399
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Developments in Procyanidins on Metabolic Diseases, Their Possible Sources, Pharmacokinetic Profile, and Clinical Outcomes

, , ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Bertrand, L.; Lehuen, A. MAIT Cells in Metabolic Diseases. Mol. Metab. 2019, 27, S114–S121. DOI: 10.1016/j.molmet.2019.06.025.
  • Gowd, V.; Karim, N.; Shishir, M. R. I.; Xie, L.; Chen, W. Dietary Polyphenols to Combat the Metabolic Diseases via Altering Gut Microbiota. Trends Food Sci. Technol. 2019, 93, 81–93. DOI: 10.1016/j.tifs.2019.09.005.
  • Karim, N.; Jia, Z.; Zheng, X.; Cui, S.; Chen, W. A Recent Review of Citrus Flavanone Naringenin on Metabolic Diseases and Its Potential Sources for High Yield-Production. Trends Food Sci. Technol. 2018, 79, 35–54. DOI: 10.1016/j.tifs.2018.06.012.
  • WHO World Health Organiziation. Obesity and Overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. (accessed September 21, 2021, 2021.
  • Diallo, K.; Oppong, A. K.; Lim, G. E. Can 14-3-3 Proteins Serve as Therapeutic Targets for the Treatment of Metabolic Diseases? Pharmacol. Res. 2019, 139, 199–206. DOI: 10.1016/j.phrs.2018.11.021.
  • Zhang, J.; Zhao, L.; Cheng, Q.; Ji, B.; Yang, M.; Sanidad, K. Z.; Wang, C.; Zhou, F. Structurally Different Flavonoid Subclasses Attenuate High-Fat and High-Fructose Diet Induced Metabolic Syndrome in Rats. J. Agric. Food. Chem. 2018, 66, 12412–12420. DOI: 10.1021/acs.jafc.8b03574.
  • Martins Gregório, B.; Benchimol De Souza, D.; Amorim de Morais Nascimento, F.; Matta, L.; Fernandes-Santos, C. The Potential Role of Antioxidants in Metabolic Syndrome. Curr. Pharm. Des. 2016, 22, 859–869. DOI: 10.2174/1381612822666151209152352.
  • Bao, T.; Wang, Y.; Li, Y.; Gowd, V.; Niu, X.; Yang, H., et al. Antioxidant and Antidiabetic Properties of Tartary Buckwheat Rice Flavonoids After In Vitro Digestion. J. Zhejiang Univ. Sci. B 2016, 17, 941–951. DOI: 10.1631/jzus.B1600243.
  • Su, H.; Li, Y.; Hu, D.; Xie, L.; Ke, H.; Zheng, X., Chen, W. Procyanidin B2 Ameliorates Free Fatty Acids-Induced Hepatic Steatosis Through Regulating TFEB-Mediated Lysosomal Pathway and Redox State. Free Radical Biol. Med. 2018, 126, 269–286. DOI: 10.1016/j.freeradbiomed.2018.08.024.
  • Su, H.; Xie, L.; Xu, Y.; Ke, H.; Bao, T.; Li, Y., Chen, W. Pelargonidin-3- O -Glucoside Derived from Wild Raspberry Exerts Antihyperglycemic Effect by Inducing Autophagy and Modulating Gut Microbiota. J. Agric. Food. Chem. 2020, 68, 13025–13037. DOI: 10.1021/acs.jafc.9b03338.
  • Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. DOI: 10.1017/jns.2016.41.
  • Shishir, M. R. I.; Karim, N.; Gowd, V.; Xie, J.; Zheng, X.; Chen, W. Pectin-Chitosan Conjugated Nanoliposome as a Promising Delivery System for Neohesperidin: Characterization, Release Behavior, Cellular Uptake, and Antioxidant Property. Food Hydrocolloids. 2019, 95, 432–444. DOI: 10.1016/j.foodhyd.2019.04.059.
  • Chen, W.; Zhuang, J.; Li, Y.; Shen, Y.; Zheng, X. Myricitrin Protects Against Peroxynitrite-Mediated DNA Damage and Cytotoxicity in Astrocytes. Food Chem. 2013, 141, 927–933. DOI: 10.1016/j.foodchem.2013.04.033.
  • Rashwan, A. K.; Yones, H. A.; Karim, N.; Taha, E. M.; Chen, W. Potential Processing Technologies for Developing Sorghum-Based Food Products: An Update and Comprehensive Review. Trends Food Sci. Technol. 2021, 110, 168–182. DOI: 10.1016/j.tifs.2021.01.087.
  • Ye, H.; Luo, L.; Wang, J.; Jiang, K.; Yue, T.; Yang, H. Highly Galloylated and A-Type Prodelphinidins and Procyanidins in Persimmon (Diospyros Kaki L.) Peel. Food Chem. 2022, 378, 131972. DOI: 10.1016/j.foodchem.2021.131972.
  • Rashwan, A. K.; Karim, N.; Xu, Y.; Cui, H.; Fang, J.; Cheng, K., Mo, J., Chen, W. Chemical Composition, Quality Attributes and Antioxidant Activity of Stirred-Type Yogurt Enriched with Melastoma Dodecandrum Lour Fruit Powder. Food Function. 2022, 13, 1579–1592. DOI: 10.1039/D1FO03448K.
  • Song, J.; Jiang, L.; Peng, H.; Qi, M.; Zhang, M.; Qi, J., Ma, C., Li, H., Zhang, D. Microcapsule Prepared by Extruding Starch and Procyanidins Inhibited Protein Oxidation and Improved Quality of Chicken Sausages. LWT - Food Sci. Technol. 2022, 154, 112617. DOI: 10.1016/j.lwt.2021.112617.
  • Rue, E. A.; Rush, M. D.; van Breemen, R. B. Procyanidins: A Comprehensive Review Encompassing Structure Elucidation via Mass Spectrometry. Phytochem. Rev. 2018, 17, 1–16. DOI: 10.1007/s11101-017-9507-3.
  • Ruan, W.; Shen, S.; Xu, Y.; Ran, N.; Zhang, H. Mechanistic Insights into Procyanidins as Therapies for Alzheimer’s Disease: A Review. J. Funct. Foods. 2021, 86, 104683. DOI: 10.1016/j.jff.2021.104683.
  • Yang, H.; Tuo, X.; Wang, L.; Tundis, R.; Portillo, M. P.; Simal-Gandara, J., Yu, Y., Zou, L., Xiao, J., Deng, change J. Bioactive Procyanidins from Dietary Sources: The Relationship Between Bioactivity and Polymerization Degree. Trends Food Sci. Technol. 2021, 111, 114–127. DOI: 10.1016/j.tifs.2021.02.063.
  • Valls, R.-M.; Llauradó, E.; Fernández-Castillejo, S.; Puiggrós, F.; Solà, R.; Arola, L., Pedret, A. Effects of Low Molecular Weight Procyanidin Rich Extract from French Maritime Pine Bark on Cardiovascular Disease Risk Factors in Stage-1 Hypertensive Subjects: Randomized, Double-Blind, Crossover, Placebo-Controlled Intervention Trial. Phytomedicine. 2016, 23, 1451–1461. DOI: 10.1016/j.phymed.2016.08.007.
  • Jiang, X.; Liu, Y.; Wu, Y.; Tan, H.; Meng, F.; Wang, Y. S., Li, M., Zhao, L., Liu, L., Qian, Y. Analysis of Accumulation Patterns and Preliminary Study on the Condensation Mechanism of Proanthocyanidins in the Tea Plant [Camellia Sinensis]. Sci. Rep. 2015, 5, 8742. DOI: 10.1038/srep08742.
  • Badeggi, U. M.; Ismail, E.; Adeloye, A. O.; Botha, S.; Badmus, J. A.; Marnewick, J. L., Cupido, C., Hussein, A. Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea Sericea as Potential Antidiabetic and Antioxidant Agents. Biomolecules. 2020, 10, 452. DOI: 10.3390/biom10030452.
  • Li, L.; Zhang, S.; Cui, Y.; Li, Y.; Luo, L.; Zhou, P., Sun, B. Preparative Separation of Cacao Bean Procyanidins by High-Speed Counter-Current Chromatography. J. Chromatogr. B. 2016, 1036-1037, 10–19. DOI: 10.1016/j.jchromb.2016.09.030.
  • Sui, Y.; Zheng, Y.; Li, X.; Li, S.; Xie, B.; Sun, Z. Characterization and Preparation of Oligomeric Procyanidins from Litchi Chinensis Pericarp. Fitoterapia. 2016, 112, 168–174. DOI: 10.1016/j.fitote.2016.06.001.
  • Zhang, L.; Wang, Y.; Li, D.; Ho, C.; Li, J.; Wan, X. The Absorption, Distribution, Metabolism and Excretion of Procyanidins. Food Function. 2016, 7, 1273–1281. DOI: 10.1039/C5FO01244A.
  • Appeldoorn, M. M., Dietary A-And B-Type Procyanidins: Characterization and Biofunctional Potential of an Abundant and Diverse Group of Phenolics; PDF, Wageningen University and Research, 2009;
  • Wollgast, J.; Anklam, E. Review on Polyphenols in Theobroma Cacao: Changes in Composition During the Manufacture of Chocolate and Methodology for Identification and Quantification. Food. Res. Int. 2000, 33, 423–447. DOI: 10.1016/S0963-9969(00)00068-5.
  • Yu, J.; Ahmedna, M.; Goktepe, I.; Dai, J. Peanut Skin Procyanidins: Composition and Antioxidant Activities as Affected by Processing. J. Food Compost. Anal. 2006, 19, 364–371. DOI: 10.1016/j.jfca.2005.08.003.
  • Hollands, W.; Tapp, H.; Defernez, M.; Perez Moral, N.; Winterbone, M. S.; Philo, M., Lucey, A. J., Kiely, M. E., Kroon, P. A. Lack of Acute or Chronic Effects of Epicatechin-Rich and Procyanidin-Rich Apple Extracts on Blood Pressure and Cardiometabolic Biomarkers in Adults with Moderately Elevated Blood Pressure: A Randomized, Placebo-Controlled Crossover Trial. Am. J. Clin. Nutr. 2018, 108, 1006–1014. DOI: 10.1093/ajcn/nqy139.
  • Zhang, W.; Zhang, G.; Wang, L.; Yan, X.; Wang, S.; Yang, Z. Simultaneous Determination of Procyanidin B1, Procyanidin B2, Procyanidin B4, Rutin, and Quercetin in Aronia Melanocarpa Berry by UPLC. Chin. Traditional Herbal Drugs. 2016, 47, 4452–4455. DOI: 10.7501/j.issn.0253-2670.2016.24.026.
  • Capanoglu, E.; Boyacioglu, D.; de Vos, R.; Hall, R.; Beekwilder, J. Procyanidins in Fruit from Sour Cherry (Prunus cerasus) Differ Strongly in Chainlength from Those in Laurel Cherry (Prunus laurocerasus) and Cornelian Cherry (Cornus mas). J. Berry Res. 2011, 1, 137–146. DOI: 10.3233/BR-2011-015.
  • Sydora, N.; Kovalyova, A.; Danylova, I. Determination of the Quantitative Content of Procyanidins in Hawthorn Fruits. J. Organic Pharm. Chem. 2018, 16, 48–51. DOI: 10.24959/ophcj.18.955.
  • Russo, M.; Ronci, M.; Vilmercati, A.; Gionfriddo, M.; Fanali, C.; Dugo, L., Locato, V., Mondello, L., De Gara, L. African Baobab (Adansonia digitata) Fruit as Promising Source of Procyanidins. Eur. Food Res. Technol. 2020, 246, 297–306. DOI: 10.1007/s00217-019-03342-9.
  • Sorour, M.; Mehanni, A.; Taha, E.; Rashwan, A. Changes of Total Phenolics, Tannins, Phytate and Antioxidant Activity of Two Sorghum Cultivars as Affected by Processing. J. Food Dairy Sci. 2017, 8, 267–274. DOI: 10.21608/jfds.2017.38699.
  • Gangopadhyay, N.; Rai, D. K.; Brunton, N. P.; Gallagher, E.; Hossain, M. B. Antioxidant-Guided Isolation and Mass Spectrometric Identification of the Major Polyphenols in Barley (Hordeum vulgare) Grain. Food Chem. 2016, 210, 212–220. DOI: 10.1016/j.foodchem.2016.04.098.
  • Grace, M.; Warlick, C.; Neff, S.; Lila, M. Efficient Preparative Isolation and Identification of Walnut Bioactive Components Using High-Speed Counter-Current Chromatography and LC-ESI-IT-TOF-MS. Food Chem. 2014, 158, 229–238. DOI: 10.1016/j.foodchem.2014.02.117.
  • Ojeda-Amador, R.; Salvador, M.; Fregapane, G.; Gómez-Alonso, S. Comprehensive Study of the Phenolic Compound Profile and Antioxidant Activity of Eight Pistachio Cultivars and Their Residual Cakes and Virgin Oils. J. Agric. Food. Chem. 2019, 67, 3583–3594. DOI: 10.1021/acs.jafc.8b06509.
  • Schmitzer, V.; Slatnar, A.; Veberic, R.; Stampar, F.; Solar, A. Roasting Affects Phenolic Composition and Antioxidative Activity of Hazelnuts (Corylus Avellana L.). J. Food Sci. 2011, 76, S14–S19. DOI: 10.1111/j.1750-3841.2010.01898.x.
  • Tsujita, T.; Shintani, T.; Sato, H. α-Amylase Inhibitory Activity from Nut Seed Skin Polyphenols. 1. Purification and Characterization of Almond Seed Skin Polyphenols. J. Agric. Food. Chem. 2013, 61, 4570–4576. DOI: 10.1021/jf400691q.
  • de Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J. Quantitative Analysis of Flavan-3-Ols in Spanish Foodstuffs and Beverages. J. Agric. Food. Chem. 2000, 48, 5331–5337. DOI: 10.1021/jf000549h.
  • Gonthier, M.; Donovan, J.; Texier, O.; Felgines, C.; Remesy, C.; Scalbert, A. Metabolism of Dietary Procyanidins in Rats. Free Radical Biol. Med. 2003, 35, 837–844. DOI: 10.1016/S0891-5849(03)00394-0.
  • Spencer, J.; Chaudry, F.; Pannala, A.; Srai, S.; Debnam, E.; Rice-Evans, C. Decomposition of Cocoa Procyanidins in the Gastric Milieu. Biochem. Biophys. Res. Commun. 2000, 272, 236–241. DOI: 10.1006/bbrc.2000.2749.
  • Stoupi, S.; Williamson, G.; Viton, F.; Barron, D.; King, L.; Brown, J., Clifford, M. N. In Vivo Bioavailability, Absorption, Excretion, and Pharmacokinetics of [14 C]procyanidin B2 in Male Rats. Drug Metab. Dispos. 2010, 38, 287. DOI: 10.1124/dmd.109.030304.
  • Rios, L.; Bennett, R.; Lazarus, S.; Rémésy, C.; Scalbert, A.; Williamson, G. Cocoa Procyanidins are Stable During Gastric Transit in Humans. Am. J. Clin. Nutr. 2002, 76, 1106–1110. DOI: 10.1093/ajcn/76.5.1106.
  • Serra, A.; Macià, A.; Romero, M.; Valls, J.; Bladé, C.; Arola, L., Motilva, M.-J. Bioavailability of Procyanidin Dimers and Trimers and Matrix Food Effects in in vitro and in vivo Models. Br. J. Nutr. 2010, 103, 944–952. DOI: 10.1017/S0007114509992741.
  • Appeldoorn, M.; Vincken, J.; Gruppen, H.; Hollman, P. Procyanidin Dimers A1, A2, and B2 are Absorbed Without Conjugation or Methylation from the Small Intestine of Rats. J. Nutr. 2009, 139, 1469–1473. DOI: 10.3945/jn.109.106765.
  • Wiese, S.; Esatbeyoglu, T.; Winterhalter, P.; Kruse, H.; Winkler, S.; Bub, A., Kulling, S. E. Comparative Biokinetics and Metabolism of Pure Monomeric, Dimeric, and Polymeric Flavan-3-Ols: A Randomized Cross-Over Study in Humans. Mol. Nutr. Food Res. 2015, 59, 610–621. DOI: 10.1002/mnfr.201400422.
  • Baba, S.; Osakabe, N.; Natsume, M.; Terao, J. Absorption and Urinary Excretion of Procyanidin B2 [Epicatechin-(4β-8)-Epicatechin] in Rats. Free Radical Biol. Med. 2002, 33, 142–148. DOI: 10.1016/S0891-5849(02)00871-7.
  • Kruger, M.; Davies, N.; Myburgh, K.; Lecour, S. Proanthocyanidins, Anthocyanins and Cardiovascular Diseases. Food. Res. Int. 2014, 59, 41–52. DOI: 10.1016/j.foodres.2014.01.046.
  • Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham, H.; Patel, S.; Pan, X., et al. Proanthocyanidins: A Comprehensive Review. Biomed. Pharm. 2019, 116, 108999. DOI: 10.1016/j.biopha.2019.108999.
  • Ariga, T.; Koshiyama, I.; Fukushima, D. Antioxidative Properties of Procyanidins B-1 and B-3 from Azuki Beans in Aqueous Systems. Agric. Biol. Chem. 1988, 52, 2717–2722. DOI: 10.1080/00021369.1988.10869144.
  • Michel, P.; Granica, S.; Magiera, A.; Rosińska, K.; Jurek, M.; Poraj, Ł., Olszewska, M. A. Salicylate and Procyanidin-Rich Stem Extracts of Gaultheria Procumbens L. Inhibit Pro-Inflammatory Enzymes and Suppress Pro-Inflammatory and Pro-Oxidant Functions of Human Neutrophils Ex Vivo. Int. J. Mol. Sci. 2019, 20, 1753. DOI: 10.3390/ijms20071753.
  • Zhao, S.; Zhang, L.; Yang, C.; Li, Z.; Rong, S. Procyanidins and Alzheimer’s Disease. Mol. Neurobiol. 2019, 56, 5556–5567. DOI: 10.1007/s12035-019-1469-6.
  • Zheng, S.; Huang, K.; Zhao, C.; Xu, W.; Sheng, Y.; Luo, Y., He, X. Procyanidin Attenuates Weight Gain and Modifies the Gut Microbiota in High Fat Diet Induced Obese Mice. J. Funct. Foods. 2018, 49, 362–368. DOI: 10.1016/j.jff.2018.09.007.
  • Ariga, T.; Hamano, M. Radical Scavenging Action and Its Mode in Procyanidins B-1 and B-3 from Azuki Beans to Peroxyl Radicals. Agric. Biol. Chem. 1990, 54, 2499–2504. DOI: 10.1080/00021369.1990.10870369.
  • Liu, L.; Xie, B.; Cao, S.; Yang, E.; Xu, X.; Guo, S. A-Type Procyanidins from Litchi Chinensis Pericarp with Antioxidant Activity. Food Chem. 2007, 105, 1446–1451. DOI: 10.1016/j.foodchem.2007.05.022.
  • Spranger, I.; Sun, B.; Mateus, A. M.; Freitas, V. D.; Ricardo-da-Silva, J. M. Chemical Characterization and Antioxidant Activities of Oligomeric and Polymeric Procyanidin Fractions from Grape Seeds. Food Chem. 2008, 108, 519–532. DOI: 10.1016/j.foodchem.2007.11.004.
  • Yang, L.; Huang, J.; Zu, Y.; Ma, C.; Wang, H.; Sun, X., Sun, Z. Preparation and Radical Scavenging Activities of Polymeric Procyanidins Nanoparticles by a Supercritical Antisolvent (SAS) Process. Food Chem. 2011, 128, 1152–1159. DOI: 10.1016/j.foodchem.2011.04.017.
  • Luo, X.; Chen, M.; Duan, Y.; Duan, W.; Zhang, H.; He, Y., Yin, C., Sun, G., Sun, X. Chemoprotective Action of Lotus Seedpod Procyanidins on Oxidative Stress in Mice Induced by Extremely Low-Frequency Electromagnetic Field Exposure. Biomed. Pharm. 2016, 82, 640–648. DOI: 10.1016/j.biopha.2016.06.005.
  • Xu, H.; Feng, X.; Zhao, P.; Damirin, A.; Ma, C. Procyanidin A2 Penetrates L-02 Cells and Protects Against Tert-Butyl Hydroperoxide-Induced Oxidative Stress by Activating Nrf2 Through JNK and P38 Phosphorylation. J. Funct. Foods. 2019, 62, 103562. DOI: 10.1016/j.jff.2019.103562.
  • Martins, G.; Do Amaral, F.; Brum, F.; Mohana-Borges, R.; de Moura, S.; Ferreira, F.; Sangenito, L. S.; Santos, A. L. S.; Figueiredo, N. G.; Silva, A. S. D., et al. Chemical Characterization, Antioxidant and Antimicrobial Activities of Açaí Seed (Euterpe Oleracea Mart.) Extracts Containing A- and B-Type Procyanidins. LWT - Food Sci. Technol. 2020, 132, 109830. DOI: 10.1016/j.lwt.2020.109830.
  • Martinez-Micaelo, N.; González-Abuín, N.; Ardèvol, A.; Pinent, M.; Blay, M. T. Procyanidins and Inflammation: Molecular Targets and Health Implications. BioFactors. 2012, 38, 257–265. DOI: 10.1002/biof.1019.
  • Engler, M.; Engler, M. The Emerging Role of Flavonoid-Rich Cocoa and Chocolate in Cardiovascular Health and Disease. Nutr. Rev. 2006, 64, 109–118. DOI: 10.1111/j.1753-4887.2006.tb00194.x.
  • Khan, N.; Monagas Juan, M.; Llorach, R.; Urpí-Sarda, M.; Estruch, R.; Andrés-Lacueva, C. Targeted and Metabolomic Study of Biomarkers of Cocoa Powder Consumption Effects on Inflammatory Biomarkers in Patients at High Risk of Cardiovascular Disease. Agro food Ind. Hi Tech. 2010, 21, 51–54. http://hdl.handle.net/10261/50172.
  • Kramer, K.; Yeboah-Awudzi, M.; Magazine, N.; King, J.; Xu, Z.; Losso, J. Procyanidin B2 Rich Cocoa Extracts Inhibit Inflammation in Caco-2 Cell Model of in vitro Celiac Disease by Down-Regulating Interferon-Gamma- or Gliadin Peptide 31-43-Induced Transglutaminase-2 and Interleukin-15. J. Funct. Foods. 2019, 57, 112–120. DOI: 10.1016/j.jff.2019.03.039.
  • Lobo, A.; Liu, Y.; Song, Y.; Liu, S.; Zhang, R.; Liang, H., Xin, H. Effect of Procyanidins on Lipid Metabolism and Inflammation in Rats Exposed to Alcohol and Iron. Heliyon. 2020, 6, e04847. DOI: 10.1016/j.heliyon.2020.e04847.
  • Liu, J.; Hu, S.; Zhu, B.; Shao, S.; Yuan, L. Grape Seed Procyanidin Suppresses Inflammation in Cigarette Smoke-Exposed Pulmonary Arterial Hypertension Rats by the PPAR-γ/COX-2 Pathway. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 347–354. DOI: 10.1016/j.numecd.2019.09.022.
  • Bak, M.; Truong, V.; Kang, H.; Jun, M.; Jeong, W. Anti-Inflammatory Effect of Procyanidins from Wild Grape (Vitis amurensis) Seeds in LPS-Induced RAW 264.7 Cells. OXID. MED. CELL LONGEV. 2013, 2013, 409321. DOI: 10.1155/2013/409321.
  • Bitzer, Z.; Glisan, S.; Dorenkott, M.; Goodrich, K.; Ye, L.; O’-Keefe, S., Lambert, J. D., Neilson, A. P. Cocoa Procyanidins with Different Degrees of Polymerization Possess Distinct Activities in Models of Colonic Inflammation. J. NUTR BIOCHEM. 2015, 26(8), 827–831.
  • Mu, C.; Hao, X.; Zhang, X.; Zhao, J.; Zhang, J. Effects of High-Concentrate Diet Supplemented with Grape Seed Procyanidins on the Colonic Fermentation, Colonic Morphology, and Inflammatory Response in Lambs. Anim. Feed Sci. Technol. 2021, 281, 115118. DOI: 10.1016/j.anifeedsci.2021.115118.
  • Zhang, J.; Huang, Y.; Shao, H.; Bi, Q.; Chen, J.; Ye, Z. Grape Seed Procyanidin B2 Inhibits Adipogenesis of 3T3-L1 Cells by Targeting Peroxisome Proliferator-Activated Receptor γ with miR-483-5p Involved Mechanism. Biomed. Pharm. 2017, 86, 292–296. DOI: 10.1016/j.biopha.2016.12.019.
  • Wu, T.; Tang, Q.; Yu, Z.; Gao, Z.; Hu, H.; Chen, W., Zheng, X., Yu, T. Inhibitory Effects of Sweet Cherry Anthocyanins on the Obesity Development in C57BL/6 Mice. Int. J. Food Sci. Nutr. 2014, 65(3), 351–359.
  • Salvadó, M. J.; Casanova, E.; Fernández-Iglesias, A.; Arola, L.; Bladé, C. Roles of Proanthocyanidin Rich Extracts in Obesity. Food Function. 2015, 6, 1053–1071. DOI: 10.1039/C4FO01035C.
  • Astrup, A.; Kristensen, M.; Gregersen, N. T.; Belza, A.; Lorenzen, J. K.; Due, A., Larsen, T. M. Can Bioactive Foods Affect Obesity? Ann. Ny. Acad. Sci. 2010, 1190(1), 25–41.
  • Yamashita, Y.; Okabe, M.; Natsume, M.; Ashida, H. Prevention Mechanisms of Glucose Intolerance and Obesity by Cacao Liquor Procyanidin Extract in High-Fat Diet-Fed C57BL/6 Mice. Arch. Biochem. Biophys. 2012, 527, 95–104. DOI: 10.1016/j.abb.2012.03.018.
  • Kim, Y.; Choi, Y.; Lee, J.; Park, Y. Downregulated Lipid Metabolism in Differentiated Murine Adipocytes by Procyanidins from Defatted Grape Seed Meal. Biosci. Biotechnol. Biochem. 2013, 77, 1420–1423. DOI: 10.1271/bbb.130048.
  • Caimari, A.; Del Bas, J.; Crescenti, A.; Arola, L. Low Doses of Grape Seed Procyanidins Reduce Adiposity and Improve the Plasma Lipid Profile in Hamsters. Int. J. Obes. 2013, 37, 576–583. DOI: 10.1038/ijo.2012.75.
  • Pinent, M.; Bladé, M. C.; Salvadó, M.; Arola, L.; Hackl, H.; Quackenbush, J.; Trajanoski, Z.; Ardévol, A., et al. Grape-Seed Derived Procyanidins Interfere with Adipogenesis of 3T3-L1 Cells at the Onset of Differentiation. Int. J. Obes. 2005, 29(8), 934–941.
  • Xing, Y.; Lei, G.; Wu, Q.; Jiang, Y.; Huang, M. Procyanidin B2 Protects Against Diet-Induced Obesity and Non-Alcoholic Fatty Liver Disease via the Modulation of the Gut Microbiota in Rabbits. World J. Gastroenterol. 2019, 25, 955–966. DOI: 10.3748/wjg.v25.i8.955.
  • Pandey, K.; Rizvi, S. Role of Red Grape Polyphenols as Antidiabetic Agents. Integr. Med. Res. 2014, 3, 119–125. DOI: 10.1016/j.imr.2014.06.001.
  • Li, X.; Sui, Y.; Wu, Q.; Xie, B.; Sun, Z. Attenuated mTor Signaling and Enhanced Glucose Homeostasis by Dietary Supplementation with Lotus Seedpod Oligomeric Procyanidins in Streptozotocin (STZ)-Induced Diabetic Mice. J. Agric. Food. Chem. 2017, 65, 3801–3810. DOI: 10.1021/acs.jafc.7b00233.
  • Gowd, V.; Jia, Z.; Chen, W. Anthocyanins as Promising Molecules and Dietary Bioactive Components Against Diabetes – a Review of Recent Advances. Trends Food Sci. Technol. 2017, 68, 1–13. DOI: 10.1016/j.tifs.2017.07.015.
  • Li, X.; Sui, Y.; Li, S.; Xie, B.; Sun, Z. A-Type Procyanidins from Litchi Pericarp Ameliorate Hyperglycaemia by Regulating Hepatic and Muscle Glucose Metabolism in Streptozotocin (STZ)-Induced Diabetic Mice Fed with High Fat Diet. J. Funct. Foods. 2016, 27, 711–722. DOI: 10.1016/j.jff.2016.08.010.
  • Li, X.; Wu, Q.; Sui, Y.; Li, S.; Xie, B.; Sun, Z. Dietary Supplementation of A-Type Procyanidins from Litchi Pericarp Improves Glucose Homeostasis by Modulating mTor Signaling and Oxidative Stress in Diabetic ICR Mice. J. Funct. Foods. 2018, 44, 155–165. DOI: 10.1016/j.jff.2017.12.024.
  • Pinent, M.; Blay, M.; Bladeé, M. C.; Salvadoó, M. J.; Arola, L.; Ardeévol, A. Grape Seed-Derived Procyanidins Have an Antihyperglycemic Effect in Streptozotocin-Induced Diabetic Rats and Insulinomimetic Activity in Insulin-Sensitive Cell Lines. Endocrinology. 2004, 145, 4985–4990. DOI: 10.1210/en.2004-0764.
  • Castell-Auví, A.; Cedó, L.; Pallarès, V.; Blay, M.; Pinent, M.; Motilva, M.; Garcia-Vallvé, S.; Pujadas, G.; Maechler, P.; Ardévol, A., et al. Procyanidins Modify Insulinemia by Affecting Insulin Production and Degradation. J. NUTR BIOCHEM. 2012, 23(12), 1565–1572.
  • Yamashita, Y.; Wang, L.; Nanba, F.; Ito, C.; Toda, T.; Ashida, H. Procyanidin Promotes Translocation of Glucose Transporter 4 in Muscle of Mice Through Activation of Insulin and AMPK Signaling Pathways. PLoS One. 2016, 11, e0161704. DOI: 10.1371/journal.pone.0161704.
  • Sheikh, Y.; Chanu, M.; Mondal, G.; Manna, P.; Chattoraj, A.; Chandra Deka, D., Chandra Talukdar, N., Chandra Borah, J. Procyanidin A2, an Anti-Diabetic Condensed Tannin Extracted from Wendlandia Glabrata , Reduces Elevated G-6-Pase and mRna Levels in Diabetic Mice and Increases Glucose Uptake in CC1 Hepatocytes and C1C12 Myoblast Cells. RSC Adv. 2019, 9, 17211–17219. DOI: 10.1039/C9RA02397F.
  • García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.; Martínez, J. Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular Disease. Inflammation Res. 2009, 58, 537–552. DOI: 10.1007/s00011-009-0037-3.
  • de la Iglesia, R.; Milagro, F.; Campión, J.; Boqué, N.; Martínez, J. Healthy Properties of Proanthocyanidins. BioFactors. 2010, 36, 159–168. DOI: 10.1002/biof.79.
  • Tsai, H.; Wu, L.; Hwang, L. Effect of a Proanthocyanidin-Rich Extract from Longan Flower on Markers of Metabolic Syndrome in Fructose-Fed Rats. J. Agric. Food. Chem. 2008, 56, 11018–11024. DOI: 10.1021/jf801966y.
  • DalBó, S.; Moreira, E.; Brandão, F.; Horst, H.; Pizzolatti, M.; Micke, G., Ribeiro-Do-Valle, R. M. Mechanisms Underlying the Vasorelaxant Effect Induced by Proanthocyanidin-Rich Fraction from Croton Celtidifolius in Rat Small Resistance Arteries. J. Pharmacol. Sci. 2008, 106, 234–241. DOI: 10.1254/jphs.FP0071119.
  • Mizuno, M.; Nakanishi, I.; Matsubayashi, S.; Imai, K.; Arai, T.; Matsumoto, K., Fukuhara, K. Synthesis and Antioxidant Activity of a Procyanidin B3 Analogue. Bioorg. Med. Chem. Lett. 2017, 27(4), 1041–1044.
  • Yamakoshi, J.; Kataoka, S.; Koga, T.; Ariga, T. Proanthocyanidin-Rich Extract from Grape Seeds Attenuates the Development of Aortic Atherosclerosis in Cholesterol-Fed Rabbits. Atherosclerosis. 1999, 142, 139–149. DOI: 10.1016/S0021-9150(98)00230-5.
  • Pearson, D.; Schmitz, H.; Lazarus, S.; Keen, C. Inhibition of In Vitro Low-Density Lipoprotein Oxidation by Oligomeric Procyanidins Present in Chocolate and Cocoas. Methods Enzymol. 2001, 335, 350–360. DOI: 10.1016/S0076-6879(01)35257-6.
  • Karthikeyan, K.; Bai, B.; Devaraj, S. Cardioprotective Effect of Grape Seed Proanthocyanidins on Isoproterenol-Induced Myocardial Injury in Rats. Int. J. Cardiol. 2007, 115, 326–333. DOI: 10.1016/j.ijcard.2006.03.016.
  • Wang, L.; Fumoto, T.; Masumoto, S.; Shoji, T.; Miura, T.; Naraoka, M., Matsuda, N., Imaizumi, T., Ohkuma, H. Regression of Atherosclerosis with Apple Procyanidins by Activating the ATP-Binding Cassette Subfamily a Member 1 in a Rabbit Model. Atherosclerosis. 2017, 258, 56–64. DOI: 10.1016/j.atherosclerosis.2017.01.032.
  • Novakovic, A.; Marinko, M.; Jankovic, G.; Stojanovic, I.; Milojevic, P.; Nenezic, D., Kanjuh, V., Yang, Q., He, G.-W. Endothelium-Dependent Vasorelaxant Effect of Procyanidin B2 on Human Internal Mammary Artery. Eur. J. Pharmacol. 2017, 807, 75–81. DOI: 10.1016/j.ejphar.2017.04.015.
  • Jankovic, G.; Marinko, M.; Milojevic, P.; Stojanovic, I.; Nenezic, D.; Kanjuh, V., Yang, Q., He, G.-W., Novakovic, A. Mechanisms of Endothelium-Dependent Vasorelaxation Induced by Procyanidin B2 in Venous Bypass Graft. J. Pharmacol. Sci. 2020, 142(3), 101–108.
  • Simpson, D.; Oliver, P. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants. 2020, 9(8), 743. DOI: 10.3390/antiox9080743.
  • Plascencia-Villa, G.; Perry, G. Preventive and Therapeutic Strategies in Alzheimer’s Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxid. Redox Signal. 2020, 34, 591–610. DOI: 10.1089/ars.2020.8134.
  • Kong, X.; Guan, J.; Gong, S.; Wang, R. Neuroprotective Effects of Grape Seed Procyanidin Extract on Ischemia-Reperfusion Brain Injury. Chin. Med. Sci. J. 2017, 32, 92–99. DOI: 10.24920/J1001-9294.2017.020.
  • Toda, T.; Sunagawa, T.; Kanda, T.; Tagashira, M.; Shirasawa, T.; Shimizu, T. Apple Procyanidins Suppress Amyloid β-Protein Aggregation. Biochem. Res. Int. 2011, 2011, 784698. DOI: 10.1155/2011/784698.
  • Yin, C.; Luo, X.; Duan, Y.; Duan, W.; Zhang, H.; He, Y., Sun, G., Sun, X. Neuroprotective Effects of Lotus Seedpod Procyanidins on Extremely Low Frequency Electromagnetic Field-Induced Neurotoxicity in Primary Cultured Hippocampal Neurons. Biomed. Pharm. 2016, 82, 628–639. DOI: 10.1016/j.biopha.2016.05.032.
  • Wu, S.; Yue, Y.; Li, J.; Li, Z.; Li, X.; Niu, Y., et al. Procyanidin B2 Attenuates Neurological Deficits and Blood–brain Barrier Disruption in a Rat Model of Cerebral Ischemia. Mol. Nutr. Food Res. 2015, 59, 1930–1941. doi: 10.1002/mnfr.201500181.
  • Li, L.; Zhang, Y.; Sun, B.; Zhang, H.; Tao, W.; Tian, J., Ye, X., Chen, S. The Neuroprotective Effects of Chinese Bayberry Leaves Proanthocyanidins. J. Funct. Foods. 2018, 40, 554–563. DOI: 10.1016/j.jff.2017.08.031.
  • Snow, A.; Castillo, G.; Nguyen, B.; Choi, P.; Cummings, J.; Cam, J., Hu, Q., Lake, T., Pan, W., Kastin, A. J. The Amazon Rain Forest Plant Uncaria Tomentosa (Cat’s Claw) and Its Specific Proanthocyanidin Constituents are Potent Inhibitors and Reducers of Both Brain Plaques and Tangles. Sci. Rep. 2019, 9(1), 561.
  • Yang, B.; Sun, Y.; Lv, C.; Zhang, W.; Chen, Y. Procyanidins Exhibits Neuroprotective Activities Against Cerebral Ischemia Reperfusion Injury by Inhibiting TLR4-NLRP3 Inflammasome Signal Pathway. Psychopharmacology. 2020, 237, 3283–3293. DOI: 10.1007/s00213-020-05610-z.
  • NIH National Institutes of Health. What are Clinical Trials and Studies? https://www.nia.nih.gov/health/what-are-clinical-trials-and-studies (accessed Sept 21, 2021) 2021.
  • Takahashi, T.; Kamimura, A.; Yokoo, Y.; Honda, S.; Watanabe, Y. The First Clinical Trial of Topical Application of Procyanidin B-2 to Investigate Its Potential as a Hair Growing Agent. Phytother. Res. 2001, 15, 331–336. DOI: 10.1002/ptr.800.
  • Takahashi, T.; Kamimura, A.; Kagoura, M.; Toyoda, M.; Morohashi, M. Investigation of the Topical Application of Procyanidin Oligomers from Apples to Identify Their Potential Use as a Hair-Growing Agent. J. Cosmet. Dermatol. 2005, 4, 245–249. DOI: 10.1111/j.1473-2165.2005.00199.x.
  • Murphy, K.; Chronopoulos, A.; Singh, I.; Francis, M.; Moriarty, H.; Pike, M., Turner change, A. H., Mann, N. J., Sinclair, A. J. Dietary Flavanols and Procyanidin Oligomers from Cocoa (Theobroma cacao) Inhibit Platelet Function. Am. J. Clin. Nutr. 2003, 77(6), 1466–1473.
  • Panahande, S.; Maghbooli, Z.; Hossein-Nezhad, A.; Qorbani, M.; Moeini-Nodeh, S.; Haghi-Aminjan, H., Hosseini, S. Effects of French Maritime Pine Bark Extract (Oligopin®) Supplementation on Bone Remodeling Markers in Postmenopausal Osteopenic Women: A Randomized Clinical Trial. Phytother. Res. 2019, 33, 1233–1240. DOI: 10.1002/ptr.6320.
  • Rodriguez-Mateos, A.; Weber, T.; Skene, S.; Ottaviani, J.; Crozier, A.; Kelm, M., Schroeter, H., Heiss, C. Assessing the Respective Contributions of Dietary Flavanol Monomers and Procyanidins in Mediating Cardiovascular Effects in Humans: Randomized, Controlled, Double-Masked Intervention Trial. Am. J. Clin. Nutr. 2018, 108(6), 1229–1237.
  • Hammerstone, J.; Lazarus, S.; Schmitz, H. Procyanidin Content and Variation in Some Commonly Consumed Foods. J. Nutr. 2000, 130, 2086S–2092S. DOI: 10.1093/jn/130.8.2086S.
  • Gu, L.; Kelm, M.; Hammerstone, J.; Beecher, G.; Holden, J.; Haytowitz, D., Gebhardt, S., Prior, R. L. Concentrations of Proanthocyanidins in Common Foods and Estimations of Normal Consumption. J. Nutr. 2004, 134(3), 613–617.
  • Arranz, S.; Silván, J. M.; Saura-Calixto, F. Nonextractable Polyphenols, Usually Ignored, are the Major Part of Dietary Polyphenols: A Study on the Spanish Diet. Mol. Nutr. Food Res. 2010, 54, 1646–1658. DOI: 10.1002/mnfr.200900580.
  • Knaze, V.; Zamora-Ros, R.; Luján-Barroso, L.; Romieu, I.; Scalbert, A.; Slimani, N., Riboli, E., van Rossum, C. T. M., Bueno-de-Mesquita, H. B., Trichopoulou, A. Intake Estimation of Total and Individual Flavan-3-Ols, Proanthocyanidins and Theaflavins, Their Food Sources and Determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Br. J. Nutr. 2012, 108(6), 1095–1108.
  • Andre, C.; Greenwood, J.; Walker, E.; Rassam, M.; Sullivan, M.; Evers, D., Perry, N. B., Laing, W. A. Anti-Inflammatory Procyanidins and Triterpenes in 109 Apple Varieties. J. Agric. Food. Chem. 2012, 60(42), 10546–10554.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.