1,098
Views
5
CrossRef citations to date
0
Altmetric
Review

Oleogels as Animal Fat and Shortening Replacers: Research Advances and Application Challenges

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all

References

  • Rogers, M. A. Novel Structuring Strategies for Unsaturated Fats - Meeting the Zero-Trans, Zero-Saturated Fat Challenge: A Review. Food. Res. Int. 2009, 42(7), 747–753. DOI: 10.1016/j.foodres.2009.02.024.
  • Hwang, H. A Critical Review on Structures, Health Effects, Oxidative Stability, and Sensory Properties of Oleogels. Biocatal. Agr. Biotech. 2020, 26, 101657. DOI: 10.1016/j.bcab.2020.101657.
  • Patel, A. R.; Dewettinck, K. Edible Oil Structuring: An Overview and Recent Updates. Food Funct. 2016, 7(1), 20–29. DOI: 10.1039/c5fo01006c.
  • Singh, A.; Auzanneau, F. I.; Rogers, M. A. Advances in Edible Oleogel Technologies - a Decade in Review. Food. Res. Int. 2017, 97, 307–317. DOI: 10.1016/j.foodres.2017.04.022.
  • Guasch-Ferré, M.; Babio, N.; Martínez-González, M. A.; Corella, D.; Ros, E.; Martín-Peláez, S.; Estruch, R.; Arós, F.; Gómez-Gracia, E.; Fiol, M., et al. Dietary Fat Intake and Risk of Cardiovascular Disease and All-Cause Mortality in a Population at High Risk of Cardiovascular Disease. Am. J. Clin. Nutr. 2015, 102(6), 1563–1573.
  • Pakseresht, S.; Tehrani, M. M. Advances in Multi-Component Supramolecular Oleogels - a Review. Food Rev. Int. 2020, 1–23. DOI: 10.1080/87559129.2020.1742153.
  • Zetzl, A. K.; Marangoni, A. G. Structured Emulsions and Edible Oleogels as Solutions to Trans Fat. In Trans Fats Replacement Solutions; Kodali, D.R., Ed.; AOCS Press: Urbana, IL, 2014; Vol. 10, pp. 215–243.
  • Calligaris, S.; Mirolo, G.; Da Pieve, S.; Arrighetti, G.; Nicoli, M. C. Effect of Oil Type on Formation, Structure and Thermal Properties of γ-Oryzanol and β-Sitosterol-Based Organogels. Food Biophys. 2014, 9(1), 69–75. DOI: 10.1007/s11483-013-9318-z.
  • Doan, C. D.; To, C. M.; De Vrieze, M.; Lynen, F.; Danthine, S.; Brown, A.; Dewettinck, K.; Patel, A. R. Chemical Profiling of the Major Components in Natural Waxes to Elucidate Their Role in Liquid Oil Structuring. Food Chem. 2017, 214, 717–725. DOI: 10.1016/j.foodchem.2016.07.123.
  • Doan, C. D.; Tavernier, I.; Okuro, P. K.; Dewettinck, K. Internal and External Factors Affecting the Crystallization, Gelation and Applicability of Wax-Based Oleogels in Food Industry. Innov. Food Sci. Emerg. Technol. 2018, 45, 42–52. DOI: 10.1016/j.ifset.2017.09.023.
  • Yang, S.; Zhu, M.; Wang, N.; Cui, X.; Xu, Q.; Saleh, A. S. M.; Duan, Y.; Xiao, Z. Influence of Oil Type on Characteristics of β-Sitosterol and Stearic Acid Based Oleogel. Food Biophys. 2018, 13(4), 362–373. DOI: 10.1007/s11483-018-9542-7.
  • Wolfer, T. L.; Acevedo, N. C.; Prusa, K. J.; Sebranek, J. G.; Tarté, R. Replacement of Pork Fat in Frankfurter-Type Sausages by Soybean Oil Oleogels Structured with Rice Bran Wax. Meat Sci. 2018, 145, 352–362. DOI: 10.1016/j.meatsci.2018.07.012.
  • Adili, L.; Roufegarinejad, L.; Tabibiazar, M.; Hamishehkar, H.; Alizadeh, A. Development and Characterization of Reinforced Ethyl Cellulose Based Oleogel with Adipic Acid: Its Application in Cake and Beef Burger. Lwt. 2020, 126, 109277. DOI: 10.1016/j.lwt.2020.109277.
  • Gómez-Estaca, J.; Pintado, T.; Jiménez-Colmenero, F.; Cofrades, S. The Effect of Household Storage and Cooking Practices on Quality Attributes of Pork Burgers Formulated with Pufa- and Curcumin-Loaded Oleogels as Healthy Fat Substitutes. Lwt. 2020, 119, 108909. DOI: 10.1016/j.lwt.2019.108909.
  • Giacomozzi, A. S.; Carrín, M. E.; Palla, C. A. Muffins Elaborated with Optimized Monoglycerides Oleogels: From Solid Fat Replacer Obtention to Product Quality Evaluation. J. Food Sci. 2018, 83(6), 1505–1515. DOI: 10.1111/1750-3841.14174.
  • Alvarez-Ramirez, J.; Vernon-Carter, E. J.; Carrera-Tarela, Y.; Garcia, A.; Roldan-Cruz, C. Effects of Candelilla Wax/canola Oil Oleogel on the Rheology, Texture, Thermal Properties and In Vitro Starch Digestibility of Wheat Sponge Cake Bread. Lwt. 2020, 130, 109701. DOI: 10.1016/j.lwt.2020.109701.
  • Jung, D.; Oh, I.; Lee, J.; Lee, S. Utilization of Butter and Oleogel Blends in Sweet Pan Bread for Saturated Fat Reduction: Dough Rheology and Baking Performance. Lwt. 2020, 125, 109194. DOI: 10.1016/j.lwt.2020.109194.
  • Onacik-Gur, S.; Zbikowska, A. Effect of High-Oleic Rapeseed Oil Oleogels on the Quality of Short-Dough Biscuits and Fat Migration. J. Food Sci. Technol. 2020, 57(5), 1609–1618. DOI: 10.1007/s13197-019-04193-8.
  • Huang, H.; Hallinan, R.; Maleky, F. Comparison of Different Oleogels in Processed Cheese Products Formulation. Int J. Food Sci. Tech. 2018, 53(11), 2525–2534. DOI: 10.1111/ijfs.13846.
  • Munk, M. B.; Munk, D. M. E.; Gustavsson, F.; Risbo, J. Using Ethylcellulose to Structure Oil Droplets in Ice Cream Made with High Oleic Sunflower Oil. J. Food Sci. 2018, 83(10), 2520–2526. DOI: 10.1111/1750-3841.14296.
  • Doan, C. D.; Patel, A. R.; Tavernier, I.; De Clercq, N.; Van Raemdonck, K.; Van de Walle, D.; Delbaere, C.; Dewettinck, K. The Feasibility of Wax-Based Oleogel as a Potential Co-Structurant with Palm Oil in Low-Saturated Fat Confectionery Fillings. Eur. J. Lipid Sci. Technol. 2016, 118(12), 1903–1914. DOI: 10.1002/ejlt.201500172.
  • Fayaz, G.; Goli, S. A. H.; Kadivar, M.; Valoppi, F.; Barba, L.; Calligaris, S.; Nicoli, M. C. Potential Application of Pomegranate Seed Oil Oleogels Based on Monoglycerides, Beeswax and Propolis Wax as Partial Substitutes of Palm Oil in Functional Chocolate Spread. Lwt. 2017, 86, 523–529. DOI: 10.1016/j.lwt.2017.08.036.
  • Wendt, A.; Abraham, K.; Wernecke, C.; Pfeiffer, J.; Floeter, E. Application of β-Sitosterol + γ-Oryzanol-Structured Organogel as Migration Barrier in Filled Chocolate Products. J. Am. Oil Chem. Soc. 2017, 94(9), 1131–1140. DOI: 10.1007/s11746-017-3024-9.
  • Zhao, W.; Wei, Z.; Xue, C. Recent Advances on Food-Grade Oleogels: Fabrication, Application and Research Trends. Crit. Rev. Food Sci. Nutr. 2021. DOI: 10.1080/10408398.2021.1922354.
  • Aliasl Khiabani, A.; Tabibiazar, M.; Roufegarinejad, L.; Hamishehkar, H.; Alizadeh, A. Preparation and Characterization of Carnauba Wax/adipic Acid Oleogel: A New Reinforced Oleogel for Application in Cake and Beef Burger. Food Chem. 2020, 333, 127446. DOI: 10.1016/j.foodchem.2020.127446.
  • Jiang, Y.; Liu, L.; Wang, B.; Sui, X.; Zhong, Y.; Zhang, L.; Mao, Z.; Xu, H. Cellulose-Rich Oleogels Prepared with an Emulsion-Templated Approach. Food Hydrocoll. 2018, 77, 460–464. DOI: 10.1016/j.foodhyd.2017.10.023.
  • Luo, S.-Z.; Hu, X.-F.; Jia, Y.-J.; Pan, L.-H.; Zheng, Z.; Zhao, Y.-Y.; Mu, D.-D.; Zhong, X.-Y.; Jiang, S.-T. Camellia Oil-Based Oleogels Structuring with Tea Polyphenol-Palmitate Particles and Citrus Pectin by Emulsion-Templated Method: Preparation, Characterization and Potential Application. Food Hydrocoll. 2019, 95, 76–87. DOI: 10.1016/j.foodhyd.2019.04.016.
  • Espert, M.; Salvador, A.; Sanz, T. Cellulose Ether Oleogels Obtained by Emulsion-Templated Approach Without Additional Thickeners. Food Hydrocoll. 2020, 109, 106085. DOI: 10.1016/j.foodhyd.2020.106085.
  • Marangoni, A. G.; Garti, N. Edible Oleogels: Structure and Health Implications; AOCS Press: Urbana, IL, 2011.
  • Davidovich-Pinhas, M. Oil Structuring Using Polysaccharides. Curr. Opin. Food Sci. 2019, 27, 29–35. DOI: 10.1016/j.cofs.2019.04.006.
  • Kumar, Y. Development of Low-Fat/reduced-Fat Processed Meat Products Using Fat Replacers and Analogues. Food Rev. Int. 2021, 37(3), 296–312. DOI: 10.1080/87559129.2019.1704001.
  • López-Pedrouso, M.; Lorenzo, J. M.; Gullón, B.; Campagnol, P. C. B.; Franco, D. Novel Strategy for Developing Healthy Meat Products Replacing Saturated Fat with Oleogels. Curr. Opin. Food Sci. 2021, 40, 40–45. DOI: 10.1016/j.cofs.2020.06.003.
  • Alejandre, M.; Astiasarán, I.; Ansorena, D.; Barbut, S. Using Canola Oil Hydrogels and Organogels to Reduce Saturated Animal Fat in Meat Batters. Food. Res. Int. 2019, 122, 129–136. DOI: 10.1016/j.foodres.2019.03.056.
  • Barbut, S.; Wood, J.; Marangoni, A. G. Effects of Organogel Hardness and Formulation on Acceptance of Frankfurters. J. Food Sci. 2016, 81(9), C2183–C2188. DOI: 10.1111/1750-3841.13409.
  • Kouzounis, D.; Lazaridou, A.; Katsanidis, E. Partial Replacement of Animal Fat by Oleogels Structured with Monoglycerides and Phytosterols in Frankfurter Sausages. Meat Sci. 2017, 130, 38–46. DOI: 10.1016/j.meatsci.2017.04.004.
  • da Silva, S. L.; Amaral, J. T.; Ribeiro, M.; Sebastião, E. E.; Vargas, C.; de Lima Franzen, F.; Schneider, G.; Lorenzo, J. M.; Fries, L. L. M.; Cichoski, A. J., et al. Fat Replacement by Oleogel Rich in Oleic Acid and Its Impact on the Technological, Nutritional, Oxidative, and Sensory Properties of Bologna-Type Sausages. Meat Sci. 2019, 149, 141–148. DOI: 10.1016/j.meatsci.2018.11.020.
  • Franco, D.; Martins, A. J.; López-Pedrouso, M.; Cerqueira, M. A.; Purriños, L.; Pastrana, L. M.; Vicente, A. A.; Zapata, C.; Lorenzo, J. M. Evaluation of Linseed Oil Oleogels to Partially Replace Pork Backfat in Fermented Sausages. J. Sci. Food Agric. 2020, 100(1), 218–224. DOI: 10.1002/jsfa.10025.
  • Pintado, T.; Cofrades, S. Quality Characteristics of Healthy Dry Fermented Sausages Formulated with a Mixture of Olive and Chia Oil Structured in Oleogel or Emulsion Gel as Animal Fat Replacer. Foods. 2020, 9(6). DOI: 10.3390/foods9060830.
  • Tarté, R.; Paulus, J. S.; Acevedo, N. C.; Prusa, K. J.; Lee, S.-L. High-Oleic and Conventional Soybean Oil Oleogels Structured with Rice Bran Wax as Alternatives to Pork Fat in Mechanically Separated Chicken-Based Bologna Sausage. Lwt. 2020, 131, 109659. DOI: 10.1016/j.lwt.2020.109659.
  • Ferro, A. C.; de Souza Paglarini, C.; Rodrigues Pollonio, M. A.; Lopes Cunha, R. Glyceryl Monostearate-Based Oleogels as a New Fat Substitute in Meat Emulsion. Meat Sci. 2021, 174, 108424. DOI: 10.1016/j.meatsci.2020.108424.
  • Moghtadaei, M.; Soltanizadeh, N.; Goli, S. A. H. Production of Sesame Oil Oleogels Based on Beeswax and Application as Partial Substitutes of Animal Fat in Beef Burger. Food. Res. Int. 2018, 108, 368–377. DOI: 10.1016/j.foodres.2018.03.051.
  • Gómez-Estaca, J.; Pintado, T.; Jiménez-Colmenero, F.; Cofrades, S. Assessment of a Healthy Oil Combination Structured in Ethyl Cellulose and Beeswax Oleogels as Animal Fat Replacers in Low-Fat, Pufa-Enriched Pork Burgers. Food Bioproc.Tech. 2019, 12(6), 1068–1081. DOI: 10.1007/s11947-019-02281-3.
  • Ozer, C. O.; Celegen, S. Evaluation of Quality and Emulsion Stability of a Fat-Reduced Beef Burger Prepared with an Olive Oil Oleogel-Based Emulsion. J. Food Process Preserv. 2021, 45(8). DOI: 10.1111/jfpp.14547.
  • Moghtadaei, M.; Soltanizadeh, N.; Goli, S. A. H.; Sharifimehr, S. Physicochemical Properties of Beef Burger After Partial Incorporation of Ethylcellulose Oleogel Instead of Animal Fat. J. Food Sci. Technol. (Mysore). 2021, 58(12), 4775–4784. DOI: 10.1007/s13197-021-04970-4.
  • Martins, A. J.; Lorenzo, J. M.; Franco, D.; Vicente, A. A.; Cunha, R. L.; Pastrana, L. M.; Quiñones, J.; Cerqueira, M. A. Omega-3 and Polyunsaturated Fatty Acids-Enriched Hamburgers Using Sterol-Based Oleogels. Eur. J. Lipid Sci. Technol. 2019, 121(11), 1900111. DOI: 10.1002/ejlt.201900111.
  • Oh, I.; Lee, J.; Lee, H. G.; Lee, S. Feasibility of Hydroxypropyl Methylcellulose Oleogel as an Animal Fat Replacer for Meat Patties. Food. Res. Int. 2019, 122, 566–572. DOI: 10.1016/j.foodres.2019.01.012.
  • Gao, Y.; Li, M.; Zhang, L.; Wang, Z.; Yu, Q.; Han, L. Preparation of Rapeseed Oil Oleogels Based on Beeswax and Its Application in Beef Heart Patties to Replace Animal Fat. Lwt. 2021, 149, 111986. DOI: 10.1016/j.lwt.2021.111986.
  • Gómez-Estaca, J.; Herrero, A. M.; Herranz, B.; Álvarez, M. D.; Jiménez-Colmenero, F.; Cofrades, S. Characterization of Ethyl Cellulose and Beeswax Oleogels and Their Suitability as Fat Replacers in Healthier Lipid Pâtés Development. Food Hydrocoll. 2019, 87, 960–969. DOI: 10.1016/j.foodhyd.2018.09.029.
  • Demirkesen, I.; Mert, B. Utilization of Beeswax Oleogel-Shortening Mixtures in Gluten-Free Bakery Products. J. Am. Oil Chem. Soc. 2019, 96(5), 545–554. DOI: 10.1002/aocs.12195.
  • Gutiérrez-Luna, K.; Astiasarán, I.; Ansorena, D. Gels as Fat Replacers in Bakery Products: A Review. Crit. Rev. Food Sci. Nutr. 2021, 1–14. DOI: 10.1080/10408398.2020.1869693.
  • Lim, J.; Jeong, S.; Lee, J.; Park, S.; Lee, J.; Lee, S. Effect of Shortening Replacement with Oleogels on the Rheological and Tomographic Characteristics of Aerated Baked Goods. J. Sci. Food Agric. 2017, 97(11), 3727–3732. DOI: 10.1002/jsfa.8235.
  • Oh, I. K.; Lee, S. Utilization of Foam Structured Hydroxypropyl Methylcellulose for Oleogels and Their Application as a Solid Fat Replacer in Muffins. Food Hydrocoll. 2018, 77, 796–802. DOI: 10.1016/j.foodhyd.2017.11.022.
  • Meng, Z.; Guo, Y.; Wang, Y.; Liu, Y. Oleogels from Sodium Stearoyl Lactylate-Based Lamellar Crystals: Structural Characterization and Bread Application. Food Chem. 2019, 292, 134–142. DOI: 10.1016/j.foodchem.2018.11.042.
  • Kim, J. Y.; Lim, J.; Lee, J.; Hwang, H.-S.; Lee, S. Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization. J. Food Sci. 2017, 82(2), 445–452. DOI: 10.1111/1750-3841.13583.
  • Oh, I. K.; Amoah, C.; Lim, J.; Jeong, S.; Lee, S. Assessing the Effectiveness of Wax-Based Sunflower Oil Oleogels in Cakes as a Shortening Replacer. Lwt. 2017, 86, 430–437. DOI: 10.1016/j.lwt.2017.08.021.
  • Willett, S. A.; Akoh, C. C. Physicochemical Characterization of Yellow Cake Prepared with Structured Lipid Oleogels. J. Food Sci. 2019, 84(6), 1390–1399. DOI: 10.1111/1750-3841.14624.
  • Pehlivanoglu, H.; Ozulku, G.; Yildirim, R. M.; Demirci, M.; Toker, O. S.; Sagdic, O. Investigating the Usage of Unsaturated Fatty Acid-Rich and Low-Calorie Oleogels as a Shortening Mimetics in Cake. J. Food Process Preserv. 2018, 42(6), e13621. DOI: 10.1111/jfpp.13621.
  • Pan, L.-H.; Wu, X.-L.; Luo, S.-Z.; He, H.-Y.; Luo, J.-P. Effects of Tea Polyphenol Ester with Different Fatty Acid Chain Length on Camellia Oil-Based Oleogels Preparation and Its Effects on Cookies Properties. J. Food Sci. 2020, 85(8), 2461–2469. DOI: 10.1111/1750-3841.15341.
  • Zhao, M.; Lan, Y.; Cui, L.; Monono, E.; Rao, J.; Chen, B. Physical Properties and Cookie-Making Performance of Oleogels Prepared with Crude and Refined Soybean Oil: A Comparative Study. Food Funct. 2020, 11(3), 2498–2508. DOI: 10.1039/c9fo02180a.
  • Zhao, M.; Xu, M.; Monono, E.; Rao, J.; Chen, B. Unlocking the Potential of Minimally Processed Corn Germ Oil and High Oleic Soybean Oil to Prepare Oleogels for Bakery Application. Food Funct. 2020, 11(12), 10329–10340. DOI: 10.1039/d0fo02451a.
  • Li, S.; Wu, G.; Li, X.; Jin, Q.; Wang, X.; Zhang, H. Roles of Gelator Type and Gelation Technology on Texture and Sensory Properties of Cookies Prepared with Oleogels. Food Chem. 2021, 356, 129667. DOI: 10.1016/j.foodchem.2021.129667.
  • Vernon-Carter, E. J.; Alvarez-Ramirez, J.; Meraz, M.; Bello-Perez, L. A.; Garcia-Diaz, S. Canola Oil/candelilla Wax Oleogel Improves Texture, Retards Staling and Reduces In Vitro Starch Digestibility of Maize Tortillas. J. Sci. Food Agric. 2020, 100(3), 1238–1245. DOI: 10.1002/jsfa.10135.
  • Lim, J.; Jeong, S.; Oh, I. K.; Lee, S. Evaluation of Soybean Oil-Carnauba Wax Oleogels as an Alternative to High Saturated Fat Frying Media for Instant Fried Noodles. Lwt. 2017, 84, 788–794. DOI: 10.1016/j.lwt.2017.06.054.
  • Oh, I.; Lee, S. Rheological, Microstructural, and Tomographical Studies on the Rehydration Improvement of Hot Air-Dried Noodles with Oleogel. J. Food Eng. 2020, 268, 109750. DOI: 10.1016/j.jfoodeng.2019.109750.
  • Park, C.; Bemer, H. L.; Maleky, F. Oxidative Stability of Rice Bran Wax Oleogels and an Oleogel Cream Cheese Product. J. Am. Oil Chem. Soc. 2018, 95(10), 1267–1275. DOI: 10.1002/aocs.12095.
  • Moriano, M. E.; Alamprese, C. Organogels as Novel Ingredients for Low Saturated Fat Ice Creams. Lwt. 2017, 86, 371–376. DOI: 10.1016/j.lwt.2017.07.034.
  • Palla, C. A.; Wasinger, M. F.; Carrin, M. E. Monoglyceride Oleogels as Fat Replacers in Filling Creams for Sandwich Cookies. J. Sci. Food Agric. 2021, 101(6), 2398–2405. DOI: 10.1002/jsfa.10863.
  • Puscas, A.; Muresan, V.; Socaciu, C.; Muste, S. Oleogels in Food: A Review of Current and Potential Applications. Foods. 2020, 9(1), 70–97. DOI: 10.3390/foods9010070.
  • West, R.; Rousseau, D. The Role of Nonfat Ingredients on Confectionery Fat Crystallization. Crit. Rev. Food Sci. Nutr. 2018, 58(11), 1917–1936. DOI: 10.1080/10408398.2017.1286293.
  • Li, L.; Liu, G. Corn Oil-Based Oleogels with Different Gelation Mechanisms as Novel Cocoa Butter Alternatives in Dark Chocolate. J. Food Eng. 2019, 263, 114–122. DOI: 10.1016/j.jfoodeng.2019.06.001.
  • Bascuas, S.; Espert, M.; Llorca, E.; Quiles, A.; Salvador, A.; Hernando, I. Structural and Sensory Studies on Chocolate Spreads with Hydrocolloid-Based Oleogels as a Fat Alternative. Lwt. 2021, 135, 110228. DOI: 10.1016/j.lwt.2020.110228.
  • David, A.; David, M.; Lesniarek, P.; Corfias, E.; Pululu, Y.; Delample, M.; Snabre, P. Oleogelation of Rapeseed Oil with Cellulose Fibers as an Innovative Strategy for Palm Oil Substitution in Chocolate Spreads. J. Food Eng. 2021, 292, 110315. DOI: 10.1016/j.jfoodeng.2020.110315.
  • Sun, P.; Xia, B.; Ni, Z.-J.; Wang, Y.; Elam, E.; Thakur, K.; Ma, Y.-L.; Wei, Z.-J. Characterization of Functional Chocolate Formulated Using Oleogels Derived from β-Sitosterol with γ-Oryzanol/lecithin/stearic Acid. Food Chem. 2021, 360, 130017. DOI: 10.1016/j.foodchem.2021.130017.
  • Espert, M.; Hernández, M. J.; Sanz, T.; Salvador, A. Reduction of Saturated Fat in Chocolate by Using Sunflower Oil-Hydroxypropyl Methylcellulose Based Oleogels. Food Hydrocoll. 2021, 120, 106917. DOI: 10.1016/j.foodhyd.2021.106917.
  • Yousuf, B.; Wu, S.; Gao, Y. Characteristics of Karaya Gum Based Films: Amelioration by Inclusion of Schisandra Chinensis Oil and Its Oleogel in the Film Formulation. Food Chem. 2021, 345, 128859. DOI: 10.1016/j.foodchem.2020.128859.
  • Shi, Y.; Zhang, M.; Bhandari, B. Effect of Addition of Beeswax Based Oleogel on 3D Printing of Potato Starch-Protein System. Food Struct. 2021, 27, 100176. DOI: 10.1016/j.foostr.2021.100176.
  • Zhuang, X.; Gaudino, N.; Clark, S.; Acevedo, N. C. Novel Lecithin-Based Oleogels and Oleogel Emulsions Delay Lipid Oxidation and Extend Probiotic Bacteria Survival. Lwt. 2021, 136, 110353. DOI: 10.1016/j.lwt.2020.110353.
  • Scholten, E. Edible Oleogels: How Suitable are Proteins as a Structurant? Curr. Opin. Food Sci. 2019, 27, 36–42. DOI: 10.1016/j.cofs.2019.05.001.
  • Demirkesen, I.; Mert, B. Recent Developments of Oleogel Utilizations in Bakery Products. Crit. Rev. Food Sci. Nutr. 2020, 60(14), 2460–2479. DOI: 10.1080/10408398.2019.1649243.
  • Matheson, A.; Dalkas, G.; Clegg, P. S.; Euston, S. R. Phytosterol-Based Edible Oleogels: A Novel Way of Replacing Saturated Fat in Food. Nutr. Bull. 2018, 43(2), 189–194. DOI: 10.1111/nbu.12325.
  • Sawalha, H.; den Adel, R.; Venema, P.; Bot, A.; Floter, E.; van der Linden, E. Organogel-Emulsions with Mixtures of β-Sitosterol and γ-Oryzanol: Influence of Water Activity and Type of Oil Phase on Gelling Capability. J. Agric. Food. Chem. 2012, 60(13), 3462–3470. DOI: 10.1021/jf300313f.
  • Panagiotopoulou, E.; Moschakis, T.; Katsanidis, E. Sunflower Oil Organogels and Organogel-In-Water Emulsions (Part II): Implementation in Frankfurter Sausages. Lwt. 2016, 73, 351–356. DOI: 10.1016/j.lwt.2016.06.006.
  • Hughes, N.; Rush, J. W.; Marangoni, A. G. Clinical Study on 12-Hydroxystearic Acid Organogel Ingestion. In Edible Oleogels: Structure and Health Implications; Marangoni, A.G. and Garti, N., Eds.; AOCS Press: Urbana, IL, 2011; Vol. 14, pp. 313–330.
  • Shahidi, F.; Zhong, Y. Lipid Oxidation and Improving the Oxidative Stability. Chem. Soc. Rev. 2010, 39(11), 4067–4079. DOI: 10.1039/b922183m.
  • Arab-Tehrany, E.; Jacquot, M.; Gaiani, C.; Imran, M.; Desobry, S.; Linder, M. Beneficial Effects and Oxidative Stability of Omega-3 Long-Chain Polyunsaturated Fatty Acids. Trends Food Sci. Technol. 2012, 25(1), 24–33. DOI: 10.1016/j.tifs.2011.12.002.
  • Guo, Y.; Cai, Z.; Xie, Y.; Ma, A.; Zhang, H.; Rao, P.; Wang, Q. Synthesis, Physicochemical Properties, and Health Aspects of Structured Lipids: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19(2), 759–800. DOI: 10.1111/1541-4337.12537.
  • Hong, S.; Jo, S.; Kim, M.; Park, S.; Lee, S.; Lee, J.; Lee, J. Addition of Sesamol Increases the Oxidative Stability of Beeswax Organogels and Beef Tallow Matrix Under UV Light Irradiation and Thermal Oxidation. J. Food Sci. 2019, 84(5), 971–979. DOI: 10.1111/1750-3841.14590.
  • Willett, W. C.; Stampfer, M. J.; Sacks, F. M. Association of Dietary, Circulating, and Supplement Fatty Acids with Coronary Risk. Ann. Intern. Med. 2014, 161(6), 453. DOI: 10.7326/L14-5018.
  • Edmund Daniel, C.; Marangoni, A. G. Organogels: An Alternative Edible Oil-Structuring Method. J. Am. Oil Chem. Soc. 2012, 89(5), 749–780. DOI: 10.1007/s11746-012-2049-3.
  • Hwang, H.-S.; Fhaner, M.; Winkler-Moser, J. K.; Liu, S. X. Oxidation of Fish Oil Oleogels Formed by Natural Waxes in Comparison with Bulk Oil. Eur. J. Lipid Sci. Technol. 2018, 120(5), 1700378. DOI: 10.1002/ejlt.201700378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.