557
Views
1
CrossRef citations to date
0
Altmetric
Review

Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies

, , , &

References

  • Mada, S. B.; Ugwu, C. P.; Abarshi, M. M. Health Promoting Effects of Food-Derived Bioactive Peptides: A Review. Int. J. Pept. Res. Ther. 2019, 26(2), 831–848. DOI: 10.1007/s10989-019-09890-8.
  • Brown, T. D.; Whitehead, K. A.; Mitragotri, S. Materials for Oral Delivery of Proteins and Peptides. Nat. Rev. Mater. 2019, 5(2), 127–148. DOI: 10.1038/s41578-019-0156-6.
  • Dubey, S. K., Parab, S., Dabholkar, N., Agrawal, M., Singhvi, G., Alexander, A., Bapat, R. A., Kesharwani, P.; et al. Oral Peptide Delivery: Challenges and the Way Ahead. Drug Discov. Today. 2021, 26(4), 931–950.
  • Sánchez, A.; Vázquez, A. Bioactive Peptides: A Review. Food Qual. Saf. 2017, 1(1), 29–46. DOI: 10.1093/fqs/fyx006.
  • Kim, S.-K.; Wijesekara, I. Development and Biological Activities of Marine-Derived Bioactive Peptides: A Review. J. Funct. Foods. 2010, 2(1), 1–9. DOI: 10.1016/j.jff.2010.01.003.
  • Cicero, A. F. G.; Fogacci, F.; Colletti, A. Potential Role of Bioactive Peptides in Prevention and Treatment of Chronic Diseases: A Narrative Review. Br. J. Pharmacol. 2017, 174(11), 1378–1394. DOI: 10.1111/bph.13608.
  • Zizzari, A. T., Pliatsika, D., Gall, F. M., Fischer, T., Riedl, R.; et al. New Perspectives in Oral Peptide Delivery. Drug Discov. Today. 2021, 26(4), 1097–1105.
  • Segura-Campos, M., Chel-Guerrero, L., Betancur-Ancona, D., Hernandez-Escalante, V. M.; et al. Bioavailability of Bioactive Peptides. Food Rev. Int. 2011, 27(3), 213–226.
  • Siklos, M.; BenAissa, M.; Thatcher, G. R. Cysteine Proteases as Therapeutic Targets: Does Selectivity Matter? a Systematic Review of Calpain and Cathepsin Inhibitors. Acta Pharm. Sin. B. 2015, 5(6), 506–519. DOI: 10.1016/j.apsb.2015.08.001.
  • Park, K.; Kwon, I. C.; Park, K. Oral Protein Delivery: Current Status and Future Prospect. React. Funct. Polym. 2011, 71(3), 280–287. DOI: 10.1016/j.reactfunctpolym.2010.10.002.
  • Ganesh, A. N.; Heusser, C.; Garad, S.; Sánchez-Félix, M. V., et al. Patient-Centric Design for Peptide Delivery: Trends in Routes of Administration and Advancement in Drug Delivery Technologies. Med. Drug Discovery. 2021, 9, 100079. DOI: 10.1016/j.medidd.2020.100079.
  • Zhu, Q., Chen, Z., Paul, P. K., Lu, Y., Wu, W., Qi, J.; et al. Oral Delivery of Proteins and Peptides: Challenges, Status Quo and Future Perspectives. Acta Pharm. Sin. B. 2021, 11(8), 2416–2448.
  • Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients. 2018, 10(11), 1738. DOI: 10.3390/nu10111738.
  • Leksrisompong, P., Gerard, P., Lopetcharat, K., Drake, M.; et al. Bitter Taste Inhibiting Agents for Whey Protein Hydrolysate and Whey Protein Hydrolysate Beverages. J. Food Sci. 2012, 77(8), S282–287.
  • Ishibashi, N.; Kubo, T.; Chino, M.; Fukui, H.; Shinoda, I. Studies on Flavored Peptides. Part IV. Taste of Proline-Containing Peptides. Agric. Biol. Chem. 1988, 52(1), 95–98. DOI: 10.1271/bbb1961.52.95.
  • Iwaniak, A., Hrynkiewicz, M., Bucholska, J., Minkiewicz, P., Darewicz, M.; et al. Understanding the Nature of Bitter-Taste di- and Tripeptides Derived from Food Proteins Based on Chemometric Analysis. J. Food Biochem. 2019, 43(1), e12500.
  • Zhao, C. J.; Schieber, A.; Ganzle, M. G. Formation of Taste-Active Amino Acids, Amino Acid Derivatives and Peptides in Food Fermentations - a Review. Food. Res. Int. 2016, 89(Pt 1), 39–47. DOI: 10.1016/j.foodres.2016.08.042.
  • Norio, I.; Yasuhiro, A.; Hidenori, K.; Katsushige, K., and Hideo. Bitterness of Leucine-Containing Peptides. Agric. Biol. Chem. 1987, 51(9), 2389–2394. DOI: 10.1271/bbb1961.51.2389.
  • Ishibashi, N., et al. Bitterness of Phenylalanine- and Tyrosine-Containing Peptides. Agric Biol Chem 2016, 51(12), 3309–3313. DOI: 10.1080/00021369.1987.10868574.
  • Appalaraju Jaggupilli, R. H.; Upadhyaya, J. D.; Bhullar, R. P.; Chelikani, P. Bitter Taste Receptors: Novel Insights into the Biochemistry and pharmacology. Int. J. Biochem. Cell Biol. 2016, 77, 184–196. DOI: 10.1016/j.biocel.2016.03.005.
  • Chunlei Zhang, M. A.; Singh, N.; Liu, K.; Chelikani, P.; Aluko, R. E. Beef Protein-Derived Peptides as Bitter Taste Receptor T2R4 Blockers. J. Agric. Food Chem. 2018, 66(19), 4902–4912. DOI: 10.1021/acs.jafc.8b00830.
  • Min Jung Kim, H. J. S.; Kim, Y.; Misaka, T. Mee-Ra Rhyu Umami–bitter Interactions: The Suppression of Bitterness by Umami Peptides via Human Bitter Taste Receptor. Biochem. Biophys. Res. Commun. 2015, 456(2), 586–590. DOI: 10.1016/j.bbrc.2014.11.114.
  • Qingbiao Xu, N. S.; Hong, H.; Yan, X.; Yu, W.; Jiang, X.; Chelikani, P.; Wu, J. Hen Protein-Derived Peptides as the Blockers of Human Bitter Taste Receptors T2R4, T2R7 and T2R14. Food Chem. 2019, 283, 621–627. DOI: 10.1016/j.foodchem.2019.01.059.
  • Whitcomb, D. C.; Lowe, M. E. Human Pancreatic Digestive Enzymes. Dig. Dis. Sci. 2007, 52(1), 1–17. DOI: 10.1007/s10620-006-9589-z.
  • Brayden, D. J., Hill, T. A., Fairlie, D. P., Maher, S., Mrsny, R. J.; et al. Systemic Delivery of Peptides by the Oral Route: Formulation and Medicinal Chemistry Approaches. Adv. Drug Deliv. Rev. 2020, 157, 2–36. DOI: 10.1016/j.addr.2020.05.007.
  • Karasov, W. H.; Douglas, A. E. Comparative Digestive Physiology. Compr. Physiol. 2013, 3(2), 741–783. DOI: 10.1002/cphy.c110054.
  • Vagiannis, D., Yu, Z., Novotna, E., Morell, A., Hofman, J.; et al. Entrectinib Reverses Cytostatic Resistance Through the Inhibition of ABCB1 Efflux Transporter, but Not the CYP3A4 Drug-Metabolizing Enzyme. Biochem Pharmacol. 2020, 178, 114061. DOI: 10.1016/j.bcp.2020.114061.
  • Homayun, B.; Lin, X.; Choi, H. J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics. 2019, 11(3), 129. DOI: 10.3390/pharmaceutics11030129.
  • Hellinger, R.; Gruber, C. W. Peptide-Based Protease Inhibitors from Plants. Drug Discov. Today. 2019, 24(9), 1877–1889. DOI: 10.1016/j.drudis.2019.05.026.
  • Wagner, C. E.; Wheeler, K. M.; Ribbeck, K. Mucins and Their Role in Shaping the Functions of Mucus Barriers. Annu. Rev. Cell Dev. Biol. 2018, 34, 189–215. DOI: 10.1146/annurev-cellbio-100617-062818.
  • Liu, L., Tian, C., Dong, B., Xia, M., Cai, Y., Hu, R., Chu, X.; et al. Models to Evaluate the Barrier Properties of Mucus During Drug Diffusion. Int. J. Pharm. 2021, 599, 120415. DOI: 10.1016/j.ijpharm.2021.120415.
  • Arike, L.; Seiman, A.; van der Post, S.; Rodriguez Piñeiro, A. M.; Ermund, A.; Schütte, A.; Bäckhed, F.; Johansson, M. E. V.; Hansson, G. C., et al. Protein Turnover in Epithelial Cells and Mucus Along the Gastrointestinal Tract is Coordinated by the Spatial Location and Microbiota. Cell Rep. 2020, 30(4), 1077–1087 e1073.
  • Yildiz, H. M., Speciner, L., Ozdemir, C., Cohen, D. E., Carrier, R. L.; et al. Food-Associated Stimuli Enhance Barrier Properties of Gastrointestinal Mucus. Biomaterials. 2015, 54, 1–8. DOI: 10.1016/j.biomaterials.2015.02.118.
  • de Santa Barbara, P.; van den Brink, G. R.; Roberts, D. J. Development and Differentiation of the Intestinal Epithelium. Cell. Mol. Life Sci. 2003, 60(7), 1322–1332. DOI: 10.1007/s00018-003-2289-3.
  • Ensign, L. M.; Cone, R.; Hanes, J. Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers. Adv. Drug Deliv. Rev. 2012, 64(6), 557–570. DOI: 10.1016/j.addr.2011.12.009.
  • Boyd, B. J.; Bergström, C. A. S.; Vinarov, Z.; Kuentz, M.; Brouwers, J.; Augustijns, P.; Brandl, M.; Bernkop-Schnürch, A.; Shrestha, N.; Préat, V., et al. Successful Oral Delivery of Poorly Water-Soluble Drugs Both Depends on the Intraluminal Behavior of Drugs and of Appropriate Advanced Drug Delivery Systems. Eur. J. Pharm. Sci. 2019, 137, 104967. DOI: 10.1016/j.ejps.2019.104967.
  • Drucker, D. J. Advances in Oral Peptide Therapeutics. Nat. Rev. Drug Discov. 2020, 19(4), 277–289. DOI: 10.1038/s41573-019-0053-0.
  • Craik, D. J., Fairlie, D. P., Liras, S., Price, D.; et al. The Future of Peptide-Based Drugs. Chem. Biol. Drug Des. 2013, 81(1), 136–147.
  • Ismail, R.; Csoka, I. Novel Strategies in the Oral Delivery of Antidiabetic Peptide Drugs - Insulin, GLP 1 and Its Analogs. Eur. J. Pharm. Biopharm. 2017, 115, 257–267. DOI: 10.1016/j.ejpb.2017.03.015.
  • VigBs, S. T. R.; Timoszyk, J.K., et al. Human PEPT1 Pharmacophore Distinguishes Between Dipeptide Transport and Binding. J. Med. Chem. 2006, 49(12), 36–44.
  • Bougle, D.; Bouhallab, S. Dietary Bioactive Peptides: Human Studies. Crit. Rev. Food Sci. Nutr. 2017, 57(2), 335–343. DOI: 10.1080/10408398.2013.873766.
  • Gao Jinjin, G. Y. Intestinal Absorption of Milk-Derived ACE Inhibitory Peptides LL and LPEW Using Caco-2 Cell Model. Food Sci. 2017, 38(11), 214–219. DOI: 10.7506/spkx1002-6630-201711034.
  • Wang, B.; Li, B. Effect of Molecular Weight on the Transepithelial Transport and Peptidase Degradation of Casein-Derived Peptides by Using Caco-2 Cell Model. Food Chem. 2017, 218, 1–8. DOI: 10.1016/j.foodchem.2016.08.106.
  • Wang, B., Wang, C., Huo, Y., Li, B.; et al. The Absorbates of Positively Charged Peptides from Casein Show High Inhibition Ability of LDL Oxidation in vitro : Identification of Intact Absorbed Peptides. J. Funct. Foods. 2016, 20, 380–393. DOI: 10.1016/j.jff.2015.11.012.
  • Hong, S. M., Tanaka, M., Koyanagi, R., Shen, W., Matsui, T.; et al. Structural Design of Oligopeptides for Intestinal Transport Model. J. Agric. Food Chem. 2016, 64(10), 2072–2079.
  • Ding, L., Wang, L., Yu, Z., Ma, S., Du, Z., Zhang, T., Liu, J.; et al. Importance of Terminal Amino Acid Residues to the Transport of Oligopeptides Across the Caco-2 Cell Monolayer. J. Agric. Food Chem. 2017, 65(35), 7705–7712.
  • Bo Wang, B. L. Charge and Hydrophobicity of Casein Peptides Influence Transepithelial Transport and Bioavailability. Food Chem. 2018, 032(245), 646–652. DOI: 10.1016/j.foodchem.2017.09.032.
  • Blanca Hernández-Ledesma, M. D. M. C.; Recio, I. Antihypertensive Peptides: Production, Bioavailability and Incorporation into Foods. Adv. Colloid Interface Sci. 2011, 165, 23–25. DOI: 10.1016/j.cis.2010.11.001.
  • Rutherfurd-Markwick, K. J. Food Proteins as a Source of Bioactive Peptides with Diverse Functions. Br. J. Nutr. 2012, 108, S149–S157. DOI: 10.1017/S000711451200253X.
  • Miner-Williams, W. M.; Stevens, B. R.; Moughan, P. J. Are Intact Peptides Absorbed from the Healthy Gut in the Adult Human? Nutr. Res. Rev. 2014, 27, 308–329. DOI: 10.1017/S0954422414000225.
  • Holzer, P. Opioid Receptors in the Gastrointestinal Tract. Regul. Pept. 2009, 155, 11–17. DOI: 10.1016/j.regpep.2009.03.012.
  • Bao, X.; Wu, J. Impact of Food-Derived Bioactive Peptides on Gut Function and Health. Food. Res. Int. 2021, 147, 110485. DOI: 10.1016/j.foodres.2021.110485.
  • Nana Isobe, M. S.; Oda, M.; Tanabe, S. Enzyme-Modified Cheese Exerts Inhibitory Effects on Allergen Permeation in Rats Suffering from Indomethacin-Induced Intestinal Inflammation. Biosci. Biotechnol., Biochem. 2008, 72(7), 1740–1745. DOI: 10.1271/bbb.80042.
  • Gian Carlo Tenore, E. P.; Lama, S.; Vanacore, D.; Di Maro, S.; Maisto, M.; Capasso, R.; Merlino, F.; Borrelli, F.; Stiuso, P.; Novellino, E. Intestinal Anti-Inflammatory Effect of a Peptide Derived from Gastrointestinal Digestion of Buffalo (Bubalus Bubalis) Mozzarella Cheese. Nutrients. 2019, 11(3), 610. DOI: 10.3390/nu11030610.
  • Juliette Caron, D. D.; Dhulster, P.; Ravallec, R.; Cudennec, B. Protein Digestion-Derived Peptides and the Peripheral Regulation of Food Intake. Front. Endocrinol. 2017, 8(85). DOI: 10.3389/fendo.2017.00085.
  • Xu, Q., Hong, H., Wu, J., Yan, X.; et al. Bioavailability of Bioactive Peptides Derived from Food Proteins Across the Intestinal Epithelial Membrane: A Review. Trends Food Sci. Technol. 2019, 86, 399–411. DOI: 10.1016/j.tifs.2019.02.050.
  • Brandsch, M. Transport of Drugs by Proton-Coupled Peptide Transporters: Pearls and Pitfalls. Expert Opin. Drug Metab. Toxicol. 2009, 5(8), 887–905. DOI: 10.1517/17425250903042292.
  • Pedretti, A.; De Luca, L.; Marconi, C.; Negrisoli, G.; Aldini, G.; Vistoli, G., et al. Modeling of the Intestinal Peptide Transporter hPept1 and Analysis of Its Transport Capacities by Docking and Pharmacophore Mapping. ChemMedchem. 2008, 3(12), 1913–1921.
  • Bolger, M. B.; Haworth, I. S.; Yeung, A. K.; Ann, D., von Grafenstein, H., Hamm-Alvarez, S., Okamoto, C. T., Kim, K.-J., Basu, S. K., Wu, S. Structure, function, and Molecular Modeling Approaches to the Study of the Intestinal Dipeptide Transporter PepT1. J. Pharm. Sci. 1998, 87(16), 1286–1291. DOI: 10.1021/js980090u.
  • Brandsch, M.; Knutter, I.; Bosse-Doenecke, E. Pharmaceutical and Pharmacological Importance of Peptide Transporters. J. Pharm. Pharmacol. 2008, 60(5), 543–585. DOI: 10.1211/jpp.60.5.0002.
  • Brodin, B. U. N. C.; Steffansen, B.; Frokjaer, S. Transport of Peptidomimetic Drugs by the Intestinal di/tri-Peptide Transporter, PepT1. Acta Pharmacol. Toxicol. 2002, 90, 285–296.
  • Miyako Okamura, T. T.; Katsura, T.; Saito, H.; Inui, K.-I. Inhibitory Effect of Zinc on PEPT1-Mediated Transport of Glycylsarcosine and Beta-Lactam Antibiotics in Human Intestinal Cell Line Caco-2. Pharm. Res. 2003, 20, 1389–1393. DOI: 10.1023/A:1025797808703.
  • Newstead, S. Recent Advances in Understanding Proton Coupled Peptide Transport via the POT Family. Curr. Opin. Struct. Biol. 2017, 45, 17–24. DOI: 10.1016/j.sbi.2016.10.018.
  • Satake, M., Enjoh, M., Nakamura, Y., Takano, T., Kawamura, Y., Arai, S., Shimizu, M.; et al. Transepithelial Transport of the Bioactive Tripeptide, Val-Pro-Pro, in Human Intestinal Caco-2 Cell Monolayers. Biosci., Biotechnol., Biochem. 2014, 66(2), 378–384.
  • Gleeson, J. P.; Frías, J. M.; Ryan, S. M.; Brayden, D. J., et al. Sodium Caprate Enables the Blood Pressure-Lowering Effect of Ile-Pro-Pro and Leu-Lys-Pro in Spontaneously Hypertensive Rats by Indirectly Overcoming PepT1 Inhibition. Eur. J. Pharm. Biopharm. 2018, 128, 179–187. DOI: 10.1016/j.ejpb.2018.04.021.
  • Lei, L.; Sun, H.; Liu, D.; Liu, L.; Li, S. Transport of Val-Leu-Pro-Val-Pro in Human Intestinal Epithelial (Caco-2) Cell Monolayers. J. Agric. Food Chem. 2008, 56, 3582–3586. DOI: 10.1021/jf703640p.
  • Zhang, T., Su, M., Jiang, X., Xue, Y., Zhang, J., Zeng, X., Wu, Z., Guo, Y., Pan, D.; et al. Transepithelial Transport Route and Liposome Encapsulation of Milk-Derived ACE-Inhibitory Peptide Arg-Leu-Ser-Phe-Asn-Pro. J. Agric. Food Chem. 2019, 67(19), 5544–5551.
  • Del Mar Contreras, M., Sancho, A. I., Recio, I., Mills, C.; et al. Absorption of Casein Antihypertensive Peptides Through an in vitro Model of Intestinal Epithelium. Food Digest. 2012, 3(1–3), 16–24.
  • Bejjani, S.; Wu, J. Transport of IRW, an Ovotransferrin-Derived Antihypertensive Peptide, in Human Intestinal Epithelial Caco-2 Cells. J. Agric. Food Chem. 2013, 61(7), 1487–1492. DOI: 10.1021/jf302904t.
  • Xu, Q., Fan, H., Yu, W., Hong, H., Wu, J.; et al. Transport Study of Egg-Derived Antihypertensive Peptides (LKP and IQW) Using Caco-2 and HT29 Coculture Monolayers. J. Agric. Food Chem. 2017, 65(34), 7406–7414.
  • Zuisu, C. R. D. G. Y. Absorption Mechanism of Cod Skin Collagen Peptide in Caco-2 Cell Monolayer Model. Food Sci. 2018, 39(19), 154–161. DOI: 10.7506/spkx1002-6630-201819024.
  • Salamat-Miller, N.; Johnston, T. P. Current Strategies Used to Enhance the Paracellular Transport of Therapeutic Polypeptides Across the Intestinal Epithelium. Int. J. Pharm. 2005, 294(1–2), 201–216. DOI: 10.1016/j.ijpharm.2005.01.022.
  • Brunner, J.; Ragupathy, S.; Borchard, G. Target Specific Tight Junction Modulators. Adv. Drug Deliv. Rev. 2021, 171, 266–288. DOI: 10.1016/j.addr.2021.02.008.
  • Xue Haiyan, X. L.; BaoyuaN, H. ACE Inhibitory Activity and Intestinal Absorption of Milk Casein Hydrolysates by in vitro Simulated Digestion. Modern Food Sci. Technol. 2018, 34(6), 9–17. DOI: 10.13982/j.mfst.1673-9078.2018.6.002.
  • Ding, L., Wang, L., Yu, Z., Zhang, T., Liu, J.; et al. Digestion and Absorption of an Egg White ACE-Inhibitory Peptide in Human Intestinal Caco-2 Cell Monolayers. Int. J. Food Sci. Nutr. 2016, 67(2), 111–116.
  • Salama, N. N.; Eddington, N. D.; Fasano, A. Tight Junction Modulation and Its Relationship to Drug Delivery. Adv. Drug Deliv. Rev. 2006, 58(1), 15–28. DOI: 10.1016/j.addr.2006.01.003.
  • Tanabe, S. Short Peptide Modules for Enhancing Intestinal Barrier Function. Curr. Pharm. Des. 2012, 18, 776–781. DOI: 10.2174/138161212799277653.
  • Li, Y., Zhao, J., Liu, X., Xia, X., Wang, Y., Zhou, J.; et al. Transport of a Novel Angiotensin-I-Converting Enzyme Inhibitory Peptide Ala-His-Leu-Leu Across Human Intestinal Epithelial Caco-2 Cells. J. Med. Food. 2017, 20(3), 243–250.
  • Shimizu, M.; Soichi Arai, M. T. Transepithelial Transport of Oligopeptides in the Human Intestinal Cell, Caco-2. Peptides. 1997, 18, 681–687. DOI: 10.1016/S0196-9781(97)00002-8.
  • Vij, R., Reddi, S., Kapila, S., Kapila, R.; et al. Transepithelial Transport of Milk Derived Bioactive Peptide VLPVPQK. Food Chem. 2016, 190, 681–688. DOI: 10.1016/j.foodchem.2015.05.121.
  • Sienkiewicz-Szłapka, E.; Jarmołowska, B.; Krawczuk, S.; Kostyra, E.; Kostyra, H.; Bielikowicz, K., et al. Transport of Bovine Milk-Derived Opioid Peptides Across a Caco-2 Monolayer. Int. Dairy J. 2009, 19(4), 252–257.
  • Xu, F., Wang, L., Ju, X., Zhang, J., Yin, S., Shi, J., He, R., Yuan, Q.; et al. Transepithelial Transport of YWDHNNPQIR and Its Metabolic Fate with Cytoprotection Against Oxidative Stress in Human Intestinal Caco-2 Cells. J. Agric. Food Chem. 2017, 65(10), 2056–2065.
  • Makvandi, P., Chen, M., Sartorius, R., Zarrabi, A., Ashrafizadeh, M., Dabbagh Moghaddam, F., Ma, J., Mattoli, V., Tay, F. R.; et al. Endocytosis of Abiotic Nanomaterials and Nanobiovectors: Inhibition of Membrane Trafficking. Nano Today. 2021, 40, 101279. DOI: 10.1016/j.nantod.2021.101279.
  • Fan, W., Xia, D., Zhu, Q., Hu, L., Gan, Y.; et al. Intracellular Transport of Nanocarriers Across the Intestinal Epithelium. Drug Discov. Today. 2016, 21(5), 856–863.
  • Komin, A., et al. Peptide-Based Strategies for Enhanced Cell Uptake, Transcellular Transport, and Circulation: Mechanisms and Challenges. Adv. Drug Deliv. Rev. 2017, 110-111, 52–64. DOI: 10.1016/j.addr.2016.06.002.
  • Beloqui, A.; des Rieux, A.; Preat, V. Mechanisms of Transport of Polymeric and Lipidic Nanoparticles Across the Intestinal Barrier. Adv. Drug Deliv. Rev. 2016, 106(Pt B), 242–255. DOI: 10.1016/j.addr.2016.04.014.
  • Khan, M. M.; Filipczak, N.; Torchilin, V. P. Cell Penetrating Peptides: A Versatile Vector for Co-Delivery of Drug and Genes in Cancer. J. Control Release. 2021, 330, 1220–1228. DOI: 10.1016/j.jconrel.2020.11.028.
  • Regazzo, D.; Mollé, D.; Gabai, G.; Tomé, D.; Dupont, D.; Leonil, J.; Boutrou, R., et al. The (193-209) 17-Residues Peptide of Bovine β-Casein is Transported Through Caco-2 Monolayer. Mol. Nutr. Food Res. 2010, 54(10), 1428–1435.
  • Sai, Y.; Kajita, M.; Tamai, I., Wakama, J., Wakamiya, T., Tsuji, A. et al. Adsorptive-Mediated Endocytosis of a Basic Peptide in Enterocyte-Like Caco-2 Cells. Am. J. Physiol. 1998, 275. DOI:10.1152/ajpgi.1998.275.3.G514.
  • Ding, L., Wang, L., Zhang, T., Yu, Z., Liu, J.; et al. Hydrolysis and Transepithelial Transport of Two Corn Gluten Derived Bioactive Peptides in Human Caco-2 Cell Monolayers. Food. Res. Int. 2018, 106, 475–480. DOI: 10.1016/j.foodres.2017.12.080.
  • Miguel, M.; Dávalos, A.; Manso, M. A.; de la Peña, G.; Lasunción, M. A.; López-Fandiño, R., et al. Transepithelial Transport Across Caco-2 Cell Monolayers of Antihypertensive Egg-Derived Peptides. PepT1-Mediated Flux of Tyr-Pro-Ile. Mol. Nutr. Food Res. 2008, 52(12), 1507–1513.
  • Xing, L., Liu, R., Tang, C., Pereira, J., Zhou, G., Zhang, W.; et al. The Antioxidant Activity and Transcellular Pathway of Asp-Leu-Glu-Glu in a Caco-2 Cell Monolayer. Int. J. Food Sci. Technol. 2018, 53(10), 2405–2414.
  • Gleeson, J. P.; Brayden, D. J.; Ryan, S. M. Evaluation of PepT1 Transport of Food-Derived Antihypertensive Peptides, Ile-Pro-Pro and Leu-Lys-Pro Using in Vitro, ex vivo and in vivo Transport Models. Eur. J. Pharm. Biopharm. 2017, 115, 276–284. DOI: 10.1016/j.ejpb.2017.03.007.
  • Guo, Y., Gan, J., Zhu, Q., Zeng, X., Sun, Y., Wu, Z., Pan, D.; et al. Transepithelial Transport of Milk-Derived Angiotensin I-Converting Enzyme Inhibitory Peptide with the RLSFNP Sequence. J. Sci. Food Agric. 2018, 98(3), 976–983.
  • Ma, L., and Lu, K. J., Synthesis of ACE Inhibitory Peptide KVLPVP and Its Mimic Peptides. Advances in Biomedical Engineering–Proceedings of 2011 International Conference on Agricultural and Biosystems Engineering, Amsterdam, Netherlands, 2011.
  • Yu, Z., Wu, S., Zhao, W., Ding, L., Fan, Y., Shiuan, D., Liu, J., Chen, F.; et al. Anti-Alzheimer's Activity and Molecular Mechanism of Albumin-Derived Peptides Against AChE and BChE. Food Funct. 2018, 9(2), 1173–1178.
  • Ding, L., Zhang, Y., Jiang, Y., Wang, L., Liu, B., Liu, J.; et al. Transport of Egg White ACE-Inhibitory Peptide, Gln-Ile-Gly-Leu-Phe, in Human Intestinal Caco-2 Cell Monolayers with Cytoprotective Effect. J. Agric. Food Chem. 2014, 62(14), 3177–3182.
  • Eckert, E.; Zambrowicz, A.; Pokora, M.; Setner, B.; Dąbrowska, A.; Szołtysik, M.; Szewczuk, Z.; Polanowski, A.; Trziszka, T.; Chrzanowska, J., et al. Egg-Yolk Protein By-Product as a Source of ACE-Inhibitory Peptides Obtained with Using Unconventional Proteinase from Asian Pumpkin (Cucurbita Ficifolia). J. Proteomics. 2014, 110, 107–116. DOI: 10.1016/j.jprot.2014.08.003.
  • Zhang, J., et al. Isolation and Identification of Antioxidative Peptides from Rice Endosperm Protein Enzymatic Hydrolysate by Consecutive Chromatography and MALDI-TOF/TOF MS/MS. Food Chem. 2010, 119(1), 226–234.
  • Quirós, A., et al. Bioavailability of the Antihypertensive Peptide LHLPLP: Transepithelial Flux of HLPLP. Int. Dairy J. 2008, 18(3), 279–286. DOI: 10.1016/j.idairyj.2007.09.006.
  • Batista, P., et al. Recent Insights in the Use of Nanocarriers for the Oral Delivery of Bioactive Proteins and Peptides. Peptides 2018, 101, 112–123. DOI: 10.1016/j.peptides.2018.01.002.
  • Maher, S.; Mrsny, R. J.; Brayden, D. J. Intestinal Permeation Enhancers for Oral Peptide Delivery. Adv. Drug Deliv. Rev. 2016, 106(Pt B), 277–319. DOI: 10.1016/j.addr.2016.06.005.
  • Maher, S., et al. Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics. 2019, 11(1). DOI:10.3390/pharmaceutics11010041.
  • Thanou, M.; Verhoef, J. C.; Junginger, H. E. Chitosan and Its Derivatives as Intestinal Absorption Enhancers. Adv. Drug Delivery Rev. 2001, 50, 91–101.
  • Dahlgren, D., et al. Effect of Paracellular Permeation Enhancers on Intestinal Permeability of Two Peptide Drugs, Enalaprilat and Hexarelin, in Rats. Acta Pharm. Sin. B 2021, 11(6), 1667–1675. DOI: 10.1016/j.apsb.2020.12.019.
  • Rehmani, S.; Dixon, J. E. Oral Delivery of Anti-Diabetes Therapeutics Using Cell Penetrating and Transcytosing Peptide Strategies. Peptides. 2018, 100, 24–35. DOI: 10.1016/j.peptides.2017.12.014.
  • Nakase, I.; Tanaka, G.; Futaki, S. Cell-Penetrating Peptides (CPPs) as a Vector for the Delivery of siRnas into Cells. Mol. BioSyst. 2013, 9(5), 855–861. DOI: 10.1039/c2mb25467k.
  • Mariko, M.; Isao, et al. Site-Dependent Effect of Aprotinin, Sodium Caprate, Na2edta and Sodium Glycocholate on Intestinal Absorption of Insulin. Biol. Pharm. Bull. 1993, 16(1), 68–72.
  • Cruz-Huerta, E., et al. The Protective Role of the Bowman-Birk Protease Inhibitor in Soybean Lunasin Digestion: The Effect of Released Peptides on Colon Cancer Growth. Food Funct. 2015, 6(8), 2626–2635. DOI: 10.1039/c5fo00454c.
  • Renukuntla, J., et al. Approaches for Enhancing Oral Bioavailability of Peptides and Proteins. Int. J. Pharm. 2013, 447(1–2), 75–93. DOI: 10.1016/j.ijpharm.2013.02.030.
  • Leitner, V. M. E. A. Thiolated Polymers: Evidence for the Formation of Disulphide Bonds with Mucus Glycoproteins. Eur. J. Pharm. Biopharm. 2003, 56, 207–214. DOI: 10.1016/S0939-6411(03)00061-4.
  • Mansuri, S., et al. Mucoadhesion: A Promising Approach in Drug Delivery System. React. Funct. Polym. 2016, 100, 151–172. DOI: 10.1016/j.reactfunctpolym.2016.01.011.
  • Martau, G. A.; Mihai, M.; Vodnar, D. C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers (Basel). 2019, 11(11). DOI: 10.3390/polym11111837.
  • Tm, M. W.; Lau, W. M.; Khutoryanskiy, V. V. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polymers (Basel). 2018, 10(3). DOI: 10.3390/polym10030267.
  • Ibrahim, Y. H. Y., et al. Review of Recently Used Techniques and Materials to Improve the Efficiency of Orally Administered Proteins/peptides. Daru 2020, 28(1), 403–416. DOI: 10.1007/s40199-019-00316-w.
  • Andreani, T., et al. Effect of Mucoadhesive Polymers on the in vitro Performance of Insulin-Loaded Silica Nanoparticles: Interactions with Mucin and Biomembrane Models. Eur. J. Pharm. Biopharm. 2015, 93, 118–126. DOI: 10.1016/j.ejpb.2015.03.027.
  • Jørgensen, J. R., et al. Microcontainers for Oral Insulin Delivery – in vitro Studies of Permeation Enhancement. Eur. J. Pharm. Biopharm. 2019, 143, 98–105. DOI: 10.1016/j.ejpb.2019.08.011.
  • Su, F. Y., et al. Protease Inhibition and Absorption Enhancement by Functional Nanoparticles for Effective Oral Insulin Delivery. Biomaterials 2012, 33(9), 2801–2811. DOI: 10.1016/j.biomaterials.2011.12.038.
  • Leone-Bay, A.; Brayden, D.; Creed, E.; O’Connell, A.; Leipold, H.; Agarwal, R. Heparin Absorption Across the Intestine: Effects of Sodium N[8-(2-Hydroxybenzoyl) Amino] Caprylate in Rat in situ Intestinal Instillations and in Caco-2 Monolayers. Pharm. Res. 1997, 14(12), 1772–1779.
  • McGavigan, A. K.; Murphy, K. G. Gut Hormones: The Future of Obesity Treatment? Br.J. Clin. Pharmacol. 2012, 74(6), 911–919. DOI: 10.1111/j.1365-2125.2012.04278.x.
  • Gopalakrishnan, S., et al. Mechanism of Action of ZOT-Derived Peptide AT-1002, a Tight Junction Regulator and Absorption Enhancer. Int. J. Pharm. 2009, 365(1–2), 121–130. DOI: 10.1016/j.ijpharm.2008.08.047.
  • Zhang, L., et al. The Use of Low Molecular Weight Protamine to Enhance Oral Absorption of Exenatide. Int. J. Pharm. 2018, 547(1–2), 265–273. DOI: 10.1016/j.ijpharm.2018.05.055.
  • Haddadzadegan, S.; Dorkoosh, F.; Bernkop-Schnurch, A. Oral Delivery of Therapeutic Peptides and Proteins: Technology Landscape of Lipid-Based Nanocarriers. Adv. Drug Deliv. Rev. 2022, 182, 114097. DOI: 10.1016/j.addr.2021.114097.
  • Dhirendra Kumar Malik, S. B.; Ahuja, A.; Hasan, S.; Ali, J. Recent Advances in Protein and Peptide Drug Delivery Systems. Curr. Drug Delivery. 2007, 4(2), 141–151.
  • Sonia, T. A.; Rekha, M. R.; Sharma, C. P. Bioadhesive Hydrophobic Chitosan Microparticles for Oral Delivery of Insulin: In vitro Characterization and in vivo Uptake Studies. J. Appl. Polym. Sci. 2011, 119(5), 2902–2910. DOI: 10.1002/app.32979.
  • Harloff-Helleberg, S., et al. Exploring the Mucoadhesive Behavior of Sucrose Acetate Isobutyrate: A Novel Excipient for Oral Delivery of Biopharmaceuticals. Drug. Deliv. 2019, 26(1), 532–541. DOI: 10.1080/10717544.2019.1606866.
  • Greimel, A.; Werle, M.; Bernkop-Schnurch, A. Oral Peptide Delivery: In-Vitro Evaluation of Thiolated Alginate/poly(acrylic Acid) Microparticles. J. Pharm. Pharmacol. 2007, 59(9), 1191–1198. DOI: 10.1211/jpp.59.9.0002.
  • Buckley, S. T.; Hubalek, F.; Rahbek, U. L. Chemically Modified Peptides and Proteins - Critical Considerations for Oral Delivery. Tissue Barriers. 2016, 4(2), e1156805. DOI: 10.1080/21688370.2016.1156805.
  • Makhlof, A., Fujimoto, S., Tozuka, Y., Takeuchi, H.; et al. In vitro and in vivo Evaluation of Wga–carbopol Modified Liposomes as Carriers for Oral Peptide Delivery. Eur. J. Pharm. Biopharm. 2011, 77(2), 216–224.
  • Zhao, S., Li, J., Wang, F., Yu, T., Zhou, Y., He, L., Zhang, Y., Yang, J.; et al. Semi-Elastic Core-Shell Nanoparticles Enhanced the Oral Bioavailability of Peptide Drugs. Chin. Chem. Lett. 2020, 31(5), 1147–1152.
  • Menzel, C.; Holzeisen, T.; Laffleur, F.; Zaichik, S.; Abdulkarim, M.; Gumbleton, M.; Bernkop-Schnürch, A., et al. In vivo Evaluation of an Oral Self-Emulsifying Drug Delivery System (SEDDS) for Exenatide. J. Control Release. 2018, 277, 165–172. DOI: 10.1016/j.jconrel.2018.03.018.
  • Sharma, G., Wilson, K., van der Walle, C. F., Sattar, N., Petrie, J. R., Ravi Kumar, M. N. V.; et al. Microemulsions for Oral Delivery of Insulin: Design, Development and Evaluation in Streptozotocin Induced Diabetic Rats. Eur. J. Pharm. Biopharm. 2010, 76(2), 159–169.
  • Sheng, J., Han, L., Qin, J., Ru, G., Li, R., Wu, L., Cui, D., Yang, P., He, Y., Wang, J.; et al. N -Trimethyl Chitosan Chloride-Coated PLGA Nanoparticles Overcoming Multiple Barriers to Oral Insulin Absorption. ACS Appl. Mater. Interfaces. 2015, 7(28), 15430–15441.
  • Han, Y., Gao, Z., Chen, L., Kang, L., Huang, W., Jin, M., Wang, Q., Bae, Y. H.; et al. Multifunctional Oral Delivery Systems for Enhanced Bioavailability of Therapeutic Peptides/proteins. Acta Pharm. Sin. B. 2019, 9(5), 902–922.
  • Mero, A., Schiavon, M., Veronese, F. M., Pasut, G.; et al. A New Method to Increase Selectivity of Transglutaminase Mediated Pegylation of Salmon Calcitonin and Human Growth Hormone. J. Control Release. 2011, 154(1), 27–34.
  • Wu, L., Chen, J., Wu, Y., Zhang, B., Cai, X., Zhang, Z., Wang, Y., Si, L., Xu, H., Zheng, Y.; et al. Precise and Combinatorial Pegylation Generates a Low-Immunogenic and Stable Form of Human Growth Hormone. J. Control Release. 2017, 249, 84–93. DOI: 10.1016/j.jconrel.2017.01.029.
  • Lawrence, P. B.; Price, J. L. How Pegylation Influences Protein Conformational Stability. Curr. Opin. Chem. Biol. 2016, 34, 88–94. DOI: 10.1016/j.cbpa.2016.08.006.
  • Han-Mei, W.-B.-Z.-Y.-C.-Y.-Y.-X. Studies on the Pegylation Conditions of Polypeptide CPU-HM and Pharmacodynamics of Modified Products in vivo. Pharm. Biotechnol. 2016, 23(4), 313–317.
  • Arnesen, T. Towards a Functional Understanding of Protein N-Terminal Acetylation. PLoS Biol. 2011, 9(5), e1001074. DOI: 10.1371/journal.pbio.1001074.
  • Colgrave, M. L. C. D. J., Craik, D. J. Thermal, Chemical, and Enzymatic Stability of the Cyclotide Kalata B1: The Importance of the Cyclic Cystine Knot. Biochemistry. 2004, 43, 5965–5975. DOI: 10.1021/bi049711q.
  • Nielsen, D. S., Shepherd, N. E., Xu, W., Lucke, A. J., Stoermer, M. J., Fairlie, D. P.; et al. Orally Absorbed Cyclic Peptides. Chem. Rev. 2017, 117(12), 8094–8128.
  • Miklavzin, A.; Cegnar, M.; Kerč, J.; Kristl, J., et al. Effect of Surface Hydrophobicity of Therapeutic Protein Loaded in Polyelectrolyte Nanoparticles on Transepithelial Permeability. Acta. Pharm. 2018, 68(3), 275–293.
  • Choonara, B. F., Choonara, Y. E., Kumar, P., Bijukumar, D., du Toit, L. C., Pillay, V.; et al. A Review of Advanced Oral Drug Delivery Technologies Facilitating the Protection and Absorption of Protein and Peptide Molecules. Biotechnol. Adv. 2014, 32(7), 1269–1282.
  • Jiang, X., Pan, D., Tao, M., Zhang, T., Zeng, X., Wu, Z., Guo, Y.; et al. New Nanocarrier System for Liposomes Coated with Lactobacillus Acidophilus S-Layer Protein to Improve Leu–gln–pro–glu Absorption Through the Intestinal Epithelium. J. Agric. Food Chem. 2021, 69(27), 7593–7602.
  • Mohan, A.; McClements, D. J.; Udenigwe, C. C. Encapsulation of Bioactive Whey Peptides in Soy Lecithin-Derived Nanoliposomes: Influence of Peptide Molecular Weight. Food Chem. 2016, 213, 143–148. DOI: 10.1016/j.foodchem.2016.06.075.
  • Mohan, A., Rajendran, S. R. C. K., Thibodeau, J., Bazinet, L., Udenigwe, C. C.; et al. Liposome Encapsulation of Anionic and Cationic Whey Peptides: Influence of Peptide Net Charge on Properties of the Nanovesicles. Lwt. 2018, 87, 40–46. DOI: 10.1016/j.lwt.2017.08.072.
  • da Rosa Zavareze, E.; Telles, A. C.; Mello El Halal, S. L.; da Rocha, M.; Colussi, R.; Marques de Assis, L.; Suita de Castro, L. A.; Guerra Dias, A. R.; Prentice-Hernández, C., et al. Production and Characterization of Encapsulated Antioxidative Protein Hydrolysates from Whitemouth Croaker (Micropogonias Furnieri) Muscle and Byproduct. LWT - Food Sci. Technol. 2014, 59(2), 841–848.
  • Mosquera, M.; Giménez, B.; da Silva, I. M.; Boelter, J. F.; Montero, P.; Gómez-Guillén, M. C.; Brandelli, A., et al. Nanoencapsulation of an Active Peptidic Fraction from Sea Bream Scales Collagen. Food Chem. 2014, 156, 144–150. DOI: 10.1016/j.foodchem.2014.02.011.
  • Mosquera, M.; Giménez, B.; Montero, P.; Gómez-Guillén, M. C., et al. Incorporation of Liposomes Containing Squid Tunic ACE-Inhibitory Peptides into Fish Gelatin. J. Sci. Food Agric. 2016, 96(3), 769–776.
  • da Silva Malheiros, P.; Micheletto, Y. M. S.; Silveira, N. P. D.; Brandelli, A., et al. Development and Characterization of Phosphatidylcholine Nanovesicles Containing the Antimicrobial Peptide Nisin. Food Res. Int. 2010, 43(4), 1198–1203.
  • Yokota, D.; Moraes, M.; Pinho, S. C. Characterization of Lyophilized Liposomes Produced with Non-Purified Soy Lecithin: A Case Study of Casein Hydrolysate Microencapsulation. Braz. J. Chem. Eng. 2012, 29(2), 325–335. DOI: 10.1590/S0104-66322012000200013.
  • Maherani, B., Arab-Tehrany, E., Kheirolomoom, A., Cleymand, F., Linder, M.; et al. Influence of Lipid Composition on Physicochemical Properties of Nanoliposomes Encapsulating Natural Dipeptide Antioxidant L-Carnosine. Food Chem. 2012, 134(2), 632–640.
  • Pugliese, R., Bollati, C., Gelain, F., Arnoldi, A., Lammi, C.; et al. A Supramolecular Approach to Develop New Soybean and Lupin Peptide Nanogels with Enhanced Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Activity. J. Agric. Food Chem. 2019, 67(13), 3615–3623.
  • Gong, K. J., Shi, A.-M., Liu, H.-Z., Liu, L., Hu, H., Yang, Y., Adhikari, B., Wang, Q.; et al. Preparation of Nanoliposome Loaded with Peanut Peptide Fraction: Stability and Bioavailability. Food Funct. 2016, 7(4), 2034–2042.
  • Mazloomi, S. N., et al. Physicochemical Properties of Chitosan-Coated Nanoliposome Loaded with Orange Seed Protein Hydrolysate. J. Food Eng. 2020, 280. DOI: 10.1016/j.jfoodeng.2020.109976.
  • Li, Z.; Paulson, A. T.; Gill, T. A. Encapsulation of Bioactive Salmon Protein Hydrolysates with Chitosan-Coated Liposomes. J. Funct. Foods. 2015, 19, 733–743. DOI: 10.1016/j.jff.2015.09.058.
  • Ramezanzade, L.; Hosseini, S. F.; Nikkhah, M. Biopolymer-Coated Nanoliposomes as Carriers of Rainbow Trout Skin-Derived Antioxidant Peptides. Food Chem. 2017, 234, 220–229. DOI: 10.1016/j.foodchem.2017.04.177.
  • Li, N., et al. Multivesicular Liposomes for the Sustained Release of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Peanuts: Design, Characterization, and in vitro Evaluation. Molecules. 2019, 24(9). DOI:10.3390/molecules24091746.
  • Choi, M.-J., Choi, D., Lee, J., Jo, Y.-J., et al. Encapsulation of a Bioactive Peptide in a Formulation of W1/O/W2-Type Double Emulsions: Formation and Stability. Food Struct. 2020, 25. DOI: 10.1016/j.foostr.2020.100145.
  • Du, Z., Liu, J., Zhang, T., Yu, Y., Zhang, Y., Zhai, J., Huang, H., Wei, S., Ding, L., Liu, B.; et al. A Study on the Preparation of Chitosan-Tripolyphosphate Nanoparticles and Its Entrapment Mechanism for Egg White Derived Peptides. Food Chem. 2019, 286, 530–536. DOI: 10.1016/j.foodchem.2019.02.012.
  • Ilhan-Ayisigi, E., Budak, G., Celiktas, M. S., Sevimli-Gur, C., Yesil-Celiktas, O.; et al. Anticancer Activities of Bioactive Peptides Derived from Rice Husk Both in Free and Encapsulated Form in Chitosan. J. Ind. Eng. Chem. 2021, 103, 381–391. DOI: 10.1016/j.jiec.2021.08.006.
  • Su, L., et al. Solid Lipid Nanoparticles Enhance the Resistance of Oat-Derived Peptides That Inhibit Dipeptidyl Peptidase IV in Simulated Gastrointestinal Fluids. J. Funct. Foods. 2020, 65. DOI: 10.1016/j.jff.2019.103773.
  • Tan, M. L.; Choong, P. F.; Dass, C. R. Recent Developments in Liposomes, Microparticles and Nanoparticles for Protein and Peptide Drug Delivery. Peptides. 2010, 31(1), 184–193. DOI: 10.1016/j.peptides.2009.10.002.
  • Bulbake, U., Doppalapudi, S., Kommineni, N., Khan, W., et al. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9(4). doi:10.3390/pharmaceutics9020012
  • Alavi, M.; Karimi, N.; Safaei, M. Application of Various Types of Liposomes in Drug Delivery Systems. Adv. Pharm. Bull. 2017, 7(1), 3–9. DOI: 10.15171/apb.2017.002.
  • Xu, Y.; Michalowski, C. B.; Beloqui, A. Advances in Lipid Carriers for Drug Delivery to the Gastrointestinal Tract. Curr. Opin. Colloid Interface Sci. 2021, 52, 101414. DOI: 10.1016/j.cocis.2020.101414.
  • Liu, W., Hou, Y., Jin, Y., Wang, Y., Xu, X., Han, J.; et al. Research Progress on Liposomes: Application in Food, Digestion Behavior and Absorption Mechanism. Trends Food Sci. Technol. 2020, 104, 177–189. DOI: 10.1016/j.tifs.2020.08.012.
  • Ramezanzade, L., et al. Cross-Linked Chitosan-Coated Liposomes for Encapsulation of Fish-Derived Peptide. Lwt. 2021, 150. DOI: 10.1016/j.lwt.2021.112057.
  • Mahmood, A.; Bernkop-Schnurch, A. SEDDS: A Game Changing Approach for the Oral Administration of Hydrophilic Macromolecular Drugs. Adv. Drug Deliv. Rev. 2019, 142, 91–101. DOI: 10.1016/j.addr.2018.07.001.
  • Abdulkarim, M.; Sharma, P. K.; Gumbleton, M. Self-Emulsifying Drug Delivery System: Mucus Permeation and Innovative Quantification Technologies. Adv. Drug Deliv. Rev. 2019, 142, 62–74. DOI: 10.1016/j.addr.2019.04.001.
  • Czogalla, A. Oral Cyclosporine A–the Current Picture of Its Liposomal and Other Delivery Systems. Cell. Mol. Biol. Lett. 2009, 14(1), 139–152. DOI: 10.2478/s11658-008-0041-6.
  • Agrawal, M., Saraf, S., Saraf, S., Dubey, S. K., Puri, A., Patel, R. J., Ravichandiran, V., Murty, U. S., Alexander, A.; et al. Recent Strategies and Advances in the Fabrication of Nano Lipid Carriers and Their Application Towards Brain Targeting. J. Control Release. 2020, 321, 372–415. DOI: 10.1016/j.jconrel.2020.02.020.
  • Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., Chourasia, M. K.; et al. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control Release. 2017, 252, 28–49. DOI: 10.1016/j.jconrel.2017.03.008.
  • Callender, S. P., Mathews, J. A., Kobernyk, K., Wettig, S. D.; et al. Microemulsion Utility in Pharmaceuticals: Implications for Multi-Drug Delivery. Int. J. Pharm. 2017, 526(1–2), 425–442.
  • Hu, X. B., Tang, T.-T., Li, Y.-J., Wu, J.-Y., Wang, J.-M., Liu, X.-Y., Xiang, D.-X.; et al. Phospholipid Complex Based Nanoemulsion System for Oral Insulin Delivery: Preparation, in Vitro, and in vivo Evaluations. Int J. Nanomedi. 2019, 14, 3055–3067. DOI: 10.2147/IJN.S198108.
  • Gleeson, J. P.; Ryan, S. M.; Brayden, D. J. Oral Delivery Strategies for Nutraceuticals: Delivery Vehicles and Absorption Enhancers. Trends Food Sci. Technol. 2016, 53, 90–101. DOI: 10.1016/j.tifs.2016.05.007.
  • McClements, D. J. Nanoemulsion-Based Oral Delivery Systems for Lipophilic Bioactive Components: Nutraceuticals and Pharmaceuticals. Ther. Delivery. 2013a, (4), 841–857. DOI: 10.4155/tde.13.46.
  • Moss, D. M., Curley, P., Kinvig, H., Hoskins, C., Owen, A.; et al. The Biological Challenges and Pharmacological Opportunities of Orally Administered Nanomedicine Delivery. Expert Rev. Gastroenterol. Hepatol. 2018, 12(3), 223–236.
  • Rostami, E. Progresses in Targeted Drug Delivery Systems Using Chitosan Nanoparticles in Cancer Therapy: A Mini-Review. J. Drug Delivery Sci. Technol. 2020, 58. DOI: 10.1016/j.jddst.2020.101813.
  • Alexander, A. E. A., Ajazuddin, M., Swarna, M., Sharma, M., Tripathi, D. K. Polymers and Permeation Enhancers: Specialized Components of Mucoadhesives. Stamford J. Pharm. 2011, 4, 91–95. DOI: 10.3329/sjps.v4i1.8878.
  • Roos, C.; Dahlgren, D.; Berg, S.; Westergren, J.; Abrahamsson, B.; Tannergren, C.; Sjögren, E.; Lennernäs, H., et al. In vivo Mechanisms of Intestinal Drug Absorption from Aprepitant Nanoformulations. Mol. Pharm. 2017, 14(12), 4233–4242.
  • Khan, J., Alexander, A., ., Saraf, S., Saraf, S.; et al. Exploring the Role of Polymeric Conjugates Toward Anti-Cancer Drug Delivery: Current Trends and Future Projections. Int. J. Pharm. 2018, 548(1), 500–514.
  • Song, Y., Shi, Y., Zhang, L., Hu, H., Zhang, C., Yin, M., Chu, L., Yan, X., Zhao, M., Zhang, X.; et al. Synthesis of CSK-DEX-PLGA Nanoparticles for the Oral Delivery of Exenatide to Improve Its Mucus Penetration and Intestinal Absorption. Mol. Pharm. 2019, 16(2), 518–532.
  • Toragall, V.; Baskaran, V. Chitosan-Sodium Alginate-Fatty Acid Nanocarrier System: Lutein Bioavailability, Absorption Pharmacokinetics in Diabetic Rat and Protection of Retinal Cells Against H2O2 Induced Oxidative Stress in vitro. Carbohydr. Polym. 2021, 254, 117409. DOI: 10.1016/j.carbpol.2020.117409.
  • Li, H., Zhang, Z., Bao, X., Xu, G., Yao, P.; et al. Fatty Acid and Quaternary Ammonium Modified Chitosan Nanoparticles for Insulin Delivery. Colloids Surf. B Biointerfaces. 2018, 170, 136–143. DOI: 10.1016/j.colsurfb.2018.05.063.
  • Liu, J., Li, Y., Zhang, H., Liu, S., Yang, M., Cui, M., Zhang, T., Yu, Y., Xiao, H., Du, Z.; et al. Fabrication, Characterization and Functional Attributes of Zein-Egg White Derived Peptides (EWDP)-Chitosan Ternary Nanoparticles for Encapsulation of Curcumin: Role of EWDP. Food Chem. 2021, 372, 131266. DOI: 10.1016/j.foodchem.2021.131266.
  • Hosseini, S. F.; Soleimani, M. R.; Nikkhah, M. Chitosan/sodium Tripolyphosphate Nanoparticles as Efficient Vehicles for Antioxidant Peptidic Fraction from Common Kilka. Int. J. Biol. Macromol. 2018, 111, 730–737. DOI: 10.1016/j.ijbiomac.2018.01.023.
  • Cuomo, F., et al. In-Vitro Digestion of Curcumin Loaded Chitosan-Coated Liposomes. Colloids Surf. B Biointerfaces. 2018, 168, 29–34. DOI: 10.1016/j.colsurfb.2017.11.047.
  • Zhenhua Hu, S. N.; Goel, S.; Hinkle, L. E.; Wu, X.; Li, C.; Ferrari1, M.; Shen, H. Molecular Targeting of FATP4 Transporter for Oral Delivery of Therapeutic Peptide. Science Advances. 2020. DOI: 10.1126/sciadv.aba0145.
  • Mendanha, D. V., et al. Microencapsulation of Casein Hydrolysate by Complex Coacervation with Spi/pectin. Food Res. Int. 2009, 42(8), 1099–1104. DOI: 10.1016/j.foodres.2009.05.007.
  • Ma, J.-J., et al. Effect of Spray Drying and Freeze Drying on the Immunomodulatory Activity, Bitter Taste and Hygroscopicity of Hydrolysate Derived from Whey Protein Concentrate. LWT - Food Sci. Technol. 2014, 56(2), 296–302. DOI: 10.1016/j.lwt.2013.12.019.
  • Wang, Z., et al. The Effect of Rapeseed Protein Structural Modification on Microstructural Properties of Peptide Microcapsules. Food Bioprocess. Technol. 2015, 8(6), 1305–1318. DOI: 10.1007/s11947-015-1472-5.
  • Sun, H., et al. Nanostructures Based on Protein Self-Assembly: From Hierarchical Construction to Bioinspired Materials. Nano Today. 2017, 14, 16–41. DOI: 10.1016/j.nantod.2017.04.006.
  • Martínez-López, A. L., et al. Protein-Based Nanoparticles for Drug Delivery Purposes. Int. J. Pharmaceutics. 2020, 581. DOI: 10.1016/j.ijpharm.2020.119289.
  • Sadeghi, S., et al. Oral Administration of Protein Nanoparticles: An Emerging Route to Disease Treatment. Pharmacol. Res. 2020, 158, 104685. DOI: 10.1016/j.phrs.2020.104685.
  • Kou, L., et al. The Endocytosis and Intracellular Fate of Nanomedicines: Implication for Rational Design. Asian J. Pharm. Sci. 2013, 8(1), 1–10. DOI: 10.1016/j.ajps.2013.07.001.
  • Ahmad, A.; Khan, J. M.; Haque, S. Strategies in the Design of Endosomolytic Agents for Facilitating Endosomal Escape in Nanoparticles. Biochimie. 2019, 160, 61–75. DOI: 10.1016/j.biochi.2019.02.012.
  • Rathore, B., et al. Nanomaterial Designing Strategies Related to Cell Lysosome and Their Biomedical Applications: A Review. Biomaterials 2019, 211, 25–47. DOI: 10.1016/j.biomaterials.2019.05.002.
  • Fan, W., et al. Functional Nanoparticles Exploit the Bile Acid Pathway to Overcome Multiple Barriers of the Intestinal Epithelium for Oral Insulin Delivery. Biomaterials 2018, 151, 13–23. DOI: 10.1016/j.biomaterials.2017.10.022.
  • Yuan, X., et al. Virus-Like Nonvirus Cationic Liposome for Efficient Gene Delivery via Endoplasmic Reticulum Pathway. ACS Cent. Sci. 2020, 6(2), 174–188. DOI: 10.1021/acscentsci.9b01052.
  • Luo, Q., Jiang, M., Kou, L., Zhang, L., Li, G., Yao, Q., Shang, L., Chen, Y.; et al. Ascorbate-Conjugated Nanoparticles for Promoted Oral Delivery of Therapeutic Drugs via Sodium-Dependent Vitamin C Transporter 1 (SVCT1). Artif. Cells Nanomed. Biotechnol. 2018, 46(sup1), 198–208.
  • Hubatsch, I.; Ragnarsson, E. G.; Artursson, P. Determination of Drug Permeability and Prediction of Drug Absorption in Caco-2 Monolayers. Nat. Protoc. 2007, 2(9), 2111–2119. DOI: 10.1038/nprot.2007.303.
  • Azenha, M. A., et al. Estimation of the Human Intestinal Permeability of Butyltin Species Using the Caco-2 Cell Line Model. Food Chem. Toxicol. 2004, 42(9), 1431–1442. DOI: 10.1016/j.fct.2004.04.004.
  • Shen, W.; Matsui, T. Current Knowledge of Intestinal Absorption of Bioactive Peptides. Food Funct. 2017, 8(12), 4306–4314. DOI: 10.1039/c7fo01185g.
  • Deferme, S. A.; Augustijns, P. P in Vitro screening Models to Assess Intestinal Drug Absorption and Metabolism. Drug Absorption Stud. 2008, 182–215.
  • Wilson, G. H.; Dix, I. F.; Williamson, C. J.; Shah, I.; Mackay, R.; Artursson, M. P Transport and Permeability Properties of Human Caco-2 Cells: An In Vitro Model of the Intestinal Epithelial Cell Barrier. J. Control Release. 1990, 11(1–3), 25–40. DOI: 10.1016/0168-3659(90)90118-D.
  • Hilgers, A. R.; Conradi, R. A.; Burton, P. S. Caco-2 Cell Monolayers as a Model for Drug Transport Across the Intestinal Mucosa. Pharm. Res. 1990, 7, 902–910. DOI: 10.1023/A:1015937605100.
  • Backhed, F.; Ley, R. E.; Sonnenburg, J. L.; Peterson, D. A.; Gordon, J. I. Host-Bacterial Mutualism in the Human Intestine. Science. 2005, 307, 1915–1920. DOI: 10.1126/science.1104816.
  • Zhang, Q., Tong, X., Qi, B., Wang, Z., Li, Y., Sui, X., Jiang, L.; et al. Changes in Antioxidant Activity of Alcalase-Hydrolyzed Soybean Hydrolysate Under Simulated Gastrointestinal Digestion and Transepithelial Transport. J. Funct. Foods. 2018, 42, 298–305. DOI: 10.1016/j.jff.2018.01.017.
  • Anderson, R. C., Dalziel, J. E., Haggarty, N. W., Dunstan, K. E., Gopal, P. K., Roy, N. C.; et al. Short Communication: Processed Bovine Colostrum Milk Protein Concentrate Increases Epithelial Barrier Integrity of Caco-2 Cell Layers. J. Dairy Sci. 2019, 102(12), 10772–10778.
  • Picariello, G., Iacomino, G., Mamone, G., Ferranti, P., Fierro, O., Gianfrani, C., Di Luccia, A., Addeo, F.; et al. Transport Across Caco-2 Monolayers of Peptides Arising from in vitro Digestion of Bovine Milk Proteins. Food Chem. 2013, 139(1–4), 203–212.
  • Lin, K., Ma, Z., Ramachandran, M., De Souza, C., Han, X., Zhang, L.-W.; et al. ACE Inhibitory Peptide KYIPIQ Derived from Yak Milk Casein Induces Nitric Oxide Production in Huvecs and Diffuses via a Transcellular Mechanism in Caco-2 Monolayers. Process Biochem. 2020, 99, 103–111. DOI: 10.1016/j.procbio.2020.08.031.
  • Ma, J., Guan, R., Shen, H., Lu, F., Xiao, C., Liu, M., Kang, T.; et al. Comparison of Anticancer Activity Between Lactoferrin Nanoliposome and Lactoferrin in Caco-2 Cells in vitro. Food Chem. Toxicol. 2013, 59, 72–77. DOI: 10.1016/j.fct.2013.05.038.
  • Lundquist, P.; Artursson, P. Oral Absorption of Peptides and Nanoparticles Across the Human Intestine: Opportunities, Limitations and Studies in Human Tissues. Adv. Drug Deliv. Rev. 2016, 106(Pt B), 256–276. DOI: 10.1016/j.addr.2016.07.007.
  • Rizza, L., Frasca, G., Nicholls, M., Puglia, C., Cardile, V.; et al. Caco-2 Cell Line as a Model to Evaluate Mucoprotective Properties. Int. J. Pharm. 2012, 422(1–2), 318–322.
  • Ding, X., Hu, X., Chen, Y., Xie, J., Ying, M., Wang, Y., Yu, Q.; et al. Differentiated Caco-2 Cell Models in Food-Intestine Interaction Study: Current Applications and Future Trends. Trends Food Sci. Technol. 2021, 107, 455–465. DOI: 10.1016/j.tifs.2020.11.015.
  • Iftikhar, M., et al. Transport, Metabolism and Remedial Potential of Functional Food Extracts (FFEs) in Caco-2 Cells Monolayer: A Review. Food. Res. Int. 2020, 136, 109240. DOI: 10.1016/j.foodres.2020.109240.
  • Rodrigues, D. B.; Failla, M. L. Intestinal Cell Models for Investigating the Uptake, Metabolism and Absorption of Dietary Nutrients and Bioactive Compounds. Curr. Opin. Food Sci. 2021, 41, 169–179. DOI: 10.1016/j.cofs.2021.04.002.
  • Vaidyanathan, G., et al. Brush Border Enzyme-Cleavable Linkers: Evaluation for Reducing Renal Uptake of Radiolabeled Prostate-Specific Membrane Antigen Inhibitors. Nucl. Med. Biol. 2018, 62-63, 18–30. DOI: 10.1016/j.nucmedbio.2018.05.002.
  • Ahmad, M. K., et al. Oral Administration of a Nephrotoxic Dose of Potassium Bromate, a Food Additive, Alters Renal Redox and Metabolic Status and Inhibits Brush Border Membrane Enzymes in Rats. Food Chem. 2012, 134(2), 980–985. DOI: 10.1016/j.foodchem.2012.03.004.
  • Wikman-Larhed, A. A., and Artursson, P. Co-Cultures of Human Intestinal Goblet (HT29-H) and Absorptive (Caco-2) Cells for Studies of Drug and Peptide Absorption. Eur. J. Pharm. 1995, 3(3), 171–183. DOI:10.1016/0928-0987(95)00007-Z .
  • Zweibaum, A.; Laburthe, M.; Grasset, E., and Louvard, D. Use of Cultured Cell Lines in Studies of Intestinal Cell Differentiation and Function. Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion. 2011, 223–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.