380
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent Development in Antioxidant Peptides of Woody Oil Plant By-Products

, , ORCID Icon, , &

References

  • Chai, T. T.; Law, Y. C.; Wong, F. C.; Kim, S. K. Enzyme-Assisted Discovery of Antioxidant Peptides from Edible Marine Invertebrates: A Review. Mar. Drugs. 2017, 15(2). DOI: 10.3390/md15020042.
  • Intiquilla, A.; Jimenez-Aliaga, K.; Guzman, F.; Alvarez, C. A.; Zavaleta, A. I.; Izaguirre, V.; Hernandez-Ledesma, B. Novel Antioxidant Peptides Obtained by Alcalase Hydrolysis of Erythrina Edulis (Pajuro) Protein. J. Sci. Food Agric. 2019, 99(5), 2420–2427. DOI: 10.1002/jsfa.9449.
  • Wong, F. C.; Xiao, J. B.; Wang, S. Y.; Ee, K. Y.; Chai, T. T. Advances on the Antioxidant Peptides from Edible Plant Sources. Trends Food Sci. Tech. 2020, 99, 44–57. DOI: 10.1016/j.tifs.2020.02.012.
  • Lee, S. Y.; Lee, D. Y.; Kim, O. Y.; Kang, H. J. Overview of Studies on the Use of Natural Antioxidative Materials in Meat Products. Food Sci. Anim. Resour. 2020, 40, 863–880. DOI: 10.5851/kosfa.2020.e84.
  • Mahgoub, S.; Alagawany, M.; Nader, M.; Omar, S. M.; Abd El-Hack, M. E.; Swelum, A.; Elnesr, S. S.; Khafaga, A. F.; Taha, A. E.; Farag, M. R.; et al. Recent Development in Bioactive Peptides from Plant and Animal Products and Their Impact on the Human Health. Food Rev. Int. 2021, 4, 1–26. DOI: 10.1080/87559129.2021.1923027.
  • Mariotti, F. 35-Plant Protein, Animal Protein, and Protein Quality. Veg. Plant-Bas. Diets Health Dis. Pre. 2017, 621–642. DOI: 10.1016/B978-0-12-803968-7.00035-6.
  • Kojima, Y.; Parcell, J., and Cain, J. A Global Demand Analysis of Vegetable Oils for Food and Industrial Use: A Cross-Country Panel Data Analysis with Spatial Econometrics. In Proceedings of the A. A. E. A. Annual meeting. 2016, 1–27. DOI:10.22004/ag.econ.235744.
  • Amorim, M.; Pereira, J. O.; Silva, L. B.; Ormenese, R.; Pacheco, M. T. B.; Pintado, M. Use of Whey Peptide Fraction in Coated Cashew Nut as Functional Ingredient and Salt Replacer. LWT-Food Sci. Tech. 2018, 92, 204–211. DOI: 10.1016/j.lwt.2017.12.075.
  • Wang, X. M.; Chen, H. X.; Li, S. Q.; Zhou, J. C.; Xu, J. T. Physico-Chemical Properties, Antioxidant Activities and Antihypertensive Effects of Walnut Protein and Its Hydrolysate. J. Sci. Food Agric. 2016, 96(7), 2579–2587. DOI: 10.1002/jsfa.7379.
  • Wu, S. F.; Wang, X. C.; Qi, W.; Guo, Q. B. Bioactive Protein/peptides of Flaxseed: A Review. Trends Food Sci. Tech. 2019, 92, 184–193. DOI: 10.1016/j.tifs.2019.08.017.
  • Wang, S. G., Sun-Waterhouse, D. X., Waterhouse, G. I. N., Zheng, L., Su, G. W., Zhao, M. M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci. Tech. 2021, 116, 712–732. DOI:10.1016/j.tifs.2021.04.056.
  • Clemente, A. Enzymatic Protein Hydrolysates in Human Nutrition. Trends Food Sci. Tech. 2000, 11(7), 254–262. DOI: 10.1016/S0924-2244(01)00007-3.
  • Huang, J.; Liao, L. M.; Weinstein, S. J.; Sinha, R.; Graubard, B. I.; Demetrius, A. Association Between Plant and Animal Protein Intake and Overall and Cause-Specific Mortality. JAMA Intern. Med. 2020. DOI: 10.1001/jamainternmed.2020.2790.
  • Li, X.; Deng, J. L.; Shen, S.; Li, T.; Yuan, M.; Yang, R. W.; Ding, C. B. Antioxidant Activities and Functional Properties of Enzymatic Protein Hydrolysates from Defatted Camellia Oleifera Seed Cake. J. Food Sci. Techn. Mys. 2015, 52(9), 5681–5690. DOI: 10.1007/s13197-014-1693-z.
  • Zarei, M.; Ebrahimpour, A.; Abdul-Hamid, A.; Anwar, F.; Saari, N. Production of Defatted Palm Kernel Cake Protein Hydrolysate as a Valuable Source of Natural Antioxidants Int. J. Mol. Sci. 2012, 13(7), 8097–8111. DOI: 10.3390/ijms13078097.
  • Montealegre, C.; Esteve, C.; Garcia, M. C.; Garcia-Ruiz, C.; Marina, M. L. Proteins in Olive Fruit and Oil Crit. Rev. Food Sci. Nutr. 2014, 54(5), 611–624. DOI: 10.1080/10408398.2011.598639.
  • Zheng, Y. J.; Li, Y.; Zhang, Y. L.; Zhao, S. L. Purification, Characterization and Synthesis of Antioxidant Peptides from Enzymatic Hydrolysates of Coconut (Cocos Nucifera L.) Cake Protein Isolates. RSC Adv. 2016, 6(59), 54346–54356. DOI: 10.1039/c6ra07086h.
  • Zheng, Y. J.; Li, Y.; Zhang, Y. L.; Ruan, X. H.; Zhang, R. G. Purification, Characterization, Synthesis, in vitro ACE Inhibition and in vivo Antihypertensive Activity of Bioactive Peptides Derived from Oil Palm Kernel Glutelin-2 Hydrolysates. J. Funct. Foods. 2017, 28, 48–58. DOI: 10.1016/j.jff.2016.11.021.
  • Li, Y.; Zheng, Y. J.; Zhang, Y. F.; Liu, L. Y.; Zhao, S. L. Purification, Characterization, Synthesis, in vivo and in vitro Antihypertensive Activity of Bioactive Peptides Derived from Coconut (Cocos Nucifera L.) Cake Globulin Hydrolysates. RSC Adv. 2016, 6(95), 92688–92698. DOI: 10.1039/c6ra19971b.
  • Chandrashekar, S.; Vijayakumar, R.; Chelliah, R.; Deog-Hwan, O. Identification and Purification of Potential Bioactive Peptide of Moringa Oleifera Seed Extracts. Plants (Basel, Switzerland). 2020, 9(11). DOI: 10.3390/plants9111445.
  • Anaya, K.; Podszun, M.; Franco, O. L.; de Almeida Gadelha, C. A.; Frank, J. The Coconut Water Antimicrobial Peptide Cnamp1 is Taken Up into Intestinal Cells but Does Not Alter P-Glycoprotein Expression and Activity. Plant Food Hum. Nutr. 2020, 75(3), 396–403. DOI: 10.1007/s11130-020-00826-y.
  • Chang, S. K.; Ismail, A.; Yanagita, T.; Esa, N. M.; Baharuldin, M. T. H. Antioxidant Peptides Purified and Identified from the Oil Palm (Elaeis Guineensis Jacq.) Kernel Protein Hydrolysate. J. Funct. Foods. 2015, 14, 63–75. DOI: 10.1016/j.jff.2015.01.011.
  • Zarei, M.; Ebrahimpour, A.; Abdul-Hamid, A.; Anwar, F.; Abu Bakar, F.; Philip, R.; Saari, N. Identification and Characterization of Papain-Generated Antioxidant Peptides from Palm Kernel Cake Proteins. Food. Res. Int. 2014, 62, 726–734. DOI: 10.1016/j.foodres.2014.04.041.
  • Hernandez-Corroto, E.; Marina, M. L.; Garcia, M. C. Multiple Protective Effect of Peptides Released from Olea Europaea and Prunus Persica Seeds Against Oxidative Damage and Cancer Cell Proliferation. Food. Res. Int. 2018, 106, 458–467. DOI: 10.1016/j.foodres.2018.01.015.
  • Zheng, Y. J.; Li, Y.; Li, G. F. ACE-Inhibitory and Antioxidant Peptides from Coconut Cake Albumin Hydrolysates: Purification, Identification and Synthesis. RSC Adv. 2019, 9(11), 5925–5936. DOI: 10.1039/c8ra10269d.
  • Liu, M. C.; Yang, S. J.; Hong, D.; Yang, J. P.; Liu, M.; Lin, Y.; Huang, C. H.; Wang, C. J. A Simple and Convenient Method for the Preparation of Antioxidant Peptides from Walnut (Juglans Regia L.) Protein Hydrolysates. Chem. Cent. J. 2016, 10. DOI: 10.1186/s13065-016-0184-x.
  • Rico, R.; Bullo, M.; Salas-Salvado, J. Nutritional Composition of Raw Fresh Cashew (Anacardium Occidentale L.) Kernels from Different Origin. Food Sci. Nutr. 2016, 4(2), 329–338. DOI: 10.1002/fsn3.294.
  • Liu, C. L.; Ren, D. Y.; Li, J. J.; Fang, L.; Wang, J.; Liu, J. S.; Min, W. H. Cytoprotective Effect and Purification of Novel Antioxidant Peptides from Hazelnut (C. Heterophylla Fisch) Protein Hydrolysates. J. Funct. Foods. 2018, 42, 203–215. DOI: 10.1016/j.jff.2017.12.003.
  • Akarevi, J.; Vidovi, S.; Vladi, J.; Gavari, A.; Popovi, L. Production of Bio-Functional Protein Through Revalorization of Apricot Kernel Cake. Foods. 2019, 8(8), 318–330. DOI: 10.3390/foods8080318.
  • Chen, X. X.; Li, Z. B. Optimization of Supercritical CO2 Extraction of Moringa Oleifera Seed Oil Using Response Surface Methodological Approach and Its Antioxidant Activity. Food Rev. Int. 2022. DOI: 10.3389/fnut.2021.829146.
  • Jega, A. Y.; Abdullahi, M. I.; Musa, A. M.; Kaita, H. A.; Emmanuel, A. A. Biochemical Evaluation and Molecular Docking Assessment of Glucosamines from Neocarya Macrophylla Fruits Against Naja Nigricollis Venom. Carbohy. Res. 2021, 509(2), 108436. DOI: 10.1016/j.carres.2021.108436.
  • Amza, T.; Amadou, I.; Balla, A.; Zhou, H. M. Antioxidant Capacity of Hydrolyzed Protein Fractions Obtained from an Under-Explored Seed Protein: Gingerbread Plum (Neocarya Macrophylla) J. Food Sci. Technol-Mysore. 2015, 52(5), 2770–2778. DOI: 10.1007/s13197-014-1297-7.
  • Yao, L.; Li, H. Y.; Yang, J. Z.; Li, C.; Shen, Y. H. Purification and Characterization of a Hydroxynitrile Lyase from Amygdalus Pedunculata Pall. Int. J. Biol. Macromol. 2018, 118, 189–194. DOI: 10.1016/j.ijbiomac.2018.06.037.
  • Shi, L. K.; Zheng, L.; Liu, R. J.; Chang, M.; Huang, J. H.; Zhao, C. W.; Jin, Q. Z.; Wang, X. G. Physicochemical Property, Chemical Composition and Free Radical Scavenging Capacity of Cold Pressed Kernel Oils Obtained from Different Eucommia Ulmoides Oliver Cultivars. Ind. Crop Prod. 2018, 124, 912–918. DOI: 10.1016/j.indcrop.2018.08.070.
  • Gao, L. L.; Li, Y. Q.; Wang, Z. S.; Sun, G. J.; Qi, X. M.; Mo, H. Z. Physicochemical Characteristics and Functionality of Tree Peony (Paeonia Suffruticosa Andr.) Seed Protein. Food Chem. 2018, 240, 980–988. DOI: 10.1016/j.foodchem.2017.07.124.
  • Qiao, Q.; Mei Jing, Y.; Fen Fen, S.; Ren, H. J.; Kai, A.; Feng, Z.; Zhang, L.; Sun, Z. K. Variability of Seed Oil Content and Fatty Acid Composition in Shantung Maple (Acer Truncatum Bunge) Germplasm for Optimal Biodiesel Production. Afr. J. Biotechnol. 2017, 16(48), 425–430. DOI: 10.1016/j.indcrop.2016.12.054.
  • Liu, M. L.; Long, H. X.; Li, W. Y.; Shi, M. W.; Cao, H. P.; Zhang, L.; Tan, X. F. Boosting C16 Fatty Acid Biosynthesis of Escherichia Coli, Yeast and Tobacco by Tung Tree (Vernicia Fordii Hemsl.) Beta-Hydroxyacyl-Acyl Carrier Protein Dehydratase Gene. Ind. Crop Prod. 2019, 127, 46–54. DOI: 10.1016/j.indcrop.2018.10.067.
  • Liang, L. L.; Wang, C.; Li, S. G.; Chu, X. M.; Sun, K. L. Nutritional Compositions of Indian Moringa Oleifera Seed and Antioxidant Activity of Its Polypeptides. Food Sci. Nutr. 2019, 7(5), 1754–1760. DOI: 10.1002/fsn3.1015.
  • Bi, Q. X.; Zhao, Y.; Du, W.; Lu, Y.; Gui, L.; Zheng, Z. M.; Yu, H. Y.; Cui, Y. F.; Liu, Z.; Cui, T. P.; et al. Pseudomolecule-Level Assembly of the Chinese Oil Tree Yellowhorn (Xanthoceras sorbifolium) Genome. Gigascience. 2019, 8, 6. DOI: 10.1093/gigascience/giz070.
  • Garino, C.; De Paolis, A.; Coisson, J. D.; Bianchi, D. M.; Decastelli, L.; Arlorio, M. Sensitive and Specific Detection of Pine Nut (Pinus Spp.) by Real-Time PCR in Complex Food Products. Food Chem. 2016, 194, 980–985. DOI: 10.1016/j.foodchem.2015.08.114.
  • Soto-Madrid, D.; Gutiérrez-Cutiño, M.; Pozo-Martínez, J.; Zúñiga-López, M. C.; Olea-Azar, C.; Matiacevich, S. Dependence of the Ripeness Stage on the Antioxidant and Antimicrobial Properties of Walnut (Juglans Regia L.) Green Husk Extracts from Industrial By-Products. Molecules. 2021, 26(10), 2878–2893. DOI: 10.3390/molecules26102878.
  • Li, X. Y.; Guo, M. L.; Chi, J. T.; Ma, J. G. Bioactive Peptides from Walnut Residue Protein. Molecules. 2020, 25(6). DOI: 10.3390/molecules25061285.
  • Fusco, R.; Siracusa, R.; Peritore, A. F.; Gugliandolo, E.; Genovese, T.; D’-Amico, R.; Cordaro, M.; Crupi, R.; Mandalari, G.; Impellizzeri, D., et al. The Role of Cashew (Anacardium Occidentale L.) Nuts on an Experimental Model of Painful Degenerative Joint Disease. Antioxidants (Basel, Switzerland). 2020, 9(6). DOI: 10.3390/antiox9060511.
  • Saricaoglu, F. T.; Gul, O.; Besir, A.; Atalar, I. Effect of High Pressure Homogenization (HPH) on Functional and Rheological Properties of Hazelnut Meal Proteins Obtained from Hazelnut Oil Industry By-Products. J.Food Eng. 2018, 233, 98–108. DOI: 10.1016/j.jfoodeng.2018.04.003.
  • Derardja, A. E.; Pretzler, M.; Kampatsikas, I.; Barkat, M.; Rompel, A. Purification and Characterization of Latent Polyphenol Oxidase from Apricot (Prunus Armeniaca L. J. Agric. Food. Chem. 2017, 65(37), 8203–8212. DOI: 10.1021/acs.jafc.7b03210.
  • Liu, P.; Zhang, Y.; Xu, Y. F.; Zhu, X. Y.; Xu, X. F.; Chang, S.; Deng, R. X. Three New Monoterpene Glycosides from Oil Peony Seed Cake. Ind. Crop Prod. 2018, 111, 371–378. DOI: 10.1016/j.indcrop.2017.10.043.
  • Li, L.; Manning, W. J.; Tong, L.; Wang, X. K. Chronic Drought Stress Reduced but Not Protected Shantung Maple (Acer Truncatum Bunge) from Adverse Effects of Ozone (O-3) on Growth and Physiology in the Suburb of Beijing, China. Environ. Pollut. 2015, 201, 34–41. DOI: 10.1016/j.envpol.2015.02.023.
  • Venegas-Caleron, M.; Ruiz-Mendez, M. V.; Martinez-Force, E.; Garces, R.; Salas, J. J. Characterization of Xanthoceras Sorbifolium Bunge Seeds: Lipids, Proteins and Saponins Content. Ind. Crop Prod. 2017, 109, 192–198. DOI: 10.1016/j.indcrop.2017.08.022.
  • Zheng, L. F.; Yu, H. C.; Wei, H. K.; Xing, Q.; Zou, Y.; Zhou, Y. F.; Peng, J. Antioxidative Peptides of Hydrolysate Prepared from Fish Skin Gelatin Using Ginger Protease Activate Antioxidant Response Element-Mediated Gene Transcription in IPEC-J2 Cells. J. Funct. Foods. 2018, 51, 104–112. DOI: 10.1016/j.jff.2018.08.033.
  • Neto, Y.; Rosa, J. C.; Cabral, H. Peptides with Antioxidant Properties Identified from Casein, Whey, and Egg Albumin Hydrolysates Generated by Two Novel Fungal Proteases. Prep. Biochem. Biotechnol. 2019, 49(7), 639–648. DOI: 10.1080/10826068.2019.1566147.
  • Xia, J. A.; Song, H. D.; Huang, K.; Li, S.; Guan, X. Purification and Characterization of Antioxidant Peptides from Enzymatic Hydrolysate of Mungbean Protein. J. Food Sci. 2020, 85(4). DOI: 10.1111/1750-3841.15139.
  • Abdel-Hamid, M.; Otte, J.; De Gobba, C.; Osman, A.; Hamad, E. Angiotensin I-Converting Enzyme Inhibitory Activity and Antioxidant Capacity of Bioactive Peptides Derived from Enzymatic Hydrolysis of Buffalo Milk Proteins. Int. Dairy. J. 2017, 66, 91–98. DOI: 10.1016/j.idairyj.2016.11.006.
  • Esteve, C.; Marina, M. L.; Garcia, M. C. Novel Strategy for the Revalorization of Olive (Olea europaea) Residues Based on the Extraction of Bioactive Peptides. Food Chem. 2015, 167, 272–280. DOI: 10.1016/j.foodchem.2014.06.090.
  • Shaik, M. I.; Sarbon, N. M. A Review on Purification and Characterization of Anti-Proliferative Peptides Derived from Fish Protein Hydrolysate. Food Rev. Int. 2020, 8, 1–21. DOI: 10.1080/87559129.2020.1812634.
  • Rutherfurd, S. M. Methodology for Determining Degree of Hydrolysis of Proteins in Hydrolysates: A Review. J. AOAC Int. 2010, 93(5), 1515–1522. DOI: 10.1134/S1061934810090170.
  • Toldra, F.; Gallego, M.; Reig, M.; Aristoy, M.-C.; Mora, L. Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. J. Agric. Food. Chem. 2020. DOI: 10.1021/acs.jafc.9b08297.
  • Wang, Y. C.; Song, X. J.; Feng, Y. G.; Cui, Q. Changes in Peptidomes and Fischer Ratios of Corn-Derived Oligopeptides Depending on Enzyme Hydrolysis Approaches. Food Chem. 2019, 297. DOI: 10.1016/j.foodchem.2019.05.205.
  • Franck, M.; Perreault, V.; Suwal, S.; Marciniak, A.; Bazinet, L.; Doyen, A. High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis Improved Protein Digestion of Flaxseed Protein Isolate and Generation of Peptides with Antioxidant Activity. Food. Res. Int. 2019, 115, 467–473. DOI: 10.1016/j.foodres.2018.10.034.
  • Ghorab, H.; Lammi, C.; Arnoldi, A.; Kabouche, Z.; Aiello, G. Proteomic Analysis of Sweet Algerian Apricot Kernels (Prunus Armeniaca L.) by Combinatorial Peptide Ligand Libraries and LC-MS/MS. Food Chem. 2018, 239, 935–945. DOI: 10.1016/j.foodchem.2017.07.054.
  • Liu, L.; Li, S. S.; Zheng, J. X.; Bu, T. T.; He, G. Q.; Wu, J. P. Safety Considerations on Food Protein-Derived Bioactive Peptides. Trends Food Sci. Tech. 2020, 96, 199–207. DOI: 10.1016/j.tifs.2019.12.022.
  • Wu, W. X.; Zhao, S. L.; Chen, C. Y.; Ge, F.; Liu, D. Q.; He, X. M. Optimization of Production Conditions for Antioxidant Peptides from Walnut Protein Meal Using Solid-State Fermentation. Food Sci. Biotechnol. 2014, 23(6), 1941–1949. DOI: 10.1007/s10068-014-0265-3.
  • Wang, L. Y.; Ma, M. T.; Yu, Z. P.; Du, S. K. Preparation and Identification of Antioxidant Peptides from Cottonseed Proteins. Food Chem. 2021, 352(7), 129399. DOI: 10.1016/j.foodchem.2021.129399.
  • Sarmadi, B. H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides. 2010, 31(10), 1949–1956. DOI: 10.1016/j.peptides.2010.06.020.
  • Cotabarren, J.; Ozon, B.; Claver, S.; Garcia-Pardo, J.; Obregon, W. D. Purification and Identification of Novel Antioxidant Peptides Isolated from Geoffroea Decorticans Seeds with Anticoagulant Activity. Pharmaceutics. 2021, 13(8). DOI: 10.3390/pharmaceutics13081153.
  • Zhang, F.; Qu, J.; Thakur, K.; Zhang, J. G.; Mocan, A.; Wei, Z. J. Purification and Identification of an Antioxidative Peptide from Peony (Paeonia Suffruticosa Andr.) Seed Dreg. Food Chem. 2019, 285, 266–274. DOI: 10.1016/j.foodchem.2019.01.168.
  • Famuwagun, A. A.; Alashi, A. M.; Gbadamosi, S. O.; Taiwo, K. A.; Oyedele, D.; Adebooye, O. C.; Aluko, R. E. Effect of Protease Type and Peptide Size on the in vitro Antioxidant, Antihypertensive and Anti-Diabetic Activities of Eggplant Leaf Protein Hydrolysates. Foods. 2021, 10, 5. DOI: 10.3390/foods10051112.
  • Kim, J. M.; Liceaga, A. M.; Yoon, K. Y. Purification and Identification of an Antioxidant Peptide from Perilla Seed (Perilla frutescens) Meal Protein Hydrolysate. Food Sci. Nutr. 2019, 7(5), 1645–1655. DOI: 10.1002/fsn3.998.
  • Yang, R. W.; Li, X. F.; Lin, S. Y.; Zhang, Z. M.; Chen, F. Identification of Novel Peptides from 3 to 10 kDa Pine Nut (Pinus koraiensis) Meal Protein, with an Exploration of the Relationship Between Their Antioxidant Activities and Secondary Structure. Food Chem. 2017, 219, 311–320. DOI: 10.1016/j.foodchem.2016.09.163.
  • Arumugam, V.; Venkatesan, M.; Ramachandran, K.; Ramachandran, S.; Palanisamy, S. K.; Sundaresan, U. Purification, Characterization and Antibacterial Properties of Peptide from Marine Ascidian Didemnum Sp. Int. J. Pept. Res. Ther. 2020, 26(1), 201–208. DOI: 10.1007/s10989-019-09829-z.
  • Huang, L. Y.; Chen, D.; Wang, L.; Lin, C.; Ma, C. B.; Xi, X. P.; Chen, T. B.; Shaw, C.; Zhou, M. Dermaseptin-PH: A Novel Peptide with Antimicrobial and Anticancer Activities from the Skin Secretion of the South American Orange-Legged Leaf Frog, Pithecopus (Phyllomedusa) Hypochondrialis. Molecules. 2017, 22, 10. DOI: 10.3390/molecules22101805.
  • Jie, Y.; Zhao, H. F.; Sun, X. Q.; Lv, X. R.; Zhang, Z.; Zhang, B. L. Isolation of Antioxidative Peptide from the Protein Hydrolysate of Caragana Ambigua Seeds and Its Mechanism for Retarding Lipid Auto-Oxidation. J. Sci. Food Agric. 2019, 99(6), 3078–3085. DOI: 10.1002/jsfa.9521.
  • Gu, M.; Chen, H. P.; Zhao, M. M.; Wang, X.; Yang, B.; Ren, J. Y.; Su, G. W. Identification of Antioxidant Peptides Released from Defatted Walnut (Juglans Sigillata Dode) Meal Proteins with Pancreatin. LWT-Food Sci. Techn. 2015, 60(1), 213–220. DOI: 10.1016/j.lwt.2014.07.052.
  • Chen, M.-L.; Ning, P.; Jiao, Y.; Zhou, X.; Cheng, Y.-H. Extraction of Antioxidant Peptides from Rice Dreg Protein Hydrolysate via an Angling Method. Food Chem. 2021, 337. DOI: 10.1016/j.foodchem.2020.128069.
  • Chen, H. P.; Zhao, M. M.; Lin, L. Z.; Wang, J. F.; Sun-Waterhouse, D. X.; Dong, Y.; Zhuang, M. Z.; Su, G. W. Identification of Antioxidative Peptides from Defatted Walnut Meal Hydrolysate with Potential for Improving Learning and Memory. Food. Res. Int. 2015, 78, 216–223. DOI: 10.1016/j.foodres.2015.10.008.
  • Feng, L.; Peng, F.; Wang, X. J.; Li, M.; Lei, H. J.; Xu, H. D. Identification and Characterization of Antioxidative Peptides Derived from Simulated in vitro Gastrointestinal Digestion of Walnut Meal Proteins. Food. Res. Int. 2019, 116, 518–526. DOI: 10.1016/j.foodres.2018.08.068.
  • Hu, F.; Ci, A. T.; Wang, H.; Zhang, Y. Y.; Zhang, J. G.; Thakur, K.; Wei, Z. J. Identification and Hydrolysis Kinetic of a Novel Antioxidant Peptide from Pecan Meal Using Alcalase. Food Chem. 2018, 261, 301–310. DOI: 10.1016/j.foodchem.2018.04.025.
  • Qiao, H. R.; Bi, X. J.; Zhang, Y. Y.; Liu, M. R.; Zu, S. C.; Jia, N.; Jiang, S. G.; Lu, Q.; Zu, Y. G.; Bao, Y. H. Enzymic Polypeptide Antioxidant Activity and Inhibitory Activity on Alpha-Glucosidase and Alpha-Amylase from Paeonia Ostii Cake. Ind. Crop Prod. 2020, 146. DOI: 10.1016/j.indcrop.2020.112158.
  • Liang, R.; Zhang, Z. M.; Lin, S. Y. Effects of Pulsed Electric Field on Intracellular Antioxidant Activity and Antioxidant Enzyme Regulating Capacities of Pine Nut (Pinus koraiensis) Peptide QDHCH in HepG2 Cells. Food Chem. 2017, 237, 793–802. DOI: 10.1016/j.foodchem.2017.05.144.
  • Liang, L. L.; Cai, S. Y.; Gao, M.; Chu, X. M.; Pan, X. Y.; Gong, K. K.; Xiao, C. W.; Chen, Y.; Zhao, Y. Q.; Wang, B., et al. Purification of Antioxidant Peptides of Moringa Oleifera Seeds and Their Protective Effects on H2o2 Oxidative Damaged Chang Liver Cells. J. Funct. Foods. 2020, 64, DOI: 10.1016/j.jff.2019.103698.
  • Feng, Y. X.; Wang, Z. C.; Chen, J. X.; Li, H. R.; Lu, J. Separation, Identification, and Molecular Docking of Tyrosinase Inhibitory Peptides from the Hydrolysates of Defatted Walnut (Juglans Regia L.) Meal. Food Chem. 2021, 353(10), 129471. DOI: 10.1016/j.foodchem.2021.129471.
  • Wang, M.; Li, C.; Li, H. Y.; Wu, Z. B.; Chen, B.; Lei, Y. B.; Shen, Y. H. In vitro and in silico Antioxidant Activity of Novel Peptides Prepared from Paeonia Ostii ‘Feng Dan’ Hydrolysate. Antioxidants. 2019, 8, 10. DOI: 10.3390/antiox8100433.
  • Wong, F. C.; Xiao, J. B.; Ong, M. G. L.; Pang, M. J.; Wong, S. J.; Teh, L. K.; Chai, T. T. Identification and Characterization of Antioxidant Peptides from Hydrolysate of Blue-Spotted Stingray and Their Stability Against Thermal, pH and Simulated Gastrointestinal Digestion Treatments. Food Chem. 2019, 271, 614–622. DOI: 10.1016/j.foodchem.2018.07.206.
  • Lorenzo, J. M.; Munekata, P. E. S.; Gomez, B.; Barba, F. J.; Mora, L.; Perez-Santaescolastica, C.; Toldra, F. Bioactive Peptides as Natural Antioxidants in Food Products - a Review. Trends Food Sci. Tech. 2018, 79, 136–147. DOI: 10.1016/j.tifs.2018.07.003.
  • Zhang, X. X.; Wang, L.; Chen, Z. X.; Li, Y. F.; Luo, X. H.; Li, Y. N. Effect of High Energy Electron Beam on Proteolysis and Antioxidant Activity of Rice Proteins. Food Funct. 2020, 11(1), 871–882. DOI: 10.1039/c9fo00038k.
  • Grace-Lynn, C.; Darah, I.; Chen, Y.; Latha, L. Y.; Jothy, S. L.; Sasidharan, S. In vitro Antioxidant Activity Potential of Lantadene A, a Pentacyclic Triterpenoid of Lantana Plants. Molecules. 2012, 17(9), 11185–11198. DOI: 10.3390/molecules170911185.
  • Yang, Q.; Cai, X. X.; Yan, A.; Tian, Y. Q.; Du, M.; Wang, S. Y. A Specific Antioxidant Peptide: Its Properties in Controlling Oxidation and Possible Action Mechanism. Food Chem. 2020, 327. DOI: 10.1016/j.foodchem.2020.126984.
  • Zhang, H. J.; Yin, M.; Huang, L. Y.; Wang, J.; Gong, L. X.; Liu, J.; Sun, B. G. Evaluation of the Cellular and Animal Models for the Study of Antioxidant Activity: A Review. J. Food Sci. 2017, 82(2), 278–288. DOI: 10.1111/1750-3841.13605.
  • Du, R. F.; Liu, K. L.; Zhao, S.; Chen, F. S. Changes in Antioxidant Activity of Peptides Identified from Brown Rice Hydrolysates Under Different Conditions and Their Protective Effects Against AAPH-Induced Oxidative Stress in Human Erythrocytes. ACS Omega. 2020, 5(22), 12751–12759. DOI: 10.1021/acsomega.0c00349.
  • Chen, J. Y.; Yan, Y. J.; Zhang, L. L.; Zheng, J. Y.; Guo, J. T.; Li, R. H.; Zeng, J. Y. Purification of Novel Antioxidant Peptides from Myofibrillar Protein Hydrolysate of Chicken Breast and Their Antioxidant Potential in Chemical and H2o2-Stressed Cell Systems. Food Funct. 2021, 12(11), 4897–4908. DOI: 10.1039/d1fo00579k.
  • Lee, S. E.; Kwon, T. R.; Kim, J. H.; Lee, B. C.; Oh, C. T.; Im, M.; Hwang, Y. K.; Paik, S. H.; Han, S.; Kim, J. Y.; et al. Anti-Photoaging and Anti-Oxidative Activities of Natural Killer Cell Conditioned Medium Following UV-B Irradiation of Human Dermal Fibroblasts and a Reconstructed Skin Model. Int. J. Mol. Med. 2019, 44(5), 1641–1652.
  • Jahanbani, R.; Ghaffari, S. M.; Salami, M.; Vahdati, K.; Sepehri, H.; Sarvestani, N. N.; Sheibani, N.; Moosavi-Movahedi, A. A. Antioxidant and Anticancer Activities of Walnut (Juglans Regia L.) Protein Hydrolysates Using Different Proteases. Plant Foods Hum. Nutr. 2016, 71(4), 402–409. DOI: 10.1007/s11130-016-0576-z.
  • Sheng, J. Y.; Yang, X. Y.; Chen, J. T.; Peng, T. H.; Yin, X. Q.; Liu, W.; Liang, M.; Wan, J. L.; Yang, X. L. Antioxidative Effects and Mechanism Study of Bioactive Peptides from Defatted Walnut (Juglans Regia L.) Meal Hydrolysate. J. Agric. Food. Chem. 2019, 67(12), 3305–3312. DOI: 10.1021/acs.jafc.8b05722.
  • Tonolo, F.; Folda, A.; Cesaro, L.; Scalcon, V.; Marin, O.; Ferro, S.; Bindoli, A.; Rigobello, M. P. Milk-Derived Bioactive Peptides Exhibit Antioxidant Activity Through the Keap1-Nrf2 Signaling Pathway. J. Funct. Foods. 2020, 64. DOI: 10.1016/j.jff.2019.103696.
  • Yang, Q.; Jiang, Y. H.; Fu, S.; Shen, Z. P.; Zong, W. W.; Xia, Z. N.; Zhan, Z. Y.; Jiang, X. L. Protective Effects of Ulva Lactuca Polysaccharide Extract on Oxidative Stress and Kidney Injury Induced by D-Galactose in Mice. Mar. Drugs. 2021, 19, 10. DOI: 10.3390/md19100539.
  • Aydin, A. F.; Coban, J.; Dogan-Ekici, I.; Betul-Kalaz, E.; Dogru-Abbasoglu, S.; Uysal, M. Carnosine and Taurine Treatments Diminished Brain Oxidative Stress and Apoptosis in D-Galactose Aging Model. Metab. Brain Dis. 2016, 31(2), 337–345. DOI: 10.1007/s11011-015-9755-0.
  • Liu, Y. H.; Lee, T. L.; Han, C. H.; Lee, Y. S.; Hou, W. C. Anti-Glycation, Anti-Hemolysis, and ORAC Activities of Demethylcurcumin and Tetrahydroxycurcumin In Vitro and Reductions of Oxidative Stress in D-Galactose-Induced Balb/c Mice In Vivo. Bot. Stud. 2019, 60. DOI: 10.1186/s40529-019-0258-x.
  • Xu, L. Q.; Xie, Y. L.; Gui, S. H.; Zhang, X.; Mo, Z. Z.; Sun, C. Y.; Li, C. L.; Luo, D. D.; Zhang, Z. B.; Su, Z. R.; et al. Polydatin Attenuates D-Galactose-Induced Liver and Brain Damage Through Its Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects in Mice. Food Funct. 2016, 7(11), 4545–4555.
  • Chen, P.; Chen, F. C.; Zhou, B. H. Antioxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Ellagic Acid in Liver and Brain of Rats Treated by D-Galactose. Sci. Rep. 2018, 8. DOI: 10.1038/s41598-018-19732-0.
  • Mahdi, O.; Chiroma, S. M.; Baharuldin, M. T. H.; Nor, N. H. M.; Taib, C. N. M.; Jagadeesan, S.; Devi, S.; Moklas, M. A. M. WIN55,212-2 Attenuates Cognitive Impairments in AlCl3. Biomedicines. 2021, 9(9). DOI: 10.3390/biomedicines9091270.
  • Ren, D.; Zhao, F.; Liu, C.; Wang, J.; Guo, Y.; Liu, J. Antioxidant Hydrolyzed Peptides from Manchurian Walnut (Juglans Mandshurica Maxim.) Attenuate Scopolamine-Induced Memory Impairment in Mice. J. Sci. Food Agr. 2018, 98, 5142–5152. DOI: 10.1002/jsfa.9060.
  • Zou, T. B.; He, T. P.; Li, H. B.; Tang, H. W.; Xia, E. Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins, Molecules. 2016, 21 (1). DOI: 10.3390/molecules21010072.
  • Feng, Y. X.; Ruan, G. R.; Jin, F.; Xu, J.; Wang, F. J. Purification, Identification, and Synthesis of Five Novel Antioxidant Peptides from Chinese Chestnut (Castanea Mollissima Blume) Protein Hydrolysates. LWT-Food Sci. Techn. 2018, 92, 40–46. DOI: 10.1016/j.lwt.2018.01.006.
  • Torres-Fuentes, C.; Contreras, M. D. M.; Recio, I.; Alaiz, M.; Vioque, J. Identification and Characterization of Antioxidant Peptides from Chickpea Protein Hydrolysates. Food Chem. 2015, 180, 194–202. DOI: 10.1016/j.foodchem.2015.02.046.
  • Ghassem, M.; Arihara, K.; Mohammadi, S.; Sani, N. A.; Babji, A. S. Identification of Two Novel Antioxidant Peptides from Edible Bird’s Nest (Aerodramus fuciphagus) Protein Hydrolysates. Food Funct. 2017, 8(5), 2046–2052. DOI: 10.1039/c6fo01615d.
  • Su, S. W.; Wan, Y. L.; Guo, S. T.; Zhang, C.; Zhang, T.; Liang, M. Effect of Peptide-Phenolic Interaction on the Antioxidant Capacity of Walnut Protein Hydrolysates. Int J. Food Sci. Tech. 2018, 53(2), 508–515. DOI: 10.1111/ijfs.13610.
  • Udenigwe, C. C.; Aluko, R. E. Chemometric Analysis of the Amino Acid Requirements of Antioxidant Food Protein Hydrolysates. Int. J. Mol. Sci. 2011, 12(5), 3148–3161. DOI: 10.3390/ijms12053148.
  • Matsui, R.; Honda, R.; Kanome, M.; Hagiwara, A.; Terashima, M. Designing Antioxidant Peptides Based on the Antioxidant Properties of the Amino Acid Side-Chains. Food Chem. 2018, 245, 750–755. DOI: 10.1016/j.foodchem.2017.11.119.
  • Yan, W.; Lin, G.; Zhang, R.; Liang, Z.; Wenjuan, W. Studies on the Bioactivities and Molecular Mechanism of Antioxidant Peptides by 3D-QSAR, in vitro Evaluation and Molecular Dynamic Simulations. Food Funct. 2020, 11(4), 3043–3052. DOI: 10.1039/c9fo03018b.
  • Tian, M.; Fang, B.; Jiang, L.; Guo, H. Y.; Cui, J. Y.; Ren, F. Z. Structure-Activity Relationship of a Series of Antioxidant Tripeptides Derived from Beta-Lactoglobulin Using QSAR Modeling. Dairy Sci. Tech. 2015, 95(4), 451–463. DOI: 10.1007/s13594-015-0226-5.
  • Uno, S.; Kodama, D.; Yukawa, H.; Shidara, H.; Akamatsu, M. Quantitative Analysis of the Relationship Between Structure and Antioxidant Activity of Tripeptides. J. Pept. Sci. 2020, 26(3), 3238–3246. DOI: 10.1002/psc.
  • Chen, N.; Chen, J.; Yao, B.; Li, Z. G. QSAR Study on Antioxidant Tripeptides and the Antioxidant Activity of the Designed Tripeptides in Free Radical Systems. Molecules. 2018, 23(6), 12. DOI: 10.3390/molecules23061407.
  • Guo, H. Q.; Wang, Y. X.; He, Q. X.; Zhang, Y. P.; Hu, Y.; Wang, Y. Q.; Lin, Z. H. In silico Rational Design and Virtual Screening of Antioxidant Tripeptides Based on 3D-QSAR Modeling. J. Mol. Struct. 2019, 1193, 223–230. DOI: 10.1016/j.molstruc.2019.05.002.
  • Vidal-Limon, A.; José, E.; Aguilar, T.; Liceaga, A. M. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J. Agr. Food. Chem. 2022, 70(4), 934–943. DOI: 10.1021/acs.jafc.1c06110.
  • Wang, W. R.; Shang, C. X.; Zhang, W.; Jin, Z.; Yao, F.; He, Y. H.; Wang, B.; Li, Y. N.; Zhang, J. Y.; Lin, R. Hydroxytyrosol NO Regulates Oxidative Stress and NO Production Through SIRT1 in Diabetic Mice and Vascular Endothelial Cells. Phytomedicine. 2019, 52, 206–215. DOI: 10.1016/j.phymed.2018.09.208.
  • Li, Q. Y.; Shi, C. C.; Wang, M.; Zhou, M.; Liang, M.; Zhang, T.; Yuan, E. D.; Wang, Z.; Yao, M. J.; Ren, J. Y. Tryptophan Residue Enhances In Vitro Walnut Protein-Derived Peptides Exerting Xanthine Oxidase Inhibition and Antioxidant Activities. J. Funct. Foods. 2019, 53, 276–285. DOI: 10.1016/j.jff.2018.11.024.
  • Khan, S.; Nazir, M.; Raiz, N.; Saleem, M.; Zengin, G.; Fazal, G.; Saleem, H.; Mukhtar, M.; Tousif, M. I.; Tareen, R. B.; et al. Phytochemical Profiling, in vitro Biological Properties and in silico Studies on Caragana Ambigua Stocks (Fabaceae): A Comprehensive Approach. Ind. Crop Prod. 2019, 131, 117–124. DOI: 10.1016/j.indcrop.2019.01.044.
  • Fujishima, M. A. T.; da Silva, N. D. R.; Ramos, R. D.; Ferreira, E. F. B.; dos Santos, K. L. B.; da Silva, C.; da Silva, J. O.; Rosa, J. M. C.; dos Santos, C. B. R. An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella Americana Linn. Pharmaceuticals. 2018, 11, 3. DOI: 10.3390/ph11030072.
  • Zheng, L.; Zhao, Y. J.; Dong, H. Z.; Su, G. W.; Zhao, M. M. Structure-Activity Relationship of Antioxidant Dipeptides: Dominant Role of Tyr, Trp, Cys and Met Residues. J. Funct. Foods. 2016, 21, 485–496. DOI: 10.1016/j.jff.2015.12.003.
  • Zhang, S.; Dong, L.; Sun, L.; Yang, Y.; Zhang, S.; Lin, S. Use of a Combination of the MD Simulations and NMR Spectroscopy to Determine the Regulatory Mechanism of Pulsed Electric Field (PEF) Targeting at C-Terminal Histidine of VNAVLH. Food Chem. 2021, 334, 127554. DOI: 10.1016/j.foodchem.2020.127554.
  • Zhang, X. G.; Noisa, P.; Yongsawatdigul, J. Identification and Characterization of Tilapia Antioxidant Peptides That Protect AAPH-Induced HepG2 Cell Oxidative Stress. J. Funct. Foods. 2021, 86. DOI: 10.1016/j.jff.2021.104662.
  • Yang, X. Y.; Zhong, D. Y.; Wang, G. L.; Zhang, R. G.; Zhang, Y. L. Effect of Walnut Meal Peptides on Hyperlipidemia and Hepatic Lipid Metabolism in Rats Fed a High-Fat Diet. Nutrients. 2021, 13, 5. DOI: 10.3390/nu13051410.
  • Apone, F.; Barbulova, A.; Colucci, M. G. Plant and Microalgae Derived Peptides are Advantageously Employed as Bioactive Compounds in Cosmetics. Front Plant Sci. 2019, 10. DOI: 10.3389/fpls.2019.00756.
  • Karkouch, I.; Tabbene, O.; Gharbi, D.; Ben Mlouka, M. A.; Elkahoui, S.; Rihouey, C.; Coquet, L.; Cosette, P.; Jouenne, T.; Limam, F. Antioxidant, Antityrosinase and Antibiofilm Activities of Synthesized Peptides Derived from Vicia Faba Protein Hydrolysate: A Powerful Agents in Cosmetic Application. Ind. Crop Prod. 2017, 109, 310–319. DOI: 10.1016/j.indcrop.2017.08.025.
  • Wang, S. G.; Su, G. W.; Zhang, X.; Song, G. H.; Zhang, L. X.; Zheng, L.; Zhao, M. M. Characterization and Exploration of Potential Neuroprotective Peptides in Walnut (Juglans regia) Protein Hydrolysate Against Cholinergic System Damage and Oxidative Stress in Scopolamine-Induced Cognitive and Memory Impairment Mice and Zebrafish. J. Agric. Food. Chem. 2021, 69(9), 2773–2783. DOI: 10.1021/acs.jafc.0c07798.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.