735
Views
5
CrossRef citations to date
0
Altmetric
Review

Effect of ultrasound pretreatment on the functional and bioactive properties of legumes protein hydrolysates and peptides: A comprehensive review

, & ORCID Icon

References

  • Maphosa, Y.; Jideani, V. A. The Role of Legumes in Human Nutrition. in Functional Food-Improve Health Through Adequate Food. IntechOpen. 2017, 1, 102–121. DOI: 10.5772/intechopen.69127.
  • Çakir, Ö.; Uçarli, C.; Tarhan, Ç.; Pekmez, M.; Turgut-Kara, N. Nutritional and Health Benefits of Legumes and Their Distinctive Genomic Properties. Food Sci. Technol. 2019, 39(1), 1–12. DOI: 10.1590/fst.42117.
  • Kamran, F.; Reddy, N. Bioactive Peptides from Legume: Functional and Nutraceutical Potential. Rad. Food Sci. 2018, 1(3), 134–149. DOI: 10.1111/1750-3841.12365.
  • Dhanabalan, V.; Xavier, M.; Murthy, L. N.; Asha, K. K.; Balange, A. K.; Nayak, B. B. Evaluation of Physicochemical and Functional Properties of Spray‐dried Protein Hydrolysate from Non‐penaeid Shrimp (Acetes Indicus). J. Sci. Food Agric. 2020, 100(1), 50–58. DOI: 10.1002/jsfa.9992.
  • Gupta, N.; Bhagyawant, S. S. Impact of Hydrolysis on Functional Properties, Antioxidant, ACE-I Inhibitory and Antiproliferative Activity of Cicer Arietinum and Cicer Reticulatum Hydrolysates. Nutrire. 2019, 44(1), 1–12. DOI: 10.1186/s41110-019-0095-4.
  • Schlegel, K.; Sontheimer, K.; Hickisch, A.; Wani, A. A.; Eisner, P.; Schweiggert‐weisz, U. Enzymatic Hydrolysis of Lupin Protein Isolates–Changes in the Molecular Weight Distribution, Technofunctional Characteristics, and Sensory Attributes. Food Sci. Nutr. 2019, 7(8), 2747–2759. DOI: 10.1002/fsn3.1139.
  • Ahmed, J.; Mulla, M.; Al‐ruwaih, N.; Arfat, Y. A. Effect of High‐pressure Treatment Prior to Enzymatic Hydrolysis on Rheological, Thermal, and Antioxidant Properties of Lentil Protein Isolate. Legum. Sci. 2019, 1(1), 1–13. DOI: 10.1002/leg3.10.
  • Wani, I. A.; Sogi, D. S.; Gill, B. S. Physico-Chemical and Functional Properties of Native and Hydrolysed Protein Isolates from Indian Black Gram (Phaseolus Mungo L.) Cultivars. LWT. 2015a, 60(2), 848–854. DOI: 10.1016/j.lwt.2014.10.060.
  • Jakubczyk, A.; Baraniak, B. Angiotensin I Converting Enzyme Inhibitory Peptides Obtained After in vitro Hydrolysis of Pea (Pisum Sativum Var. Bajka) Globulins. Biomed Res. Int. 2014, 2014, 1–8. DOI: 10.1155/2014/438459.
  • Halim, N. R. A.; Nsarbon, N. M. Characterization of Asian Swamp Eel (Monopterus Sp.) Protein Hydrolysate Functional Properties Prepared Using Alcalase® Enzyme. Food Res. 2020, 4(1), 207–215. DOI: 10.26656/fr.2017.4(1).205.
  • Shaik, M. I.; Sarbon, N. M. A Review on Purification and Characterization of Anti-Proliferative Peptides Derived from Fish Protein Hydrolysate. Food Rev. Int. 2020, 1–21. DOI: 10.1080/87559129.2020.1812634.
  • Halim, N. R. A.; Azlan, A.; Yusof, H. M.; Sarbon, N. M. Antioxidant and Anticancer Activities of Enzymatic EEL (monopterus sp) Protein Hydrolysate as Influenced by Different Molecular Weight. Biocatal. Agric. 2018, 16, 10–16. DOI: 10.1016/j.bcab.2018.06.006.
  • Segura-Campos, M. R.; Espinosa-García, L.; Chel-Guerrero, L. A.; Betancur-Ancona, D. A. Effect of Enzymatic Hydrolysis on Solubility, Hydrophobicity, and in vivo Digestibility in Cowpea (Vigna Unguiculata). Int. J. Food. Prop. 2012, 15(4), 770–780. DOI: 10.1080/10942912.2010.501469.
  • Ghribi, A. M.; Gafsi, I. M.; Sila, A.; Blecker, C.; Danthine, S.; Attia, H.; Bougatef, A.; Besbes, S., et al. Effects of Enzymatic Hydrolysis on Conformational and Functional Properties of Chickpea Protein Isolate. Food Chem. 2015a, 187, 322–330. DOI: 10.1016/j.foodchem.2015.04.109.
  • Wani, I. A.; Sogi, D. S.; Shivhare, U. S.; Gill, B. S. Physico-Chemical and Functional Properties of Native and Hydrolyzed Kidney Bean (Phaseolus Vulgaris L.) Protein Isolates. Food. Res. Int. 2015b, 76, 11–18. DOI: 10.1016/j.foodres.2014.08.027.
  • Eckert, E.; Han, J.; Swallow, K.; Tian, Z.; Jarpa‐parra, M.; Chen, L. Effects of Enzymatic Hydrolysis and Ultrafiltration on Physicochemical and Functional Properties of Faba Bean Protein. Cereal Chem. 2019, 96(4), 725–741. DOI: 10.1002/cche.10169.
  • Ettoumi, Y. L.; Chibane, M.; Romero, A. Emulsifying Properties of Legume Proteins at Acidic Conditions: Effect of Protein Concentration and Ionic Strength. Food Sci. Technol. 2016, 66, 260–266. DOI: 10.1016/j.lwt.2015.10.051.
  • Noman, A.; Xu, Y.; AL-Bukhaiti, W. Q.; Abed, S. M.; Ali, A. H.; Ramadhan, A. H.; Xia, W. Influence of Enzymatic Hydrolysis Conditions on the Degree of Hydrolysis and Functional Properties of Protein Hydrolysate Obtained from Chinese Sturgeon (Acipenser Sinensis) by Using Papain Enzyme. Process Biochem. 2018, 67, 19–28. DOI: 10.1016/j.procbio.2018.01.009.
  • Saallah, S.; Ishak, N. H.; Sarbon, N. M. Effect of Different Molecular Weight on the Antioxidant Activity and Physicochemical Properties of Golden Apple Snail (Ampullariidae) Protein Hydrolysates. Food Res. 2020, 4(4), 1363–1370. DOI: 10.26656/fr.2017.4(4).348.
  • González-Montoya, M.; Cano-Sampedro, E.; Mora-Escobedo, R. Bioactive Peptides from Legumes as Anticancer Therapeutic Agents. Int. J. Cancer Clin. Res. 2017, 4(2), 1–10. DOI: 10.23937/2378-3419/1410081.
  • Quansah, J. K.; Udenigwe, C. C.; Saalia, F. K.; Yada, R. Y. The Effect of Thermal and Ultrasonic Treatment on Amino Acid Composition, Radical Scavenging and Reducing Potential of Hydrolysates Obtained from Simulated Gastrointestinal Digestion of Cowpea Proteins. Plant Foods Hum. Nutr. 2013, 68(1), 31–38. DOI: 10.1007/s11130-013-0334-4.
  • Malaguti, M.; Dinelli, G.; Leoncini, E.; Bregola, V.; Bosi, S.; Cicero, A.; Hrelia, S. Bioactive Peptides in Cereals and Legumes: Agronomical, Biochemical and Clinical Aspects. Int. J. Mol. Sci. 2014, 15(11), 21120–21135. DOI: 10.3390/ijms151121120.
  • Xie, J.; Du, M.; Shen, M.; Wu, T.; Lin, L. Physico-Chemical Properties, Antioxidant Activities and Angiotensin-I Converting Enzyme Inhibitory of Protein Hydrolysates from Mung Bean (Vigna Radiate). Food Chem. 2019, 270(2019), 243–250. DOI: 10.1016/j.foodchem.2018.07.103.
  • Shi, A.; Liu, H.; Liu, L.; Hu, H.; Wang, Q.; Adhikari, B. Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide. PLoS One. 2014, 9(10), 1–11. DOI: 10.1371/journal.pone.0111188.
  • Daliri, E. B. M.; Ofosu, F. K.; Chelliah, R.; Kim, J. H.; Oh, D. H. Development of a Soy Protein Hydrolysate with an Antihypertensive Effect. Int. J. Mol. Sci. 2019, 20(6), 1496. DOI: 10.3390/ijms20061496.
  • Noman, A.; Qixing, J.; Xu, Y.; Abed, S. M.; Obadi, M.; Ali, A. H., et al. Effects of Ultrasonic, Microwave, and Combined Ultrasonic‐microwave Pretreatments on the Enzymatic Hydrolysis Process and Protein Hydrolysate Properties Obtained from Chinese Sturgeon (Acipenser Sinensis). J. Food Biochem. 2020, 44(8), 1–13. DOI: 10.1111/jfbc.13292.
  • Liang, Q.; Ren, X.; Ma, H.; Li, S.; Xu, K.; Oladejo, A. O. Effect of Low-Frequency Ultrasonic-Assisted Enzymolysis on the Physicochemical and Antioxidant Properties of Corn Protein Hydrolysates. J. Food Qual. 2017, 2017, 1–10. DOI: 10.1155/2017/2784146.
  • Shaik, M. I.; Effendi, N. A.; Sarbon, N. M. Functional Properties of Sharpnose Stingray (Dasyatis Zugei) Skin Collagen by Ultrasonication Extraction as Influenced by Organic and Inorganic Acids. Biocatal Agric. Biotechnol. 2021, 35, 102103. DOI: 10.1016/j.bcab.2021.102103.
  • Wang, B.; Atungulu, G. G.; Khir, R.; Geng, J.; Ma, H.; Li, Y.; Wu, B. Ultrasonic Treatment Effect on Enzymolysis Kinetics and Activities of ACE-Inhibitory Peptides from Oat-Isolated Protein. Food Biophys. 2015, 10(3), 244–252. DOI: 10.1007/s11483-014-9375-y.
  • Stefanović, A. B.; Jovanović, J. R.; Grbavčić, S. Ž.; Šekuljica, N. Ž.; Manojlović, V. B.; Bugarski, B. M.; Knežević-Jugović, Z. D. Impact of Ultrasound on Egg White Proteins as a Pretreatment for Functional Hydrolysates Production. Eur. Food Res. Technol. 2014, 239(6), 979–993. DOI: 10.1007/s00217-014-2295-8.
  • Yang, X.; Li, Y.; Li, S.; Oladejo, A. O.; Wang, Y.; Huang, S.; Zhou, C.; Wang, Y.; Mao, L.; Zhang, Y., et al. Effects of Low Power Density Multi-Frequency Ultrasound Pretreatment on the Enzymolysis and the Structure Characterization of Defatted Wheat Germ Protein. Ultrason. Sonochem. 2017, 38, 410–420. DOI: 10.1016/j.ultsonch.2017.03.001.
  • Shahidi, F.; Ambigaipalan, P. Bioactives from Seafood Processing By-Products. Food Chem. 2019, 3, 280–288. DOI: 10.1016/B978-0-08-100596-5.22353-6.
  • Mustățea, G.; Ungureanu, E. L., and Iorga, E. Protein Acidic Hydrolysis for Amino Acids Analysis in Food-Progress Over Time: A Short Review. J. Hyg. Eng. Des. 2019, 26, 81–87. UDC 577.388:542.949.41]:641.12.
  • Rasimi, N. A. S. M.; Ishak, N. H.; Mannur, I. S.; Sarbon, N. M. Optimization of Enzymatic Hydrolysis Condition of Snakehead (Channa Striata) Protein Hydrolysate Based on Yield and Antioxidant Activity. Food Res. 2020, 4(6), 2197–2206. DOI: 10.26656/fr.2017.4(6).237.
  • Kang, P. Y.; Ishak, N. H.; Sarbon, N. M. Optimization of Enzymatic Hydrolysis of Shortfin Scad (Decapterus Macrosoma) Myofibrillar Protein with Antioxidant Effect Using Alcalase. Int. Food Res. J. 2018, 25(5), 1808–1817.
  • Mune Mune, M. A. Influence of Degree of Hydrolysis on the Functional Properties of Cowpea Protein Hydrolysates. J. Food Process Preserv. 2015, 39(6), 2386–2392. DOI: 10.1111/jfpp.12488.
  • García-Mora, P.; Martín-Martínez, M.; Bonache, M. A.; González-Múniz, R.; Peñas, E.; Frias, J.; Martinez-Villaluenga, C. Identification, Functional Gastrointestinal Stability and Molecular Docking Studies of Lentil Peptides with Dual Antioxidant and Angiotensin I Converting Enzyme Inhibitory Activities. Food Chem. 2017, 221, 464–472. DOI: 10.1016/j.foodchem.2016.10.087.
  • Boschin, G.; Scigliuolo, G. M.; Resta, D.; Arnoldi, A. Optimization of the Enzymatic Hydrolysis of Lupin (Lupinus) Proteins for Producing ACE-Inhibitory Peptides. J. Agric. Food. Chem. 2014, 62(8), 1846–1851. DOI: 10.1021/jf4039056.
  • Ma, W.; Qi, B.; Sami, R.; Jiang, L.; Li, Y.; Wang, H. Conformational and Functional Properties of Soybean Proteins Produced by Extrusion-Hydrolysis Approach. Int. J. Anal. Chem. 2018a, 2018, 1–11. DOI: 10.1155/2018/9182508.
  • Baharuddin, N. A.; Halim, N. R. A.; Sarbon, N. M. Effect of Degree of Hydrolysis (DH) on the Functional Properties and Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity of Eel (Monopterus Sp.) Protein Hydrolysate. Int. Food Res. J. 2016, 23(4), 1424–1431.
  • Azemi, W. A. W. M.; Samsudin, N. A.; Halim, N. R. A.; Sarbon, N. M. Bioactivity of Enzymatically Prepared Eel (Monopterus Sp.) Protein Hydrolysate at Different Molecular Weights. Int. Food Res. J. 2017, 24(2), 571–578.
  • Mirzaei, M.; Mirdamadi, S.; Ehsani, M. R.; Aminlari, M. Production of Antioxidant and ACE-Inhibitory Peptides from Kluyveromyces Marxianus Protein Hydrolysates: Purification and Molecular Docking. J. Food Drug Anal. 2018, 26(2), 696–705. DOI: 10.1016/j.jfda.2017.07.008.
  • Nadzri, F. A.; Tawalbeh, D.; Sarbon, N. M. Physicochemical Properties and Antioxidant Activity of Enzymatic Hydrolysed Chickpea (Cicer Arietinum L.) Protein as Influence by Alcalase and Papain Enzyme. Biocatal Agric. Biotechnol. 2021, 36, 102131. DOI: 10.1016/j.bcab.2021.102131.
  • Evangelho, J. A. D.; Berrios, J. D. J.; Pinto, V. Z.; Antunes, M. D.; Vanier, N. L.; Zavareze, E. D. R. Antioxidant Activity of Black Bean (Phaseolus Vulgaris L.) Protein Hydrolysates. Food Sci. Technol. Int. 2016, 36(1), 23–27. DOI: 10.1016/j.foodchem.2016.07.046.
  • Valenzuela‐garcía, P.; Bobadilla, N. A.; Ramírez‐gonzález, V.; León‐Villanueva, A.; Lares‐asseff, I. A.; Valdez‐ortiz, A.; Medina‐godoy, S. Antihypertensive Effect of Protein Hydrolysate from Azufrado Beans in Spontaneously Hypertensive Rats. Cereal Chem. 2017, 94(1), 117–123. DOI: 10.1094/CCHEM-04-16-0105-FI.
  • Rasli, H. I.; Sarbon, N. M. Preparation and Physicochemical Characterization of Fish Skin Gelatine Hydrolysate from Shortfin Scad (Decapterus macrosoma). Int. Food Res. J. 2019, 26(1), 287–294.
  • Chalamaiah, M.; Hemalatha, R.; Jyothirmayi, T. Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities and Applications: A Review. Food Chem. 2012, 135(4), 3020–3038. DOI: 10.1016/j.foodchem.2012.06.100.
  • Del Mar Yust, M.; Del Carmen Millán-Linares, M.; Alcaide-Hidalgo, J. M.; Millán, F.; Pedroche, J. Hydrolysis of Chickpea Proteins with Flavourzyme Immobilized on Glyoxyl-Agarose Gels Improves Functional Properties. Food Sci. Technol. Int. 2013, 19(3), 217–223. DOI: 10.1177/1082013212442197.
  • Malomo, S. A.; Niwachukwu, I. D.; Girgih, A. T.; Idowu, A. O.; Aluka, R. E.; Fagbemi, T. N. Antioxidant and Renin-Angiotensin System Inhibitory Properties of Cashew Nut and Fluted-Pumpkin Protein Hydrolysates. Polish J. Food Nutr. Sci. 2020, 70(3), 275–289. DOI: 10.31883/pjfns/122460.
  • Halim, N. R. A.; Yusof, H. M.; Sarbon, N. M. Functional and Bioactive Properties of Fish Protein Hydolysates and Peptides: A Comprehensive Review. Trends Food Sci. Technol. 2016, 51, 24–33. DOI: 10.1016/j.tifs.2016.02.007.
  • Leni, G.; Soetemans, L.; Caligiani, A.; Sforza, S.; Bastiaens, L. Degree of Hydrolysis Affects the Techno-Functional Properties of Lesser Mealworm Protein Hydrolysates. Food. 2020, 9(4), 381. DOI: 10.3390/foods9040381.
  • Ratnayani, K.; Suter, I. K.; Antara, N. S.; Putra, I. N. K. Effect of in vitro Gastrointestinal Digestion on the Angiotensin Converting Enzyme (ACE) Inhibitory Activity of Pigeon Pea Protein Isolate. Int. Food Res. J. 2019, 26(4), 1–8.
  • Olagunju, A. I.; Omoba, O. S.; Enujiugha, V. N.; Alashi, A. M.; Aluko, R. E. Antioxidant Properties, Ace/renin Inhibitory Activities of Pigeon Pea Hydrolysates and Effects on Systolic Blood Pressure of Spontaneously Hypertensive Rats. Food Sci. Nutr. 2018, 6(7), 1879–1889. DOI: 10.1002/fsn3.740.
  • Jarpa‐parra, M. Lentil Protein: A Review of Functional Properties and Food Application. an Overview of Lentil Protein Functionality. Int. J. Food Sci. 2018, 53(4), 892–903. DOI: 10.1111/ijfs.13685.
  • Klupšaitė, D.; Juodeikienė, G. Legume: Composition, Protein Extraction and Functional Properties. a Review. Chem. Technol. 2015, 66(1), 5–12. DOI: 10.5755/j01.ct.66.1.12355.
  • Betancur‐ancona, D.; Sosa‐espinoza, T.; Ruiz‐ruiz, J.; Segura‐campos, M.; Chel‐guerrero, L. Enzymatic Hydrolysis of Hard‐to‐cook Bean (Phaseolus Vulgaris L.) Protein Concentrates and Its Effects on Biological and Functional Properties. Int. J. Food Sci. 2014, 49(1), 2–8. DOI: 10.1111/ijfs.12267.
  • Wali, A.; Ma, H.; Shahnawaz, M.; Hayat, K.; Xiaong, J.; Jing, L. Impact of Power Ultrasound on Antihypertensive Activity, Functional Properties, and Thermal Stability of Rapeseed Protein Hydrolysates. J. Chem. 2017, 2017, 1–11. DOI: 10.1155/2017/4373859.
  • Ozuna, C.; León-Galván, M. Cucurbitaceae Seed Protein Hydrolysates as a Potential Source of Bioactive Peptides with Functional Properties. Biomed Res. Int. 2017, 1–16. DOI: 10.1155/2017/2121878.
  • Tang, L.; Sun, J.; Zhang, H. C.; Zhang, C. S.; Yu, L. N.; Bi, J., et al. Evaluation of Physicochemical and Antioxidant Properties of Peanut Protein Hydrolysate. PLoS One. 2012, 7(5), 1–7. DOI: 10.1371/journal.pone.0037863.
  • Yuan, B.; Ren, J.; Zhao, M.; Luo, D.; Gu, L. Effects of Limited Enzymatic Hydrolysis with Pepsin and High-Pressure Homogenization on the Functional Properties of Soybean Protein Isolate. Lwt. 2012, 46(2), 453–459. DOI: 10.1016/j.lwt.2011.12.001.
  • Los, F. G. B.; Demiate, I. M.; Dornelles, R. C. P.; Lamsal, B. Enzymatic Hydrolysis of Carioca Bean (Phaseolus Vulgaris L.) Protein as an Alternative to Commercially Rejected Grains. Food Sci. Technol. 2020, 125, 109191. DOI: 10.1016/j.lwt.2020.109191.
  • Schlegel, K.; Sontheimer, K.; Eisner, P.; Schweiggert‐weisz, U. Effect of Enzyme‐assisted Hydrolysis on Protein Pattern, Technofunctional, and Sensory Properties of Lupin Protein Isolates Using Enzyme Combinations. Food Sci. Nutr. 2020, 8(7), 3041–3051. DOI: 10.1002/fsn3.1286.
  • Nasri, M. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. a Review. Adv. Food Nutr. Res. 2017, 81, 109–159. DOI: 10.1016/bs.afnr.2016.10.003.
  • Kamran, F. Enzymatic Hydrolysis of Lupin (Lupinus angustifolius) Protein: Isolation and Characterization of Bioactive Peptides. Doctoral dissertation, Western Sydney University, Australia, 2017.
  • McCarthy, A. L.; O’-Callaghan, Y. C.; O’-Brien, N. M. Protein Hydrolysates from Agricultural Crops–bioactivity and Potential for Functional Food Development. Ag. 2013, 3(1), 112–130. DOI: 10.3390/agriculture3010112.
  • Ghribi, A. M.; Sila, A.; Przybylski, R.; Nedjar-Arroume, N.; Makhlouf, I.; Blecker, C.; Attia, H.; Dhulster, P.; Bougatef, A.; Besbes, S., et al. Purification and Identification of Novel Antioxidant Peptides from Enzymatic Hydrolysate of Chickpea (Cicer Arietinum L.) Protein Concentrate. J. Funct. Foods. 2015b, 12, 516–525. DOI: 10.1016/j.jff.2014.12.011.
  • Schlegel, K.; Lidzba, N.; Ueberham, E.; Eisner, P.; Schweiggert-Weisz, U. Fermentation of Lupin Protein Hydrolysates–effects on Their Functional Properties, Sensory Profile and the Allergenic Potential of the Major Lupin Allergen Lup an 1. Foods. 2021, 10(2), 281. DOI: 10.3390/foods10020281.
  • Zhou, C.; Hu, J.; Yu, X.; Yagoub, A. E. A.; Zhang, Y.; Ma, H., et al. Heat And/or Ultrasound Pretreatments Motivated Enzymolysis of Corn Gluten Meal: Hydrolysis Kinetics and Protein Structure. Food Sci. Technol. 2017, 77, 488–496. DOI: 10.1016/j.lwt.2016.06.048.
  • Li, X. R.; Chi, C. F.; Li, L.; Wang, B. Purification and Identification of Antioxidant Peptides from Protein Hydrolysate of Scalloped Hammerhead (Sphyrna Lewini) Cartilage. Mar. Drugs. 2017, 15(3), 1–16. DOI: 10.3390/md15030061.
  • Pan, A. D.; Zeng, H. Y.; Alain, G. B. F. C.; Feng, B. Heat-Pretreatment and Enzymolysis Behavior of the Lotus Seed Protein. Food Chem. 2016, 201, 230–236. DOI: 10.1016/j.foodchem.2016.01.069.
  • Li, S.; Yang, X.; Zhang, Y.; Ma, H.; Liang, Q.; Qu, W.; He, R.; Zhou, C.; Mahunu, G. K., et al. Effects of Ultrasound and Ultrasound Assisted Alkaline Pretreatments on the Enzymolysis and Structural Characteristics of Rice Protein. Ultrason. Sonochem. 2016, 31, 20–28. DOI: 10.1016/j.ultsonch.2015.11.019.
  • Dabbour, M.; He, R.; Ma, H.; Musa, A. Optimization of Ultrasound Assisted Extraction of Protein from Sunflower Meal and Its Physicochemical and Functional Properties. J. Food Process. Eng. 2018, 41(5), 1–11. DOI: 10.1111/jfpe.12799.
  • Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O. E.; Pilosof, A. M. R. Comparative Study of High Intensity Ultrasound Effects on Food Proteins Functionality. J. Food Eng. 2012, 108(3), 463–472. DOI: 10.1016/j.jfoodeng.2011.08.018.
  • Liu, Y.; Ma, X. Y.; Liu, L. N.; Xie, Y. P.; Ke, Y. J.; Cai, Z. J.; Wu, G. J. Ultrasonic-Assisted Extraction and Functional Properties of Wampee Seed Protein. Food Sci. Technol. 2019, 39(suppl 1), 324–331. DOI: 10.1590/fst.03918.
  • Malik, M. A.; Sharma, H. K.; Saini, C. S. High Intensity Ultrasound Treatment of Protein Isolate Extracted from Dephenolized Sunflower Meal: Effect on Physicochemical and Functional Properties. Ultrason. Sonochem. 2017, 39, 511–519. DOI: 10.1016/j.ultsonch.2017.05.026.
  • Meurer, M. C.; de Souza, D.; Marczak, L. D. F. Effects of Ultrasound on Technological Properties of Chickpea Cooking Water (Aquafaba). J. Food Eng. 2020, 265, 1–11. DOI: 10.1016/j.jfoodeng.2019.109688.
  • Yu, L.; Sun, J.; Liu, S.; Bi, J.; Zhang, C.; Yang, Q. Ultrasonic-Assisted Enzymolysis to Improve the Antioxidant Activities of Peanut (Arachin Conarachin L.) Antioxidant Hydrolysate. Int. J. Mol. Sci. 2012, 13(7), 9051–9068. DOI: 10.3390/ijms13079051.
  • Kadam, S. U.; Tiwari, B. K.; Álvarez, C.; O’-Donnell, C. P. Ultrasound Applications for the Extraction, Identification and Delivery of Food Proteins and Bioactive Peptides. Trends Food Sci. Technol. 2015, 46(1), 60–67. DOI: 10.1016/j.tifs.2015.07.012.
  • Wang, B.; Meng, T.; Ma, H.; Zhang, Y.; Li, Y.; Jin, J.; Ye, X. Mechanism Study of Dual-Frequency Ultrasound Assisted Enzymolysis on Rapeseed Protein by Immobilized Alcalase. Ultrason. Sonochem. 2016, 32, 307–313. DOI: 10.1016/j.ultsonch.2016.03.023.
  • Tian, R.; Feng, J.; Huang, G.; Tian, B.; Zhang, Y.; Jiang, L.; Sui, X. Ultrasound Driven Conformational and Physicochemical Changes of Soy Protein Hydrolysates. Ultrason. Sonochem. 2020, 68, 105202. DOI: 10.1016/j.ultsonch.2020.105202.
  • Chen, L.; Chen, J.; Ren, J.; Zhao, M. Effects of Ultrasound Pretreatment on the Enzymatic Hydrolysis of Soy Protein Isolates and on the Emulsifying Properties of Hydrolysates. J. Agric. Food. Chem. 2011, 59(6), 2600–2609. DOI: 10.1021/jf103771x.
  • Jia, J.; Ma, H.; Zhao, W.; Wang, Z.; Tian, W.; Luo, L.; He, R. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ proteinFood Chem. 2010, 119(1), 336–342. DOI: 10.1016/j.foodchem.2009.06.036.
  • Uluko, H.; Zhang, S.; Liu, L.; Tsakama, M.; Lu, J.; Lv, J. Effects of Thermal, Microwave, and Ultrasound Pretreatments on Antioxidative Capacity of Enzymatic Milk Protein Concentrate Hydrolysates. J. Funct. Foods. 2015, 18, 1138–1146. DOI: 10.1016/j.jff.2014.11.024.
  • Chemat, F.; Rombaut, N.; Sicaire, A. G.; Meullemiestre, A.; Fabiano-Tixier, A. S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. a Review. Ultrason. Sonochem. 2017, 34, 540–560. DOI: 10.1016/j.ultsonch.2016.06.035.
  • Zou, Y.; Wang, W.; Li, Q.; Chen, Y.; Zheng, D.; Zou, Y., et al. Physicochemical, Functional Properties and Antioxidant Activities of Porcine Cerebral Hydrolysate Peptides Produced by Ultrasound Processing. Process Biochem. 2016b, 51(3), 431–443. DOI: 10.1016/j.procbio.2015.12.011.
  • Nadar, S. S.; Rathod, V. K. Ultrasound Assisted Intensification of Enzyme Activity and Its Properties: A Mini-Review. World J. Microbiol. Biotechnol. 2017, 33(9), 1–12. DOI: 10.1007/s11274-017-2322-6.
  • Halim, N. R. A.; Sarbon, N. M. A Response Surface Approach on Hydrolysis Condition of Eel (Monopterus Sp.) Protein Hydrolysate with Antioxidant Activity. Int. Food Res. J. 2017, 24(3), 1081–1093.
  • Yanjun, S.; Jianhang, C.; Shuwen, Z.; Hongjuan, L.; Jing, L.; Lu, L., … Jiaping, L. Effect of Power Ultrasound Pre-Treatment on the Physical and Functional Properties of Reconstituted Milk Protein Concentrate. J. Food Eng. 2014, 124, 11–18. DOI: 10.1016/j.jfoodeng.2013.09.013.
  • Guerra-Almonacid, C. M.; Torruco-Uco, J. G.; Murillo-Arango, W.; Méndez-Arteaga, J. J.; Rodríguez-Miranda, J. Effect of Ultrasound Pretreatment on the Antioxidant Capacity and Antihypertensive Activity of Bioactive Peptides Obtained from the Protein Hydrolysates of Erythrina Edulis. Emir. J. Food Agric. 2019, 31(4), 288–296. DOI: 10.9755/ejfa.2019.v31.i4.1938.
  • Higuera-Barraza, O. A.; Del Toro-Sanchez, C. L.; Ruiz-Cruz, S.; Márquez-Ríos, E. Effects of High-Energy Ultrasound on the Functional Properties of Proteins. Ultrason. Sonochem. 2016, 31, 558–562. DOI: 10.1016/j.ultsonch.2016.02.007.
  • Xia, W.; Pan, S.; Cheng, Z.; Tian, Y.; Huang, X. High-Intensity Ultrasound Treatment on Soy Protein After Selectively Proteolyzing Glycinin Component: Physical, Structural, and Aggregation Properties. Foods. 2020, 9(6), 839. DOI: 10.3390/foods9060839.
  • Misir, G. B.; Koral, S. Effects of Ultrasound Treatment on Structural, Chemical and Functional Properties of Protein Hydrolysate of Rainbow Trout (ONCORHYNCHUS MYKISS) By-Products. Ital. J. Food Sci. 2019, 31(2), 205–223. DOI: 10.14674/IJFS-1218.
  • Stefanović, A. B.; Jovanović, J. R.; Balanč, B. D.; Šekuljica, N. Ž.; Tanasković, S. M. J.; Dojčinović, M. B.; Knežević-Jugović, Z. D. Influence of Ultrasound Probe Treatment Time and Protease Type on Functional and Physicochemical Characteristics of Egg White Protein Hydrolysates. Poult. 2018, 97(6), 2218–2229. DOI: 10.3382/ps/pey055.
  • Jain, S.; Anal, A. K. Optimization of Extraction of Functional Protein Hydrolysates from Chicken Eggshell Membrane (ESM) by Ultrasonic Assisted Extraction (UAE) and Enzymatic Hydrolysis. Food Sci. Technol. 2016, 69, 295–302. DOI: 10.1016/j.lwt.2016.01.057.
  • Jiang, L.; Wang, J.; Li, Y.; Wang, Z.; Liang, J.; Wang, R., et al. Effects of Ultrasound on the Structure and Physical Properties of Black Bean Protein Isolates. Int. Food Res. J. 2014, 62, 595–601. DOI: 10.1016/j.foodres.2014.04.022.
  • Ayodele, O. M.; Beatrice, A. I. O. Some Functional and Physical Properties of Selected Underutilised Hard-To-Cook Legumes in Nigeria. AJFSN. 2015, 2(5), 73–81.
  • Resendiz-Vazquez, J. N. A.; Ulloa, J. A.; Urías-Silvas, J. E.; Bautista-Rosales, P. U.; Ramírez-Ramírez, J. C.; Rosas-Ulloa, P.; González-Torres, L. Effect of High-Intensity Ultrasound on the Technofunctional Properties and Structure of Jackfruit (Artocarpus Heterophyllus) Seed Protein Isolate. Ultrason. Sonochem. 2017, 37, 436–444. DOI: 10.1016/j.ultsonch.2017.01.042.
  • Zhang, R.; Pang, X.; Lu, J.; Liu, L.; Zhang, S.; Lv, J. Effect of High Intensity Ultrasound Pretreatment on Functional and Structural Properties of Micellar Casein Concentrates. Ultrason. Sonochem. 2018, 47, 10–16. DOI: 10.1016/j.ultsonch.2018.04.011.
  • Raikos, V.; Neacsu, M.; Russell, W.; Duthie, G. Comparative Study of the Functional Properties of Lupin, Green Pea, Fava Bean, Hemp, and Buckwheat Flours as Affected by pH. Food Sci. Nutr. 2014, 2(6), 802–810. DOI: 10.1002/fsn3.143.
  • Wouters, A. G.; Rombouts, I.; Fierens, E.; Brijs, K.; Delcour, J. A. Relevance of the Functional Properties of Enzymatic Plant Protein Hydrolysates in Food Systems. Compr. Rev. Food Sci. Food Saf. 2016, 15(4), 786–800. DOI: 10.1111/1541-4337.12209.
  • Muhamyankaka, V.; Shoemaker, C. F.; Nalwoga, M.; Zhang, X. M. Physicochemical Properties of Hydrolysates from Enzymatic Hydrolysis of Pumpkin (Cucurbita Moschata) Protein Meal. Int. Food Res. J. 2013, 20(5), 2227–2240.
  • Akbarirad, H.; Ardabili, A. G.; Kazemeini, S. M.; Khaneghah, A. M. An Overview on Some of Important Sources of Natural Antioxidants. Int. Food Res. J. 2016, 23(3), 928–933.
  • Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Materska, M.; Zielińska, E. Antioxidant Activity of Protein Hydrolysates from Raw and Heat-Treated Yellow String Beans (Phaseolus Vulgaris L.). Acta Sci. Pol. Technol. Aliment. 2014, 13(4), 385–391. DOI: 10.17306/J.AFS.2014.4.5.
  • Zou, T. B.; He, T. P.; Li, H. B.; Tang, H. W.; Xia, E. Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules. 2016a, 21(1), 1–14. DOI: 10.3390/molecules21010072.
  • Ketnawa, S.; Wickramathilaka, M.; Liceaga, A. M. Changes on Antioxidant Activity of Microwave-Treated Protein Hydrolysates After Simulated Gastrointestinal Digestion: Purification and Identification. Food Chem. 2018, 254, 36–46. DOI: 10.1016/j.foodchem.2018.01.133.
  • Zou, Y.; Yang, H.; Li, P. P.; Zhang, M. H.; Zhang, X. X.; Xu, W. M.; Wang, D. Y. Effect of Different Time of Ultrasound Treatment on Physicochemical, Thermal, and Antioxidant Properties of Chicken Plasma Protein. Poult. Sci. 2019, 98(4), 1925–1933. DOI: 10.3382/ps/pey502.
  • Xu, J.; Zhao, Q.; Qu, Y.; Ye, F. Antioxidant Activity and Anti-Exercise-Fatigue Effect of Highly Denatured Soybean Meal Hydrolysate Prepared Using Neutrase. J. Food Sci. Technol. 2015, 52(4), 1982–1992. DOI: 10.1007/s13197-013-1220-7.
  • Dabbour, M.; He, R.; Mintah, B.; Ma, H. Antioxidant Activities of Sunflower Protein Hydrolysates Treated with Dual‐frequency Ultrasonic: Optimization Study. J. Food Process. Eng. 2019, 42(5), 1–12. DOI: 10.1111/jfpe.13084.
  • Huang, L.; Liu, B.; Ma, H.; Zhang, X. Combined Effect of Ultrasound and Enzymatic Treatments on Production of ACE Inhibitory Peptides from Wheat Germ Protein. J. Food Process Preserv. 2014, 38(4), 1632–1640. DOI: 10.1111/jfpp.12125.
  • Zhou, C.; Ma, H.; Ding, Q.; Lin, L.; Yu, X.; Luo, L.; Dai, C.; Yagoub, A.-E.-G.-A., et al. Ultrasonic Pretreatment of Corn Gluten Meal Proteins and Neutrase: Effect on Protein Conformation and Preparation of ACE (Angiotensin Converting Enzyme) Inhibitory Peptides. Food Bioprod. Process. 2013, 91(4), 665–671.
  • Cui, P.; Yang, X.; Liang, Q.; Huang, S.; Lu, F.; Ren, X.; Ma, H. Ultrasound-Assisted Preparation of ACE Inhibitory Peptide from Milk Protein and Establishment of Its in-Situ Real-Time Infrared Monitoring Model. Ultrason. Sonochem. 2020, 62, 104859. DOI: 10.1016/j.ultsonch.2019.104859.
  • Uluko, H.; Li, H.; Cui, W.; Zhang, S.; Liu, L.; Chen, J.; Sun, Y.; Su, Y.; Lv, J., et al. Response Surface Optimization of Angiotensin Converting Enzyme Inhibition of Milk Protein Concentrate Hydrolysates in vitro After Ultrasound Pretreatment. Innov. Food Sci. Emerg. Technol. 2013, 20, 133–139. DOI: 10.1016/j.ifset.2013.08.012.
  • Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants. Nutrients. 2017, 9(4), 316. DOI: 10.3390/nu9040316.
  • Rasli, H.; Sarbon, N. M. Optimization of Enzymatic Hydrolysis Conditions and Characterization of Shortfin Scad (Decapterus Macrosoma) Skin Gelatin Hydrolysate Using Response Surface Methodology. Int. Food Res. J. 2018, 25(4), 1541–1549.
  • de Oliveira, M. R.; Silva, T. J.; Barros, E.; Guimarães, V. M.; Baracat-Pereira, M. C.; Eller, M. R.; dos Reis Coimbra, J. S.; de Oliveira, E. B., et al. Anti-Hypertensive Peptides Derived from Caseins: Mechanism of Physiological Action, Production Bioprocesses, and Challenges for Food Applications. Appl. Biochem. Biotechnol. 2018, 185(4), 884–908.
  • Nasir, S. N. A. M.; Sarbon, N. M. Angiotensin Converting Enzyme (ACE), Antioxidant Activity and Functional Properties of Shortfin Scad (Decapterus Macrosoma) Muscle Protein Hydrolysate at Different Molecular Weight Variations. Biocatal Agric. Biotechnol. 2019, 20, 1–6. DOI: 10.1016/j.bcab.2019.101254.
  • Sarbon, N. M.; Howell, N. K.; Wan Ahmad, W. A. N. Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptides from Chicken Skin Gelatin Hydrolysate and Its Antihypertensive Effect in Spontaneously Hypertensive Rats. Int. Food Res. J. 2019, 26(3), 903–911.
  • Abadía-García, L.; Castaño-Tostado, E.; Cardador-Martínez, A.; Martín-Del-Campo, S. T.; Amaya-Llano, S. L. Production of ACE Inhibitory Peptides from Whey Proteins Modified by High Intensity Ultrasound Using Bromelain. Foods. 2021, 10(9), 2099. DOI: 10.3390/foods10092099.
  • Wang, C.; Tu, M.; Wu, D.; Chen, H.; Chen, C.; Wang, Z.; Jiang, L. Identification of an ACE-Inhibitory Peptide from Walnut Protein and Its Evaluation of the Inhibitory Mechanism. Int. J. Mol. Sci. 2018, 19(4), 1156. DOI: 10.3390/ijms19041156.
  • Chi, C. F.; Hu, F. Y.; Wang, B.; Li, T.; Ding, G. F. Antioxidant and Anticancer Peptides from the Protein Hydrolysate of Blood Clam (Tegillarca Granosa) Muscle. J. Funct. Foods. 2015, 15, 301–313. DOI: 10.1016/j.jff.2015.03.045.
  • Sah, B. N. P.; Vasiljevic, T.; McKechnie, S.; Donkor, O. N. Identification of Anticancer Peptides from Bovine Milk Proteins and Their Potential Roles in Management of Cancer: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2015, 14(2), 123–138. DOI: 10.1111/1541-4337.12126.
  • Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and Anticancer Protein Hydrolysates (Peptides) from Food Proteins: A Review. Food Chem. 2018, 245, 205–222. DOI: 10.1016/j.foodchem.2017.10.087.
  • Dzah, C. S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review. Food Biosci. 2020, 35, 1–16. DOI: 10.1016/j.fbio.2020.100547.
  • Ma, X.; Wang, D.; Chen, W.; Ismail, B. B.; Wang, W.; Lv, R.; Ding, T.; Ye, X.; Liu, D., et al. Effects of Ultrasound Pretreatment on the Enzymolysis of Pectin: Kinetic Study, Structural Characteristics and Anti-Cancer Activity of the Hydrolysates. Food Hydrocoll. 2018b, 79, 90–99. DOI: 10.1016/j.foodhyd.2017.12.008.
  • Xue, Z.; Wen, H.; Zhai, L.; Yu, Y.; Li, Y.; Yu, W.; Cheng, A.; Wang, C.; Kou, X., et al. Antioxidant Activity and Anti-Proliferative Effect of a Bioactive Peptide from Chickpea (Cicer Arietinum L.). Food. Res. Int. 2015, 77, 75–81. DOI: 10.1016/j.foodres.2015.09.027.
  • Song, R.; Wei, R.; Zhang, B.; Yang, Z.; Wang, D. Antioxidant and Antiproliferative Activities of Heated Sterilized Pepsin Hydrolysate Derived from Half-Fin Anchovy (Setipinna Taty). Mar. Drugs. 2011, 9(6), 1142–1156. DOI: 10.3390/md9061142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.