227
Views
0
CrossRef citations to date
0
Altmetric
Review

Gut microbiota alterations and nutritional intervention in multiple sclerosis disease

, & ORCID Icon

References

  • Larroya-García, A.; Navas-Carrillo, D.; Orenes-Piñero, E. Impact of Gut Microbiota on Neurological Diseases: Diet Composition and Novel Treatments. Crit. Rev. Food Sci. Nutr. 2019, 59(19), 3102─3116. DOI: 10.1080/10408398.2018.1484340.
  • Noor, F.; Kaysen, A.; Wilmes, P.; Schneider, J. G. The Gut Microbiota and Hematopoietic Stem Cell Transplantation: Challenges and Potentials. J. Innate. Immun. 2019, 11(5), 405─415. DOI: 10.1159/000492943.
  • Illiano, P.; Brambilla, R.; Parolini, C. The Mutual Interplay of Gut Microbiota, Diet and Human Disease. Febs. J. 2020, 287(5), 833─855. DOI: 10.1111/febs.15217.
  • Attaye, I.; Pinto-Sietsma, S. J.; Herrema, H.; Nieuwdorp, M. A Crucial Role for Diet in the Relationship Between Gut Microbiota and Cardiometabolic Disease. Annu. Rev. Med. 2020, 71, 149─161. DOI: 10.1146/annurev-med-062218-023720.
  • Kazemian, N.; Mahmoudi, M.; Halperin, F.; Wu, J. C.; Pakpour, S. Gut Microbiota and Cardiovascular Disease: Opportunities and Challenges. Microbiome. 2020, 8(1), 36. DOI: 10.1186/s40168-020-00821-0.
  • Gubert, C.; Kong, G.; Renoir, T.; Hannan, A. J. Exercise, Diet and Stress as Modulators of Gut Microbiota: Implications for Neurodegenerative Diseases. Neurobiol. Dis. 2020, 134, 104621. DOI: 10.1016/j.nbd.2019.104621.
  • Crovesy, L.; Masterson, D.; Lopes-Rosado, E. Profile of the Gut Microbiota of Adults with Obesity: A Systematic Review. Eur. J. Clin. Nutr. 2020, 74(9), 1251─1262. DOI: 10.1038/s41430-020-0607-6.
  • Jiao, Y.; Wu, L.; Huntington, N. D.; Zhang, X. Crosstalk Between Gut Microbiota an Innate Immunity and Its Implication in Autoimmune Diseases. Front. Immunol. 2020, 11, 282. DOI: 10.3389/fimmu.2020.00282.
  • Fengjiao, L.; Zhang, T.; He, Y.; Gu, W.; Yang, X.; Zhao, R.; Yu, J. Inflammation Inhibition and Gut Microbiota Regulation by TSG to Combat Atherosclerosis in ApoE -/- Mice. J. Ethnopharmacol. 2020, 247, 112232. DOI: 10.1016/j.jep.2019.112232.
  • Amoroso, C.; Perillo, F.; Strati, F.; Fantini, M. C.; Caprioli, F.; Facciotti, F. The Role of Gut Microbiota Biomodulators on Mucosal Immunity and Intestinal Inflammation. Cells. 2020, 9(5), 1234. DOI: 10.3390/cells9051234.
  • Paul, A.; Comabella, M.; Gandhi, R. Biomarkers in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2019, 9(3), a029058. DOI: 10.1101/cshperspect.a029058.
  • Lassmann, H. Pathogenic Mechanisms Associated with Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2019, 9, 311. DOI: 10.3389/fimmu.2018.03116.
  • Chenard, C. A.; Rubenstein, L. M.; Snetselaar, L. G.; Wahls, T. L. Nutrient Composition Comparison Between the Low Saturated Fat Swank Diet for Multiple Sclerosis and Healthy U.S.-Style Eating Pattern. Nutrients. 2019, 11(3), 616. DOI: 10.3390/nu11030616.
  • Pegoretti, V.; Swanson, K. A.; Bethea, J. R.; Probert, L.; Eisel, U. L. M.; Fischer, R. Inflammation and Oxidative Stress in Multiple Sclerosis: Consequences for Therapy Development. Oxid. Med. Cell Longev. 2020, 7191080. DOI: 10.1155/2020/7191080.
  • Macaron, G.; Ontaneda, O. Diagnosis and Management of Progressive Multiple Sclerosis. Biomedicines. 2019, 7(3), 56. DOI: 10.3390/biomedicines7030056.
  • Schepici, G.; Silvestro, S.; Bramanti, P.; Mazzon, E. The Gut Microbiota in Multiple Sclerosis: An Overview of Clinical Trials. Cell Transplant. 2019, 28(12), 1507─1527. DOI: 10.1177/0963689719873890.
  • Mousavi-Shirazi-Fard, Z.; Mazloom, Z.; Izadi, S.; Fararouei, M. The Effects of Modified Anti-Inflammatory Diet on Fatigue, Quality of Life, and Inflammatory Biomarkers in Relapsing-Remitting Multiple Sclerosis Patients: A Randomized Clinical Trial. Int. J. Neurosci. 2020, 1─9. DOI: 10.1080/00207454.2020.1750398.
  • Sato, W.; Yamamura, T. Multiple Sclerosis: Possibility of a Gut Environment-Induced Disease. Neurochem. Int. 2019, 130, 104475. DOI: 10.1016/j.neuint.2019.104475.
  • Miyake, S.; Yamamura, T. Gut Environmental Factors and Multiple Sclerosis. J. Neuroimmunol. 2019, 329, 20─23. DOI: 10.1016/j.jneuroim.2018.07.015.
  • Lorenzo, D.; GianVicenzo, Z.; Luca, R. C.; Karan, G.; Jorge, V.; Roberto, M.; Javad, P. Oral-Gut Microbiota and Arthritis: Is There an Evidence-Based Axis? J. Clin. Med. 2019, 8(10), 0. DOI: 10.3390/jcm8101753.
  • AlAmmar, W.; Albeesh, F. H.; Ibrahim, L. M.; Algindan, Y. Y.; Yamani, L. Z.; Khattab, R. Y. Effect of Omega-3 Fatty Acids and Fish Oil Supplementation on Multiple Sclerosis: A Systematic Review. Nutr. Neurosci. 2019, 1–11. DOI: 10.1080/1028415X.2019.1659560.
  • Sanchez, J. M. S.; DePaula-Silva, A. B.; Libbey, J. E.; Fujinami, R. S. Role of Diet in Regulating the Gut Microbiota and Multiple Sclerosis. Clin. Immunol. 2020, 108379. DOI: 10.1016/j.clim.2020.108379.
  • Li, J. W.; Fang, B.; Pang, G. F.; Zhang, M.; Ren, F. Z. Age-And Diet-Specific Effects of Chronic Exposure to Chlorpyrifos on Hormones, Inflammation and Gut Microbiota in Rats. Pestic. Biochem. Physiol. 2019, 159, 68─79. DOI: 10.1016/j.pestbp.2019.05.018.
  • Levy, M.; Kolodziejczyk, A. A.; Thaiss, C. A.; Elinav, E. Dysbiosis and the Immune System. Nat. Rev. Immunol. 2017, 17(4), 219–232. DOI: 10.1038/nri.2017.7.
  • Nourbakhsh, B.; Mowry, E. M. Multiple Sclerosis Risk Factors and Pathogenesis. Continuum (Minneap Minn). 2019, 25(3), 596─610. DOI: 10.1212/CON.0000000000000725.
  • Bruno, A.; Dolcetti, E.; Rizzo, F. R.; Fresegna, D.; Musella, A.; Gentile, A.; De Vito, F.; Caioli, S.; Guadalupi, L.; Bullita, S., et al. Inflammation-Associated Synaptic Alterations as Shared Threads in Depression and Multiple Sclerosis. Front. Cell. Neurosci., 2020, 14, 169. DOI: 10.3389/fncel.2020.00169.
  • Dobson, R.; Giovannoni, G. Multiple Sclerosis: A Review. Eur. J. Neurol. 2019, 26(1), 27─40. DOI: 10.1111/ene.13819.
  • Matthews, P. M. Chronic Inflammation in Multiple Sclerosis – Seeing What Was Always There. Nat. Rev. Neurol. 2019, 15(10), 582─593. DOI: 10.1038/s41582-019-0240-y.
  • Michaliková, D.; Síma, M.; Slanar, O. New Insights in the Mechanisms of Impaired Redox Signaling and Its Interplay with Inflammation and Immunity in Multiple Sclerosis. Physiol. Res. 2020, 69(1), 1─19. DOI: 10.33549/physiolres.934276.
  • Ruiz, F.; Vigne, S.; Pot, C. Resolution of Inflammation During Multiple Sclerosis. Semin. Immunopathol. 2019, 41(6), 711─726. DOI: 10.1007/s00281-019-00765-0.
  • Boziki, M. K.; Kesidou, E.; Theotokis, P.; Mentis, A. A.; Karafoulidou, E.; Melnikov, M.; Siridova, A.; Rogovski, V.; Boyko, A.; Grigoriadis, N. Microbiome in Multiple Sclerosis; Where are We, What We Know and Do Not Know. Brain Sci. 2020, 10(4), 234. DOI: 10.3390/brainsci10040234.
  • Cryan, J. F.; O’-Riordan, K. J.; Sandhu, K.; Peterson, V.; Dinan, T. G. The Gut Microbiome in Neurological Disorders. Lancet. Neurol. 2020, 19(2), 179─194. DOI: 10.1016/S1474-4422(19)30356-4.
  • Xu, H.; Wang, X.; Feng, W.; Liu, Q.; Zhou, S.; Liu, Q.; Cai, L. The Gut Microbiota and Its Interactions with Cardiovascular Disease. Microb. Biotechnol. 2020, 13(3), 637─656. DOI: 10.1111/1751-7915.13524.
  • Adak, A.; Khan, M. R. An Insight into Gut Microbiota and Its Functionalities. Cell. Mol. Life Sci. 2019, 76(3), 473─493. DOI: 10.1007/s00018-018-2943-4.
  • Shankar, V.; Gouda, M.; Moncivaiz, J.; Gordon, A.; Reo, N. V.; Hussein, L.; Paliy, O. Differences in Gut Metabolites and Microbial Composition and Functions Between Egyptian and U.S. Children are Consistent with Their Diets. mSystems. 2017, 2, 1–15. DOI: 10.1128/mSystems.00169-16.
  • Ramírez-Macías, I.; Orenes-Piñero, E.; Camelo-Castillo, A.; Rivera-Caravaca, J. M.; López-García, C.; Marín, F. Novel Insights in the Relationship of Gut Microbiota and Coronary Artery Diseases. Crit. Rev. Food Sci. Nutr. 2021, 1–13. DOI: 10.1080/10408398.2020.1868397.
  • Grundy, D.; De Giorgio, R.; Schemann, M. Enteric Nervous System: Disorders. Encycl. Neurosci. 2009, 1077–1082. DOI: 10.1016/B978-008045046-9.00661-6.
  • Aggeletopoulou, I.; Konstantakis, C.; Assimakopoulos, S. F.; Triantos, C. The Role of the Gut Microbiota in the Treatment of Inflammatory Bowel Diseases. Microb. Pathog. 2019, 137, 103774. DOI: 10.1016/j.micpath.2019.103774.
  • Fung, T. C. The Microbiota-Immune Axis as a Central Mediator of Gut-Brain Communication. Neurobiol. Dis. 2020, 136, 10471. DOI: 10.1016/j.nbd.2019.104714.
  • Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S. J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019, 8(3), 92. DOI: 10.3390/foods8030092.
  • Jilek, S.; Schluep, M.; Rossetti, A. O.; Guignard, L.; Le Goff, G.; Pantaleo, G.; Du Pasquier, R. A. CSF Enrichment of Highly Differentiated CD8+ T Cells in Early Multiple Sclerosis. Clin. Immunol. 2007, 123(1), 105─113. DOI: 10.1016/j.clim.2006.11.004.
  • Annibali, V.; Ristori, G.; Angelini, D. F.; Serafini, B.; Mechelli, R.; Cannoni, S.; Romano, S.; Paolillo, A.; Abderrahim, H.; Diamantini, A., et al. Cd161(high)cd8+t Cells Bear Pathogenetic Potential in Multiple Sclerosis. Brain.2011, 134(Pt 2), 542─554. DOI: 10.1093/brain/awq354.
  • Machado-Santos, J.; Saji, E.; Tröscher, A. R.; Paunovic, M.; Liblau, R.; Gabriely, G.; Bien, C. G.; Bauer, J.; Lassmann, H. The Compartmentalized Inflammatory Response in the Multiple Sclerosis Brain is Composed of Tissue-Resident CD8+ T Lymphocytes and B Cells. Brain. 2018, 141(7), 2066─2082. DOI: 10.1093/brain/awy151.
  • Kadowaki, A.; Saga, R.; Lin, Y.; Sato, W.; Yamamura, T. Gut Microbiota-Dependent CCR9+CD4+ T Cells are Altered in Secondary Progressive Multiple Sclerosis. Brain. 2019, 142(4), 916─931. DOI: 10.1093/brain/awz012.
  • Abdollahpour, I.; Jakimovski, D.; Shivappa, N.; Hébert, J. R.; Vahid, F.; Nedjat, S.; Mansournia, M. A.; Weinstock-Guttman, B. Dietary Inflammatory Index and Risk of Multiple Sclerosis: Findings from a Large Population-Based Incident Case-Control Study. Clin. Nutr. 2020, 39(11), 3402–3407. DOI: 10.1016/j.clnu.2020.02.033.
  • Miyake, S.; Kim, S.; Suda, W.; Oshima, K.; Nakamura, M.; Matsuoka, T.; Chihara, N.; Tomita, A.; Sato, W.; Kim, S. W., et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with Striking Depletion of Species Belonging to Clostridia Xiva and IV Clusters. PLoS One, 2015, 10, e0137429. DOI: 10.1371/journal.pone.0137429.
  • Jangi, S.; Gandhi, R.; Cox, L. M.; Li, N.; von Glehn, F.; Yan, R.; Patel, B.; Mazzola, M. A.; Liu, S.; Glanz, B. L., et al. Alterations of the Human Gut Microbiome in Multiple Sclerosis. Nat. Commun.2016, 7(9), 12015. DOI: 10.1038/ncomms12015.
  • Chen, J.; Chia, N.; Kalari, K. R.; Yao, J. Z.; Novotna, M.; Paz-Soldan, M. M.; Luckey, D. H.; Marietta, E. V.; Jeraldo, P. R.; Chen, X., et al. Multiple Sclerosis Patients Have a Distinct Gut Microbiota Compared to Healthy Controls. Sci. Rep., 2016, 6, 28484. DOI: 10.1038/srep28484.
  • Cosorich, I.; Dalla-Costa, G.; Sorini, C.; Ferrarese, R.; Messina, M. J.; Dolpady, J.; Radice, E.; Mariani, A.; Testoni, P. A.; Caducci, F., et al. High Frequency of Intestinal Th17 Cells Correlates with Microbiota Alterations and Disease Activity in Multiple Sclerosis. Sci. Adv.2017, 3(7), e1700492. DOI: 10.1126/sciadv.1700492.
  • Reynders, T.; Devolder, L.; Valles-Colomer, M.; Van Remoortel, A.; Joossens, M.; De Keyser, J.; Nagels, G.; D´-Hooghe, M.; Raes, J. Gut Microbiome Variation is Associated to Multiple Sclerosis Phenotypic Subtypes. Ann. Clin. Transl. Neurol. 2020, 7(4), 406─419. DOI: 10.1002/acn3.51004.
  • Kampman, M. T.; Wilsgaard, T.; Mellgren, S. I. Outdoor Activities and Diet in Childhood and Adolescence Relate to MS Risk Above the Arctic Circle. J. Neurol. 2007, 254(4), 471─477. DOI: 10.1007/s00415-006-0395-5.
  • Aktürk, T.; Turan, Y.; Tanik, N.; Karadağ, M. E.; Sacmaci, H.; Inan, L. E. Vitamin D, Vitamin D Binding Protein, Vitamin D Receptor Levels and Cardiac Dysautonomia in Patients with Multiple Sclerosis: A Cross-Sectional Study. Arq. Neuropsiquiatr. 2019, 77(12), 848─854. DOI: 10.1590/0004-282X20190182.
  • Jelinek, G. A.; Hadgkiss, E. J.; Weiland, T. J.; Pereira, N. G.; Marck, C. H.; van der Meer, D. M. Association of Fish Consumption and Omega-3 Supplementation with Quality of Life, Disability and Disease Activity in an International Cohort of People with Multiple Sclerosis. Int. J. Neurosci. 2013, 123(11), 792─800. DOI: 10.3109/00207454.2013.803104.
  • Bagheri, M.; Maghsoudi, Z.; Fayazi, S.; Elahi, N.; Tabesh, H.; Majdinasab, N. Several Food Items and Multiple Sclerosis: A Case-Control Study in Ahvaz (Iran). Iran J. Nurs. Midwiferi. Res. 2014, 19(6), 659─665.
  • Fitzgerald, K. C.; Tyry, T.; Salter, A.; Cofield, S. S.; Cutter, G.; Fox, R.; Marrie, R. A. Diet Quality is Associated with Disability and Symptom Severity in Multiple Sclerosis. Neurology. 2018, 90(1), e1─e11. DOI: 10.1212/WNL.0000000000004768.
  • Mowry, E. M.; Azevedo, C. J.; McCulloch, C. E.; Okuda, D. T.; Lincoln, R. R.; Waubant, E.; Hauser, S. L.; Pelletier, D. Body Mass Index, but Not Vitamin D Status, is Associated with Brain Volume Change in MS. Neurology. 2018, 91(24), e2256─e2264. DOI: 10.1212/WNL.0000000000006644.
  • Brenton, J. N.; Banwell, B.; Bergqvist, A. G. C.; Lehner-Gulotta, D.; Gampper, L.; Leytham, E.; Coleman, R.; Goldman, M. D. Pilot Study of a Ketogenic Diet in Relapsing-Remitting MS. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6(4), e565. DOI: 10.1212/NXI.0000000000000565.
  • Kouchaki, E.; Tamtaji, O. R.; Salami, M.; Bahmani, F.; Daneshvar Kakhaki, R.; Akbari, E.; Tajabadi-Ebrahimi, M.; Jafari, P.; Asemi, Z. Clinical and Metabolic Response to Probiotic Supplementation in Patients with Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. 2017, 36(5), 1245─1249. DOI: 10.1016/j.clnu.2016.08.015.
  • Mirashrafi, S.; Hejazi-Taghanaki, S. Z.; Sarlak, F.; Moravejolahkami, A. R.; Hojjati-Kermani, M. A.; Haratian, M. Effect of Probiotics Supplementation on Disease Progression, Depression, General Health, and Anthropometric Measurements in Relapsing-Remitting Multiple Sclerosis Patients: A Systematic Review and Meta-Analysis of Clinical Trials. Int. J. Clin. Pract. 2021, 75(11), e14724. DOI: 10.1111/ijcp.14724.
  • Blais, L. L.; Montgomery, T. L.; Amiel, E.; Deming, P.; Krementsov, D. N. Probiotic and Commensal Gut Microbial Therapies in Multiple Sclerosis and Its Animal Models: A Comprehensive Review. Gut. Microbes. 2021, 13(1), 1943289. DOI: 10.1080/19490976.2021.1943289.
  • Haase, S.; Mäurer, J.; Duscha, A.; Lee, D. H.; Balogh, A.; Gold, R.; Müller, D. N.; Haghikia, A.; Linker, R. A. Propionic Acid Rescues High-Fat Diet Enhanced Immunopathology in Autoimmunity via Effects on Th17 Responses. Front. Immunol. 2021, 12, 701626. DOI: 10.3389/fimmu.2021.701626.
  • Duscha, A.; Gisevius, B.; Hirschberg, S.; Yissachar, N.; Stangl, G. I.; Eilers, E.; Bader, V.; Haase, S.; Kaisler, J.; David, C., et al. Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell.2020, 180(6), 1067–1080.e16. DOI: 10.1016/j.cell.2020.02.035.
  • Borody, T.; Leis, S.; Campbell, J.; Torres, M.; Nowak, A. Fecal Microbiota Transplantation (FMT) in Multiple Sclerosis (MS). Am. J. Gastroenterol. 2011, 106, S942.
  • Makkawi, S.; Camara-Lemarroy, C.; Metz, L. Fecal Microbiota Transplantation Associated with 10 Years of Stability in a Patient with SPMS. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5(4), e459. DOI: 10.1212/NXI.0000000000000459.
  • Engen, P. A.; Zaferiou, A.; Rasmussen, H.; Naqib, A.; Green, S. J.; Fogg, L. F.; Forsyth, C. B.; Raeisi, S.; Hamaker, B.; Keshavarzian, A. Single-Arm, Non-Randomized, Time Series, Single-Subject Study of Fecal Microbiota Transplantation in Multiple Sclerosis. Front. Neurol. 2020, 11, 978. DOI: 10.3389/fneur.2020.00978.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.