721
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Protein-Based Multilayer Emulsions: Fabrication, Characterization, and Applications: A Review

, , , &

References

  • Mao, L.; Roos, Y. H.; Biliaderis, C. G.; Miao, S. Food Emulsions as Delivery Systems for Flavor Compounds: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3173–3187. DOI: 10.1080/10408398.2015.1098586.
  • Oh, Y. S. Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications. Nutrients. 2016, 8, 472. DOI: 10.3390/nu8080472.
  • Gao, C.; Tang, F.; Gong, G.; Zhang, J.; Hoi, M. P. M.; Lee, S. M. Y.; Wang, R. Wang, pH-Responsive Prodrug Nanoparticles Based on a Sodium Alginate Derivative for Selective Co-Release of Doxorubicin and Curcumin into Tumor Cells. Nanoscale. 2017, 9, 12533–12542. DOI: 10.1039/C7NR03611F.
  • Khan, H.; Sureda, A.; Belwal, T.; Cetinkaya, S.; Suntar, I.; Tejada, S.; Devkota, H. P.; Ullah, H.; Aschner, M. Polyphenols in the Treatment of Autoimmune Diseases. Autoimmun. Rev. 2019, 18, 647–657. DOI: 10.1016/j.autrev.2019.05.001.
  • Edwards, R. L.; Luis, P. B.; Varuzza, P. V.; Joseph, A. I.; Presley, S. H.; Chaturvedi, R.; Schneider, C. The Anti-Inflammatory Activity of Curcumin is Mediated by Its Oxidative Metabolites. J. Biol. Chem. 2017, 292, 21243–21252. DOI: 10.1074/jbc.RA117.000123.
  • Rimm, E. B.; Appel, L. J.; Chiuve, S. E.; Djoussé, L.; Engler, M. B.; Kris-Etherton, P. M.; Mozaffarian, D.; Siscovick, D. S.; Lichtenstein, A. H., et al. Seafood Long-Chain N-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory from the American Heart Association. Circulation. 2018, 138, e35–e47. DOI: 10.1161/CIR.0000000000000574.
  • Leonetti, D.; Soleti, R.; Clere, N.; Vergori, L.; Jacques, C.; Duluc, L.; Dourguia, C.; Martinez, M. C.; Andriantsitohaina, R. Estrogen Receptor Alpha Participates to the Beneficial Effect of Red Wine Polyphenols in a Mouse Model of Obesity-Related Disorders. Front. Pharmacol. 2016, 7, 529. DOI: 10.3389/fphar.2016.00529.
  • Vareed, S. K.; Kakarala, M.; Ruffin, M. T.; Crowell, J. A.; Normolle, D. P.; Djuric, Z.; Brenner, D. E. Pharmacokinetics of Curcumin Conjugate Metabolites in Healthy Human Subjects. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1411–1417. DOI: 10.1158/1055-9965.EPI-07-2693.
  • Bao, C.; Jiang, P.; Chai, J.; Jiang, Y.; Li, D.; Bao, W.; Liu, B.; Liu, B.; Norde, W.; Li, Y. The Delivery of Sensitive Food Bioactive Ingredients: Absorption Mechanisms, Influencing Factors, Encapsulation Techniques and Evaluation Models. Food. Res. Int. 2019, 120, 130–140. DOI: 10.1016/j.foodres.2019.02.024.
  • Dai, W.; Ruan, C.; Zhang, Y.; Wang, J.; Han, J.; Shao, Z.; Sun, Y.; Liang, J. Bioavailability Enhancement of EGCG by Structural Modification and Nano-Delivery: A Review. J. Funct. Foods. 2020, 65, 103732. DOI: 10.1016/j.jff.2019.103732.
  • Sepeidnameh, M.; Hosseini, S. M. H.; Niakosari, M.; Mesbahi, G. R.; Yousefi, G. H.; Golmakani, M. T.; Nejadmansouri, M. Physicochemical Properties of Fish Oil in Water Multilayer Emulsions Prepared by a Mixture of Whey Protein Isolate and Water-Soluble Fraction of Farsi Gum. Int. J. Biol. Macromol. 2018, 118, 1639–1647. DOI: 10.1016/j.ijbiomac.2018.07.007.
  • Sabna Kotta, A. W. K.; Pramod, K.; Ansari, S. H.; Sharma, R. K.; Ali, J. Exploring Oral Nanoemulsions for Bioavailability Enhancement of Poorly Water-Soluble Drugs. 2012, 9, 585–598. DOI:10.1517/17425247.2012.668523.
  • Sivapratha, P. S. S. Multiple Layers and Conjugate Materials for Food Emulsion Stabilization. 2016, 58(6), 877–892. DOI: 10.1080/10408398.2016.1227765.
  • Taha, A.; Hu, T.; Zhang, Z.; Bakry, A. M.; Khalifa, I.; Pan, S.; Hu, H. Effect of Different Oils and Ultrasound Emulsification Conditions on the Physicochemical Properties of Emulsions Stabilized by Soy Protein Isolate. Ultrason. Sonochem. 2018, 49, 283–293. DOI: 10.1016/j.ultsonch.2018.08.020.
  • Wu, D.; Lu, J.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Effect of Chitosan Coatings on Physical Stability, Antifungal and Mycotoxin Inhibitory Activities of Lecithin Stabilized Cinnamon Oil-In-Water Emulsions. LWT. 2019, 106, 98–104. DOI: 10.1016/j.lwt.2019.02.029.
  • Han, J. R.; Gu, L. P.; Zhang, R. J.; Shang, W. H.; Yan, J. N.; McClements, D. J.; Wu, H. T.; Zhu, B. W.; Xiao, H. Bioaccessibility and Cellular Uptake of Beta-Carotene in Emulsion-Based Delivery Systems Using Scallop (Patinopecten Yessoensis) Gonad Protein Isolates: Effects of Carrier Oil. Food Funct. 2019, 10, 49–60. DOI: 10.1039/c8fo01390j.
  • Liu, F.; Wang, D.; Sun, C.; McClements, D. J.; Gao, Y. Utilization of Interfacial Engineering to Improve Physicochemical Stability of Beta-Carotene Emulsions: Multilayer Coatings Formed Using Protein and Protein-Polyphenol Conjugates. Food Chem. 2016, 205, 129–139. DOI: 10.1016/j.foodchem.2016.02.155.
  • Wei, Y.; Sun, C.; Dai, L.; Mao, L.; Yuan, F.; Gao, Y. Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate. 2. Influence of Environmental Stresses on Stability and Rheological Properties. J. Agric. Food Chem. 2019, 67, 1209–1221. DOI: 10.1021/acs.jafc.8b04994.
  • Zeeb, B.; Gibis, M.; Fischer, L.; Weiss, J. Influence of Interfacial Properties on Ostwald Ripening in Crosslinked Multilayered Oil-In-Water Emulsions. J. Colloid Interface Sci. 2012, 387, 65–73. DOI: 10.1016/j.jcis.2012.07.054.
  • Burgos-Díaz, C.; Wandersleben, T.; Marqués, A. M.; Rubilar, M. Multilayer Emulsions Stabilized by Vegetable Proteins and Polysaccharides. Curr. Opin. Colloid Int. Sci. 2016, 25, 51–57. DOI: 10.1016/j.colsurfb.2015.11.038.
  • Grigoriev, D. O.; Miller, R. Mono- and Multilayer Covered Drops as Carriers. Curr. Opin. Colloid Int. Sci. 2009, 14, 48–59. DOI: 10.1016/j.cocis.2008.03.003.
  • Hu, M.; Xie, F.; Zhang, S.; Li, Y.; Qi, B. Homogenization Pressure and Soybean Protein Concentration Impact the Stability of Perilla Oil Nanoemulsions. Food Hydrocolloids. 2020, 101, 105575. DOI: 10.1016/j.foodhyd.2019.105575.
  • Taha, A.; Ahmed, E.; Hu, T.; Xu, X.; Pan, S.; Hu, H. Effects of Different Ionic Strengths on the Physicochemical Properties of Plant and Animal Proteins-Stabilized Emulsions Fabricated Using Ultrasound Emulsification. Ultrason. Sonochem. 2019, 58, 104627. DOI: 10.1016/j.ultsonch.2019.104627.
  • Euston, S. R.; Al-Bakkush, A. A.; Campbell, L. Comparing the Heat Stability of Soya Protein and Milk Whey Protein Emulsions. Food Hydrocolloids. 2009, 23, 2485–2492. DOI: 10.1016/j.foodhyd.2009.08.004.
  • Yan, X.; Ma, C.; Cui, F.; McClements, D. J.; Liu, X.; Liu, F. Protein-Stabilized Pickering Emulsions: Formation, Stability, Properties, and Applications in Foods. Trends Food Sci. Technol. 2020, 103, 293–303. DOI: 10.1016/j.tifs.2020.07.005.
  • Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Recent Advances in Polysaccharides Stabilized Emulsions for Encapsulation and Delivery of Bioactive Food Ingredients: A Review. Carbohydr. Polym. 2020, 242, 116388. DOI: 10.1016/j.carbpol.2020.116388.
  • McClements, D. J.; Jafari, S. M. Improving Emulsion Formation, Stability and Performance Using Mixed Emulsifiers: A Review. Adv. Colloid Interface Sci. 2018, 251, 55–79. DOI: 10.1016/j.cis.2017.12.001.
  • Guzey, D.; McClements, D. J. Formation, Stability and Properties of Multilayer Emulsions for Application in the Food Industry. Adv. Colloid Interface Sci. 2006, 128-130, 227–248. DOI:10.1016/j.cis.2006.11.021.
  • Liu, C.; Pei, R.; Peltonen, L.; Heinonen, M. Assembling of the Interfacial Layer Affects the Physical and Oxidative Stability of Faba Bean Protein-Stabilized Oil-In-Water Emulsions with Chitosan. Food Hydrocolloids. 2020, 102, 105614. DOI: 10.1016/j.foodhyd.2019.105614.
  • Liu, H.; Han, G.; Zhang, H.; Liu, Q.; Kong, B. Improving the Physical and Oxidative Stability of Emulsions Based on the Interfacial Electrostatic Effects Between Porcine Bone Protein Hydrolysates and Porcine Bone Protein Hydrolysate-Rutin Conjugates. Food Hydrocolloids. 2019, 94, 418–427. DOI: 10.1016/j.foodhyd.2019.03.037.
  • Wei, Y.; Sun, C.; Dai, L.; Mao, L.; Yuan, F.; Gao, Y. Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate, Part 1: Fabrication and Characterization. J. Agric. Food Chem. 2019, 67, 1197–1208. DOI: 10.1021/acs.jafc.8b03240.
  • McClements, D. J.; Gumus, C. E. Natural Emulsifiers - Biosurfactants, Phospholipids, Biopolymers, and Colloidal Particles: Molecular and Physicochemical Basis of Functional Performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. DOI: 10.1016/j.cis.2016.03.002.
  • Ye, A.; Singh, H. Formation of Multilayers at the Interface of Oil-In-Water Emulsion via Interactions Between Lactoferrin and β-Lactoglobulin. Food Biophys. 2007, 2, 125–132. DOI: 10.1007/s11483-007-9029-4.
  • Schmelz, T.; Lesmes, U.; Weiss, J.; McClements, D. J. Modulation of Physicochemical Properties of Lipid Droplets Using β-Lactoglobulin and/or Lactoferrin Interfacial Coatings. Food Hydrocolloids. 2011, 25, 1181–1189. DOI: 10.1016/j.foodhyd.2010.11.005.
  • Li, Y.; Hu, M.; Xiao, H.; Du, Y.; Decker, E. A.; McClements, D. J. Controlling the Functional Performance of Emulsion-Based Delivery Systems Using Multi-Component Biopolymer Coatings. Eur. J. Pharm. Biopharm. 2010, 76, 38–47. DOI: 10.1016/j.ejpb.2010.05.004.
  • Teo, A.; Dimartino, S.; Lee, S. J.; Goh, K. K. T.; Wen, J.; Oey, I.; Ko, S.; Kwak, H.-S. Interfacial Structures of Whey Protein Isolate (WPI) and Lactoferrin on Hydrophobic Surfaces in a Model System Monitored by Quartz Crystal Microbalance with Dissipation (QCM-D) and Their Formation on Nanoemulsions. Food Hydrocolloids. 2016, 56, 150–160. DOI: 10.1016/j.foodhyd.2015.12.002.
  • Dickinson, E., Mixed Biopolymers at Interfaces: Competitive Adsorption and Multilayer Structures, Food Hydrocolloids, 2011, 25–1983, 1966–1983. DOI: 10.1016/j.foodhyd.2010.12.001
  • Holmberg, M. Hou, X. Competitive Protein Adsorption—Multilayer Adsorption and Surface Induced Protein Aggregation. Langmuir. 2009, 25, 2081–2089. DOI: 10.1021/la8031978.
  • Glaser, L. A.; Paulson, A. T.; Speers, R. A.; Yada, R. Y.; Rousseau, D. Foaming Behavior of Mixed Bovine Serum Albumin–protamine Systems. Food Hydrocolloids. 2007, 21, 495–506. DOI: 10.1016/j.foodhyd.2006.05.008.
  • Dickinson, E. Strategies to Control and Inhibit the Flocculation of Protein-Stabilized Oil-In-Water Emulsions. Food Hydrocolloids. 2019, 96, 209–223. DOI: 10.1016/j.foodhyd.2019.05.021.
  • Wu, N.; Yang, X.; Teng, Z.; Yin, S.; Zhu, J.; Qi, J. Stabilization of Soybean Oil Body Emulsions Using κ, ι, λ-Carrageenan at Different pH Values. Food Res. Int. 2011, 44, 1059–1068. DOI: 10.1016/j.foodres.2011.03.019.
  • Costa, R. R.; Mano, J. F. Polyelectrolyte Multilayered Assemblies in Biomedical Technologies. Chem. Soc. Rev. 2014, 43, 3453–3479. DOI: 10.1039/c3cs60393h.
  • Li, M.; McClements, D. J.; Liu, X.; Liu, F. Design Principles of Oil-In-Water Emulsions with Functionalized Interfaces: Mixed, Multilayer, and Covalent Complex Structures. Compr. Rev. Food Sci. Food Saf. 2020, 19(6), 3159–3190. DOI: 10.1111/1541-4337.12622.
  • Zang, X.; Wang, J.; Yu, G.; Cheng, J. Addition of Anionic Polysaccharides to Improve the Stability of Rice Bran Protein Hydrolysate-Stabilized Emulsions. LWT. 2019, 111, 573–581. DOI: 10.1016/j.lwt.2019.04.020.
  • Shao, P.; Feng, J.; Sun, P.; Xiang, N.; Lu, B.; Qiu, D. Recent Advances in Improving Stability of Food Emulsion by Plant Polysaccharides. Food Res. Int. 2020, 137, 109376. DOI: 10.1016/j.foodres.2020.109376.
  • Vélez-Erazo, E. M.; Bosqui, K.; Rabelo, R. S.; Kurozawa, L. E.; Hubinger, M. D. High Internal Phase Emulsions (HIPE) Using Pea Protein and Different Polysaccharides as Stabilizers. Food Hydrocolloids. 2020, 105, 105775. DOI: 10.1016/j.foodhyd.2020.105775.
  • Zhang, C.; Xu, W.; Jin, W.; Shah, B. R.; Li, Y.; Li, B. Influence of Anionic Alginate and Cationic Chitosan on Physicochemical Stability and Carotenoids Bioaccessibility of Soy Protein Isolate-Stabilized Emulsions. Food Res. Int. 2015, 77, 419–425. DOI: 10.1016/j.foodres.2015.09.020.
  • Shchukina, E. M.; Shchukina, D. G. Layer-By-Layer Coated Emulsion Microparticles as Storage and Delivery Tool. Curr. Opin. Colloid Int. Sci. 2012, 17(5), 281–289. DOI: 10.1016/j.cocis.2012.06.003.
  • Gharsallaoui, A.; Saurel, R.; Chambin, O.; Cases, E.; Voilley, A.; Cayot, P. Utilisation of Pectin Coating to Enhance Spray-Dry Stability of Pea Protein-Stabilised Oil-In-Water Emulsions. Food Chem. 2010, 122, 447–454. DOI: 10.1016/j.foodchem.2009.04.017.
  • Gharsallaoui, A.; Roudaut, G.; Beney, L.; Chambin, O.; Voilley, A.; Saurel, R. Properties of Spray-Dried Food Flavours Microencapsulated with Two-Layered Membranes: Roles of Interfacial Interactions and Water. Food Chem. 2012, 132, 1713–1720. DOI: 10.1016/j.foodchem.2011.03.028.
  • Niroula, A.; Gamot, T.; Ooi, C. W.; Dhital, S. Biomolecule-Based Pickering Food Emulsions: Intrinsic Components of Food-Matrix, Recent Trends and Prospects. Food Hydrocolloids. 2020, 112, 106303. DOI: 10.1016/j.foodhyd.2020.106303.
  • Lei, F.; Liu, F.; Yuan, F.; Gao, Y. Impact of Chitosan–egcg Conjugates on Physicochemical Stability of β-Carotene Emulsion. Food Hydrocolloids. 2014, 39, 163–170. DOI: 10.1016/j.foodhyd.2014.01.008.
  • Evans, M.; Ratcliffe, I.; Williams, P. A. Emulsion Stabilisation Using Polysaccharide–protein Complexes. Curr. Opin. Colloid Int. Sci. 2013, 18, 272–282. DOI: 10.1016/j.cocis.2013.04.004.
  • Wang, X.; Zhang, J.; Lei, F.; Liang, C.; Yuan, F.; Gao, Y. Covalent Complexation and Functional Evaluation of (-)-Epigallocatechin Gallate and Alpha-Lactalbumin. Food Chem. 2014, 150, 341–347. DOI: 10.1016/j.foodchem.2013.09.127.
  • Ma, X.; Chen, W.; Yan, T.; Wang, D.; Hou, F.; Miao, S.; Liu, D. Comparison of Citrus Pectin and Apple Pectin in Conjugation with Soy Protein Isolate (SPI) Under Controlled Dry-Heating Conditions. Food Chem. 2020, 309, 125501. DOI: 10.1016/j.foodchem.2019.125501.
  • Oliver, C. M.; Melton, L. D.; Stanley, R. A. Creating Proteins with Novel Functionality via the Maillard Reaction: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 337–350. DOI: 10.1080/10408690590957250.
  • Zhao, J.; Xiang, J.; Wei, T.; Yuan, F.; Gao, Y. Influence of Environmental Stresses on the Physicochemical Stability of Orange Oil Bilayer Emulsions Coated by Lactoferrin–soybean Soluble Polysaccharides and Lactoferrin–beet Pectin. Food Res. Int. 2014, 66, 216–227. DOI: 10.1016/j.foodres.2014.09.019.
  • Wei, Z.; Gao, Y. Physicochemical Properties of β-Carotene Bilayer Emulsions Coated by Milk Proteins and Chitosan–egcg Conjugates. Food Hydrocolloids. 2016, 52, 590–599. DOI: 10.1016/j.foodhyd.2015.08.002.
  • Xu, X.; Luo, L.; Liu, C.; McClements, D. J. Utilization of Anionic Polysaccharides to Improve the Stability of Rice Glutelin Emulsions: Impact of Polysaccharide Type, pH, Salt, and Temperature. Food Hydrocolloids. 2017, 64, 112–122. DOI: 10.1016/j.foodhyd.2016.11.005.
  • Wang, X.; Li, X.; Xu, D.; Zhu, Y.; Cao, Y.; Wang, J.; Sun, B. Comparision of Heteroaggregation, Layer-By-Layer and Directly Mixing Techniques on the Physical Properties and in vitro Digestion of Emulsions. Food Hydrocolloids. 2019, 95, 228–237. DOI: 10.1016/j.foodhyd.2019.04.034.
  • Zhu, X. F.; Zheng, J.; Liu, F.; Qiu, C. Y.; Lin, W. F.; Tang, C. H. Freeze-Thaw Stability of Pickering Emulsions Stabilized by Soy Protein Nanoparticles. Influence of Ionic Strength Before or After Emulsification. Food Hydrocolloids. 2018, 74, 37–45. DOI: 10.1016/j.foodhyd.2017.07.017.
  • Thanasukarn, P.; Pongsawatmanit, R.; McClements, D. J. Utilization of Layer-By-Layer Interfacial Deposition Technique to Improve Freeze–thaw Stability of Oil-In-Water Emulsions. Food Res. Int. 2006, 39, 721–729. DOI: 10.1016/j.foodres.2006.01.010.
  • Noshad, M.; Mohebbi, M.; Shahidi, F.; Koocheki, A. Freeze–thaw Stability of Emulsions with Soy Protein Isolate Through Interfacial Engineering. Int. J. Refrig. 2015, 58, 253–260. DOI: 10.1016/j.ijrefrig.2015.05.007.
  • Liu, L.; Zhao, Q.; Liu, T.; Long, Z.; Kong, J.; Zhao, M. Sodium Caseinate/Xanthan Gum Interactions in Aqueous Solution: Effect on Protein Adsorption at the Oil–water Interface. Food Hydrocolloids. 2012, 27, 339–346. DOI: 10.1016/j.foodhyd.2011.10.007.
  • Niu, F.; Zhang, Y.; Chang, C.; Pan, W.; Sun, W.; Su, Y.; Yang, Y. Influence of the Preparation Method on the Structure Formed by Ovalbumin/gum Arabic to Observe the Stability of Oil-In-Water Emulsion. Food Hydrocolloids. 2017, 63, 602–610. DOI: 10.1016/j.foodhyd.2016.10.007.
  • Zhao, Q.; Zaaboul, F.; Liu, Y.; Li, J. Recent Advances on Protein‐based Pickering High Internal Phase Emulsions (Pickering Hipes): Fabrication, Characterization, and Applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1934–1968. DOI: 10.1111/1541-4337.12570.
  • Moschakis, T.; Murray, B. S.; Biliaderis, C. G. Modifications in Stability and Structure of Whey Protein-Coated O/W Emulsions by Interacting Chitosan and Gum Arabic Mixed Dispersions. Food Hydrocolloids. 2010, 24, 8–17. DOI: 10.1016/j.foodhyd.2009.07.001.
  • Noshad, M.; Mohebbi, M.; Koocheki, A.; Shahidi, F. Influence of Interfacial Engineering on Stability of Emulsions Stabilized with Soy Protein Isolate. J. Dispersion Sci. Technol. 2015, 37, 56–65. DOI: 10.1080/01932691.2015.1027907.
  • Perrechil, F. A.; Cunha, R. L. Stabilization of Multilayered Emulsions by Sodium Caseinate and κ-Carrageenan. Food Hydrocolloids. 2013, 30, 606–613. DOI:10.1016/j.foodhyd.2012.08.006.
  • Zeeb, B.; Lopez-Pena, C. L.; Weiss, J.; McClements, D. J. Controlling Lipid Digestion Using Enzyme-Induced Crosslinking of Biopolymer Interfacial Layers in Multilayer Emulsions. Food Hydrocolloids. 2015, 46, 125–133. DOI: 10.1016/j.foodhyd.2014.12.018.
  • Wang, C.; Sun, C.; Lu, W.; Gul, K.; Mata, A.; Fang, Y. Emulsion Structure Design for Improving the Oxidative Stability of Polyunsaturated Fatty Acids. Compr. Rev. Food Sci. Food Saf. 2020, 19(6), 2955–2971. DOI: 10.1111/1541-4337.12621.
  • McClements, D. J.; Decker, E. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation. J. Agric. Food Chem. 2018, 66, 20–35. DOI: 10.1021/acs.jafc.7b05066.
  • Gullón, B.; Lú-Chau, T. A.; Moreira, M. T.; Lema, J. M.; Eibes, G. Rutin: A Review on Extraction, Identification and Purification Methods, Biological Activities and Approaches to Enhance Its Bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. DOI: 10.1016/j.tifs.2017.07.008.
  • Jia, X.; Zhao, M.; Xia, N.; Teng, J.; Jia, C.; Wei, B.; Huang, L.; Chen, D. Interaction Between Plant Phenolics and Rice Protein Improved Oxidative Stabilities of Emulsion. J. Cereal Sci. 2019, 89, 102818. DOI: 10.1016/j.jcs.2019.102818.
  • Song, H. Y.; Moon, T. W.; Choi, S. J. Impact of Antioxidant on the Stability of Beta-Carotene in Model Beverage Emulsions: Role of Emulsion Interfacial Membrane. Food Chem. 2019, 279, 194–201. DOI: 10.1016/j.foodchem.2018.11.126.
  • Tamm, F.; Härter, C.; Brodkorb, A.; Drusch, S. Functional and Antioxidant Properties of Whey Protein Hydrolysate/pectin Complexes in Emulsions and Spray-Dried Microcapsules. Lwt. 2016, 73, 524–527. DOI: 10.1016/j.lwt.2016.06.053.
  • Fustier, P.; Achouri, A.; Taherian, A. R.; Britten, M.; Pelletier, M.; Sabik, H.; Villeneuve, S.; Mondor, M. Protein-Protein Multilayer Oil-In-Water Emulsions for the Microencapsulation of Flaxseed Oil: Effect of Whey and Fish Gelatin Concentration. J. Agric. Food Chem. 2015, 63, 9239–9250. DOI: 10.1021/acs.jafc.5b00858.
  • Scheuble, N.; Schaffner, J.; Schumacher, M.; Windhab, E. J.; Liu, D.; Parker, H.; Steingoetter, A.; Fischer, P. Tailoring Emulsions for Controlled Lipid Release: Establishing in Vitro-In Vivo Correlation for Digestion of Lipids. ACS Appl. Mater. Interfaces. 2018, 10, 17571–17581. DOI: 10.1021/acsami.8b02637.
  • Zhang, R.; McClements, D. J. Enhancing Nutraceutical Bioavailability by Controlling the Composition and Structure of Gastrointestinal Contents: Emulsion-Based Delivery and Excipient Systems. Food Struct. 2016, 10, 21–36. DOI: 10.1016/j.foostr.2016.07.006.
  • Zou, L.; Liu, W.; Liu, C.; Xiao, H.; McClements, D. J. Designing Excipient Emulsions to Increase Nutraceutical Bioavailability: Emulsifier Type Influences Curcumin Stability and Bioaccessibility by Altering Gastrointestinal Fate. Food Funct. 2015, 6, 2475–2486. DOI: 10.1039/c5fo00606f.
  • Zhang, R.; Zhang, Z.; Zhang, H.; Decker, E. A.; McClements, D. J. Influence of Emulsifier Type on Gastrointestinal Fate of Oil-In-Water Emulsions Containing Anionic Dietary Fiber (Pectin). Food Hydrocolloids. 2015, 45, 175–185. DOI: 10.1016/j.foodhyd.2014.11.020.
  • Pinheiro, A. C.; Coimbra, M. A.; Vicente, A. A. In vitro Behaviour of Curcumin Nanoemulsions Stabilized by Biopolymer Emulsifiers – Effect of Interfacial Composition. Food Hydrocolloids. 2016, 52, 460–467. DOI: 10.1016/j.foodhyd.2015.07.025.
  • Pilosof, A. M. R. Potential Impact of Interfacial Composition of Proteins and Polysaccharides Stabilized Emulsions on the Modulation of Lipolysis. The Role of Bile Salts. Food Hydrocolloids. 2017, 68, 178–185. DOI: 10.1016/j.foodhyd.2016.08.030.
  • Muriel Mundo, J. L.; Zhou, H.; Tan, Y.; Liu, J.; McClements, D. J. Stabilization of Soybean Oil-In-Water Emulsions Using Polypeptide Multilayers: Cationic Polylysine and Anionic Polyglutamic Acid. Food Res. Int. 2020, 137, 109304. DOI: 10.1016/j.foodres.2020.109304.
  • Taherian, A. R.; Britten, M.; Sabik, H.; Fustier, P. Ability of Whey Protein Isolate and/or Fish Gelatin to Inhibit Physical Separation and Lipid Oxidation in Fish Oil-In-Water Beverage Emulsion. Food Hydrocolloids. 2011, 25, 868–878. DOI: 10.1016/j.foodhyd.2010.08.007.
  • Yan, S.; Xie, F.; Zhang, S.; Jiang, L.; Qi, B.; Li, Y. Effects of Soybean Protein Isolate − Polyphenol Conjugate Formation on the Protein Structure and Emulsifying Properties: Protein − Polyphenol Emulsification Performance in the Presence of Chitosan. Colloids Surf. A Physicochem. Eng. Aspects. 2021, 609, 125641. DOI: 10.1016/j.colsurfa.2020.125641.
  • Liu, F.; Wang, D.; Sun, C.; Gao, Y. Influence of Polysaccharides on the Physicochemical Properties of Lactoferrin–polyphenol Conjugates Coated β-Carotene Emulsions. Food Hydrocolloids. 2016, 52, 661–669. DOI: 10.1016/j.foodhyd.2015.08.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.