tan, W. L. Antimicrobial Peptides from Plants. Pharmaceuticals. 2015, 8(4), 711–757. DOI: 10.3390/ph8040711.
  • Nagy, K.; Mikuláss, K.; Végh, A.; Kereszt, A.; Kondorosi, E.; Váró, G.; Szegletes, Z. Interaction of Cysteine-Rich Cationic Antimicrobial Peptides with Intact Bacteria and Model Membranes. Gen. Physiol. Biophys. 2014, 31(4), 375–382. DOI: 10.4149/gpb.
  • Hatano, K. I.; Miyakawa, T.; Sawano, Y.; Tanokura, M. Antifungal and Lipid Transfer Proteins from Ginkgo (Ginkgo Biloba) Seeds. Nuts Seeds Heal. Dis. Prev. 2011, 527–534. DOI: 10.1016/B978-0-12-375688-6.10063-5.
  • Zhang, C.; Wu, C.; Fan, G.; Li, T.; Wang, J.; Gong, H.; Cao, F. Preparation Α‑glucosidase Inhibitory Peptides Derived from Ginkgo Biloba by Enzymatic Method. Food Mach. 2016, 32, 137–141. DOI: 10.13652/j.issn.1003‑5788.2016.11.031.
  • Ma, F. F.; Wang, H.; Wei, C. K.; Thakur, K.; Wei, Z. J.; Jiang, L. Three Novel ACE Inhibitory Peptides Isolated from Ginkgo Biloba Seeds: Purification, Inhibitory Kinetic and Mechanism. Front Pharmacol. 2019, 9(JAN), 1–11. DOI: 10.3389/fphar.2018.01579.
  • Deng, Q.; Huang Wxie, B. The Preliminary Studies on Anti‑tumor Activity of Ginkgo Albumin and Its Mechanism. Acta Nutr Sin. 2006, 28, 259–262. DOI: 10.3321/j.issn:0512‑7955.2006.03.019.
  • Zhu, X.; Zhou, H.; Guo, X. Structure and Function of Plant Glycoproteins. Food Ferment. Ind. 2002, 28, 57–61.
  • Breiteneder, H.; Mills, E. N. C. Plant Food Allergens - Structural and Functional Aspects of Allergenicity. Biotechnol. Adv. 2005, 23(6), 395–399. DOI: 10.1016/j.biotechadv.2005.05.004.
  • Dong, X.; Wang, J.; Raghavan, V. Critical Reviews and Recent Advances of Novel Non-Thermal Processing Techniques on the Modification of Food Allergens. Crit. Rev. Food Sci. Nutr. 2020, 0(0), 1–15. DOI: 10.1080/10408398.2020.1722942.
  • Sun, H.; Yang, X. Effect of Glycosylation Reaction on Immunogenicity and Structure of Ginkgo Seed Protein. Sci. Technol. Food Ind. 2019, 40(15), 14–19.
  • Zhou, H.; Wang, C.; Ye, J.; Tao, R.; Chen, H.; Cao, F. Effects of Enzymatic Hydrolysis Assisted by High Hydrostatic Pressure Processing on the Hydrolysis and Allergenicity of Proteins from Ginkgo Seeds. Food Bioprocess Technol. 2016, 9(5), 839–848. DOI: 10.1007/s11947-016-1676-3.
  • Zhang, Y.; Deng, Y.; Zhao, Y., Kamizaki, K., Wang, Z., Tamada, K., Takumi, T., Hashimoto, R., Otani, H., Pazour, G. J. Ror2 Signaling Regulates Golgi Structure and Transport Through IFT20 for Tumor Invasiveness. Sci. Rep. 2017, 7(1) ( December 2016), 1–10. DOI: 10.1038/srep40021.
  • Li, H.; Zhu, K.; Zhou, H.; Peng, W. Effects of High Hydrostatic Pressure Treatment on Allergenicity and Structural Properties of Soybean Protein Isolate for Infant Formula. Food Chem. 2012, 132(2), 808–814. DOI: 10.1016/j.foodchem.2011.11.040.
  • Yamamoto, S.; Mikami, N.; Matsuno, M.; Hara, T.; Odani, S.; Suzuki, A.; Nishiumi, T. Effects of a High-Pressure Treatment on Bovine Gamma Globulin and Its Reduction in Allergenicity. Biosci. Biotechnol., Biochem. 2010, 74(3), 525–530. DOI: 10.1271/bbb.90715.
  • Kleber, N.; Maier, S.; Hinrichs, J. Antigenic Response of Bovine β-Lactoglobulin Influenced by Ultra-High Pressure Treatment and Temperature. Innov. Food Sci. Emerg. Technol. 2007, 8(1), 39–45. DOI: 10.1016/j.ifset.2006.05.001.
  • Mazzucchelli, G.; Holzhauser, T.; Cirkovic Velickovic, T.; Diaz-Perales, A.; Molina, E.; Roncada, P.; Rodrigues, P.; Verhoeckx, K.; Hoffmann-Sommergruber, K. Current (Food) Allergenic Risk Assessment: Is It Fit for Novel Foods? Status Quo and Identification of Gaps. Mol. Nutr Food Res. 2018, 62(1), 1–52. DOI: 10.1002/mnfr.201700278.
  • Sun, N.; Zhou, C.; Zhou, X.; Sun, L.; Che, H. Use of a Rat Basophil Leukemia (RBL) Cell-Based Immunological Assay for Allergen Identification, Clinical Diagnosis of Allergy, and Identification of Anti-Allergy Agents for Use in Immunotherapy. J. Immunotoxicol. 2015, 12(2), 199–205. DOI: 10.3109/1547691X.2014.920063.
  • Chung, S. Y.; Yang, W.; Krishnamurthy, K. Effects of Pulsed UV-Light on Peanut Allergens in Extracts and Liquid Peanut Butter. J. Food Sci. 2008, 73(5), 400–404. DOI: 10.1111/j.1750-3841.2008.00784.x.
  • Garino, C.; Zitelli, F.; Travaglia, F.; Daniel, J.; Cravotto, G., Arlorio, M. Evaluation of the Impact of Sequential Microwave/ultrasound Processing on the IgE Binding Properties of Pru P 3 in Treated Peach Juice. J. Agric. Food. Chem. 2012, 60(35), 8755–8762. DOI: 10.1021/jf302027e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.