333
Views
1
CrossRef citations to date
0
Altmetric
Review

Valorization of Agri-Food By-Products from Plant Sources Using Pressure-Driven Membrane Processes to Recover Value-Added Compounds: Opportunities and Challenges

, &

References

  • Castro‑muñoz, R.; Barragán‑huerta, B. E.; Fíla, V.; Denis, P. C.; Ruby‑figueroa, R. Current Role of Membrane Technology: From the Treatment of Agro-Industrial By-Products Up to the Valorization of Valuable Compounds. Waste Biomass Valorization. 2018, 9(4), 513–529.
  • Cassano, A.; Rastogi, N. K.; Basile, A. Membrane Technologies for Water Treatment and Reuse in the Food and Beverage Industries. In Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications, Basile, A., Cassano, A., Rastogi, N. K., Eds.; Woodhead Publishing: Elsevier, 2015; pp. 551–580.
  • Galanakis, C. M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26(2), 68–87. DOI: 10.1016/j.tifs.2012.03.003.
  • Cheryan, M. Microfiltration and Ultrafiltration Handbook; CRC Press: Boca Raton, FL, 1998.
  • Cassano, A.; Rastogi, N. K.; Basile, A. Reverse Osmosis in Food Processing. In Current Trends and Future Developments on (Bio-) Membranes: Reverse and Forward Osmosis: Principles, Applications, Advances, Basile, A., Cassano, A., Rastogi, N. K., Eds.; Elsevier Inc.: Amsterstdam, 2020; pp. 229–257.
  • Castro‑muñoz, R. Separation, Fractionation and Concentration of High-Added-Value Compounds from Agro-Food By-Products Through Membrane-Based Technologies. In Encyclopedia of Food Security and Sustainability, Ferranti, P., Anderson, J. R., Berry, E. M., Eds.; Elsevier Inc.: Cambridge, MA, 2019; pp. 465–476.
  • Albuquerque, B. R.; Heleno, S. A.; Oliveira, M. B. P. P.; Barros, L.; Ferreira, I. C. F. R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12(1), 14–29. DOI: 10.1039/D0FO02324H.
  • Bazzarelli, F.; Piacentini, E.; Poerio, T.; Mazzei, R.; Cassano, A.; Giorno, L. Advances in Membrane Operations for Water Purification and Biophenols Recovery/valorization from Omwws. J. Membr. Sci. 2016, 497, 402–409.
  • Brazinha, C.; Cadima, M.; Crespo, J. G. Valorisation of Spent Coffee Through Membrane Processing. J. Food Eng. 2015, 149, 123–130.
  • Cassano, A.; Conidi, C.; Giorno, L.; Drioli, E. Fractionation of Olive Mill Wastewaters by Membrane Separation Techniques. J. Hazard. Mater. 2013, 248–249, 185–193.
  • Cassano, A.; Conidi, C.; Ruby-Figueroa, R. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process. Membranes. 2014, 4(3), 509–524. DOI: 10.3390/membranes4030509.
  • Cassano, A.; Conidi, C.; Ruby-Figueroa, R.; Castro‑muñoz, R. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products. Int. J. Mol. Sci. 2018, 19(2), 351. DOI: 10.3390/ijms19020351.
  • Carbonell-Alcaina, C.; Alvarez-Blanco, S.; Amparo Bes-Pia, M.; Mendoza-Roca, J. A.; Pastor-Alcaniz, L. Ultrafiltration of Residual Fermentation Brines from the Production of Table Olives at Different Operating Conditions. J. Cleaner Prod. 2018, 189, 662–672.
  • Castro‑muñoz, R.; Barragán‑huerta, B. E.; Yánez-Fernández, J. The Use of Nixtamalization Waste Waters Clarified by Ultrafiltration for Production of a Fraction Rich in Phenolic Compounds. Waste Biomass Valorization. 2016, 7(5), 1167–1176.
  • Conidi, C.; Cassano, A.; Drioli, E. Recovery of Phenolic Compounds from Orange Press Liquor by Nanofiltration. Food Bioprod. Process. 2012, 90, 867–874.
  • Conidi, C.; Mazzei, R.; Cassano, A.; Giorno, L. Integrated Membrane System for the Production of Phytotherapics from Olive Mill Wastewaters. J. Membr. Sci. 2014, 454, 322–329.
  • Conidi, C.; Cassano, A.; Garcia-Castello, E. Valorization of Artichoke Wastewaters by Integrated Membrane Process. Water Res. 2014, 48, 363–374.
  • De Almeida, M. S.; Martins, R. C.; Quinta-Ferreira, R. M.; Gando-Ferreira, L. M. Optimization of Operating Conditions for the Valorization of Olive Mill Wastewater Using Membrane Processes. Environ. Sci. Pollut. Res. 2018, 25(22), 21968–21981. DOI: 10.1007/s11356-018-2323-5.
  • Galanakis, C. M.; Tornberg, E.; Gekas, V. Clarification of High-Added Value Products from Olive Mill Wastewater. J. Food Eng. 2010, 99(2), 190–197. DOI: 10.1016/j.jfoodeng.2010.02.018.
  • Galanakis, C. M.; Markouli, E.; Gekas, V. Recovery and Fractionation of Different Phenolic Classes from Winery Sludge Using Ultrafiltration. Sep. Purif. Technol. 2013, 107, 245–251.
  • Garcia-Ivars, J.; Iborra-Clar, M.-I.; Alcaina-Miranda, M.-I.; Mendoza-Roca, J.-A.; Pastor-Alcaniz, L. Treatment of Table Olive Processing Wastewaters Using Novel Photomodified Ultrafiltration Membranes as First Step for Recovering Phenolic Compounds. J. Hazard. Mater. 2015, 290, 51–59.
  • Giacobbo, A.; Oliveira, M.; Duarte, E. C. N. F.; Mira, H. M. C.; Bernardes, A. M.; de Pinho, M. N. Ultrafiltration Based Process for the Recovery of Polysaccharides and Polyphenols from Winery Effluents. Sep. Sci. Technol. 2013, 48(3), 438–444. DOI: 10.1080/01496395.2012.725793.
  • Giacobbo, A.; Bernardes, A. M.; de Pinho, M. N. Nanofiltration for the Recovery of Low Molecular Weight Polysaccharides and Polyphenols from Winery Effluents. Sep. Sci. Technol. 2013, 48(17), 2524–2530.
  • Giacobbo, A.; Do Prado, J. M.; Meneguzzi, A.; Bernardes, A. M.; de Pinho, M. N. Microfiltration for the Recovery of Polyphenols from Winery Effluents. Sep. Purif. Technol. 2015, 143, 12–18.
  • Giacobbo, A.; Meneguzzi, A.; Bernardes, A. M.; de Pinho, M. N. Pressure-Driven Membrane Processes for the Recovery of Antioxidant Compounds from Winery Effluents. J. Cleaner Prod. 2017, 155, 172–178.
  • Mansour, M. S. M.; Abdel-Shafy, H. I.; Mehaya, F. M. S. Valorization of Food Solid Waste by Recovery of Polyphenols Using Hybrid Molecular Imprinted Membrane. J. Environ. Chem. Eng. 2018, 6(4), 4160–4170. DOI: 10.1016/j.jece.2018.06.019.
  • Nawaz, H.; Shi, J.; Mittal, G. S.; Kakuda, Y. Extraction of Polyphenols from Grape Seeds and Concentration by Ultrafiltration. Sep. Purif. Technol. 2006, 48(2), 176–181. DOI: 10.1016/j.seppur.2005.07.006.
  • Ruby-Figueroa, R.; Cassano, A.; Drioli, E. Ultrafiltration of Orange Press Liquor: Optimization of Operating Conditions for the Recovery of Antioxidant Compounds by Response Surface Methodology. Sep. Purif. Technol. 2012, 98, 255–261.
  • Saha, S.; Boro, R.; Das, C. Treatment of Tea Industry Wastewater Using Coagulation-Spinning Basket Membrane Ultrafiltration Hybrid System. J. Environ. Manage. 2019, 244, 180–188.
  • Nunes, M. A.; Pawlowski, S.; Costa, A. S. G.; Alves, R. C.; Oliveira, M. B. P. P.; Velizarov, S. Valorization of Olive Pomace by a Green Integrated Approach Applying Sustainable Extraction and Membrane-Assisted Concentration. Sci. Total Environ. 2019, 652, 40–47.
  • Tapia-Quiros, P.; Montenegro-Landívar, M. F.; Reig, M.; Vecino, X.; Saurina, J.; Granados, M.; Cortina, J. L. Integration of Membrane Processes for the Recovery and Separation of Polyphenols from Winery and Olive Mill Wastes Using Green Solvent-Based Processing. J. Environ. Manage. 2022, 307, 114555.
  • Syed, U. T.; Brazinha, C.; Crespo, J. G.; Ricardo-da-Silva, J. M. Valorisation of Grape Pomace: Fractionation of Bioactive Flavan-3-Ols by Membrane Processing. Sep. Purif. Technol. 2017, 172, 404–414.
  • Fasolato, L.; Cardazzo, B.; Balzan, S.; Carraro, L.; Taticchi, A.; Montemurro, F.; Novelli, E. Minimum Bactericidal Concentration of Phenols Extracted from Oil Vegetation Water on Spoilers, Starters and Food-Borne Bacteria. Ital J. Food Saf. 2015, 4, 75–77.
  • Galanakis, C. M. Phenols Recovered from Olive Mill Wastewater as Additives in Meat Products. Trends Food Sci. Technol. 2018, 79, 98–105.
  • Galanakis, C. M.; Tsatalas, P.; Galanakis, I. M. Phenols from Olive Mill Wastewater and Other Natural Antioxidants as UV Filters in Sunscreens. Environ. Technol. Innovations. 2018, 9, 160–168.
  • Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P. A.; Skotti, E. Novel Application and Industrial Exploitation of Winery By-Products. Bioresour. Bioprocess. 2018, 5(1), 46.
  • Papaioannou, E. H.; Mitrouli, S. T.; Patsios, S. I.; Kazakli, M.; Karabelas, A. J. Valorization of Pomegranate Husk – Integration of Extraction with Nanofiltration for Concentrated Polyphenols Recovery. J. Enviro. Chem. Eng. 2020, 8(4), 103951.
  • Uca, E.; Gulec, H. A. Recovery of Phenolic Compounds from Pomegranate Peels by Sequential Processes of Water Base Extraction and Ultrafiltration: Modelling of the Process Efficiency and Fouling Analysis. Waste Biomass Valorization. 2022, 13(1), 511–523. DOI: 10.1007/s12649-021-01500-3.
  • Uyttebroek, M.; Vandezande, P.; Van Dael, M.; Vloemans, S.; Noten, B.; Bongers, B.; Porto-Carrero, W.; Muniz Unamunzaga, M.; Bulut, M.; Lemmens, B. Concentration of Phenolic Compounds from Apple Pomace Extracts by Nanofiltration at Lab and Pilot Scale with a Techno-Economic Assessment. J. Food Proc. Eng. 2018, 41(1), e12629. DOI: 10.1111/jfpe.12629.
  • Dhaval, A.; Yadav, N.; Purwar, S. Potential Applications of Food Derived Bioactive Peptides in Management of Health. Int. J. Pept. Res. Ther. 2016, 22(3), 377–398.
  • Albe Slabi, S.; Mathe, C.; Basselin, M.; Framboisier, X.; Ndiaye, M.; Galet, O.; Kapel, R. Multiobjective Optimization of Solid/liquid Extraction of Total Sunflower Proteins from Cold Press Meal. Food Chem. 2020, 317, 126423.
  • Dong, X.-Y.; Guo, L.-L.; Wei, F.; Li, J.-F.; Jiang, M.-L.; Li, G.-M.; Zhao, Y.-D.; Chen, H. Some Characteristics and Functional Properties of Rapeseed Protein Prepared by Ultrasonication, Ultrafiltration and Isoelectric Precipitation. J. Sci. Food Agric. 2011, 91(8), 1488–1498. DOI: 10.1002/jsfa.4339.
  • Espinosa-Pardo, F. A.; Savoire, R.; Subra-Paternault, P.; Harscoat-Schiavo, C. Oil and Protein Recovery from Corn Germ: Extraction Yield, Composition and Protein Functionality. Food Bioprod. Process. 2020, 120, 131–142.
  • Fetzer, A.; Herfellner, T.; Eisner, P. Rapeseed Protein Concentrates for Non-Food Applications Prepared from Prepressed and Cold-Pressed Press Cake via Acidic Precipitation and Ultrafiltration. Ind. Crops Prod. 2019, 132, 396–406.
  • Gonzalez-Perez, S.; Merck, K. B.; Vereijken, J. M.; van Koningsveld, G. A.; Gruppen, H.; Voragen, A. G. J. Isolation and Characterization of Undenatured Chlorogenic Acid Free Sunflower (Helianthus Annuus) Proteins. J. Agric. Food. Chem. 2002, 50(6), 1713–1719. DOI: 10.1021/jf011245d.
  • Hojilla-Evangelista, M. P. Improved Solubility and Emulsification of Wet-Milled Corn Germ Protein Recovered by Ultrafiltration–diafiltration. J. Am. Oil Chem. Soc. 2002, 91(9), 1623–1631. DOI: 10.1007/s11746-014-2503-5.
  • Hojilla-Evangelista, M. P.; Sessa, D. J.; Mohamed, A. Functional Properties of Soybean and Lupin Protein Concentrates Produced by Ultrafiltration – Diafiltration. J. Am. Oil Chem. Soc. 2004, 81(12), 1153–1157. DOI: 10.1007/s11746-004-1033-1.
  • Loginov, M.; Boussetta, N.; Lebovka, N.; Vorobiev, E. Separation of Polyphenols and Proteins from Flaxseed Hull Extracts by Coagulation and Ultrafiltration. J. Membr. Sci. 2013, 442, 177–186.
  • Moure, A.; Dominguez, H.; Parajo, J. C. Ultrafiltration of Industrial Waste Liquors from the Manufacture of Soy Protein Concentrates. J. Chem. Technol. Biotechnol. 2006, 81(7), 1252–1258. DOI: 10.1002/jctb.1541.
  • Nor, M. Z. M.; Ramchandran, L.; Duke, M.; Vasilevic, T. Separation of Bromelain from Crude Pineapple Waste Mixture by a Two-Stage Ceramic Ultrafiltration Process. Food Bioprod. Process. 2016, 98, 142–150.
  • Park, Y.; Yoon, K. Y. Biological Activity of Enzymatic Hydrolysates and the Membrane Ultrafiltration Fractions from Perilla Seed Meal Protein. Czech J. Food Sci. 2019, 37(3), 180–185.
  • Tang, D.-S.; Yin, G.-M.; He, Y.-Z.; Hu, S.-Q.; Li, B.; Li, L.; Liang, H.-L.; Borthakur, D. Recovery of Protein from Brewer’s Spent Grain by Ultrafiltration. Biochem. Eng. J. 2009, 48(1), 1–5. DOI: 10.1016/j.bej.2009.05.019.
  • Vishwanathan, K. H.; Govindaraju, K.; Singh, V.; Subramanian, R. Production of Okara and Soy Protein Concentrates Using Membrane Technology. J. Food Sci. 2011, 76(1), E158–E164. DOI: 10.1111/j.1750-3841.2010.01917.x.
  • Von Der Haar, D.; Müller, K.; Bader-Mittermaier, S.; Eisner, P. Rapeseed Proteins – Production Methods and Possible Application Ranges. Ocl. 2014, 21(1), D104. DOI: 10.1051/ocl/2013038.
  • Xu, L.; Diosady, L. L. The Production of Chinese Rapeseed Protein Isolates by Membrane Processing. J. Am. Oil Chem. Soc. 1994, 71(9), 935–939.
  • Zhang, Q.; Li, Y.; Wang, Z.; Qi, B.; Sui, X.; Jiang, L. Recovery of High Value-Added Protein from Enzyme-Assisted Aqueous Extraction (EAE) of Soybeans by Dead-End Ultrafiltration. J. Food Sci. Nutr. 2019, 7, 858–868.
  • Dabestani, S.; Arcot, J.; Chen, V. Protein Recovery from Potato Processing Water: Pre-Treatment and Membrane Fouling Minimization. J. Food Eng. 2017, 195, 85–96.
  • Li, H.; Zeng, X.; Shi, W.; Zhang, H.; Huang, S.; Zhou, R.; Qin, X. Recovery and Purification of Potato Proteins from Potato Starch Wastewater by Hollow Fiber Separation Membrane Integrated Process. Innovative Food Sci. Emerging Technol. 2020, 63, 102380.
  • Yano, H.; Fu, W. Effective Use of Plant Proteins for the Development of “New” Foods. Foods. 2022, 11(9), 1185. DOI: 10.3390/foods11091185.
  • Yuan, H.; Luo, Z.; Ban, Z.; Reiter, R. J.; Ma, Q.; Liang, Z.; Yang, M.; Li, X.; Li, L. Bioactive Peptides of Plant Origin: Distribution, Functionality, and Evidence of Benefits in Food and Health. Food Funct. 2022, 13(6), 3133–3158.
  • Machado, M. T. C.; Trevisan, S.; Pimentel-Souza, J. D. R.; Pastore, G. M.; Hubinger, M. D. Clarification and Concentration of Oligosaccharides from Artichoke Extract by a Sequential Process with Microfiltration and Nanofiltration Membranes. J. Food Eng. 2016, 180, 120–128.
  • Patsioura, A.; Galanakis, C. M.; Gekas, V. Ultrafiltration Optimization for the Recovery of β-Glucan from Oat Mill Waste. J. Membr. Sci. 2011, 373, 53–63.
  • Scordino, M.; Di Mauro, A.; Passerini, A.; Maccarone, E. Highly Purified Sugar Concentrate from a Residue of Citrus Pigments Recovery Process. Lwt. 2007, 40, 713–721.
  • Xu, L.; Lamb, K.; Layton, L.; Kumar, A. A Membrane-Based Process for Recovering Isoflavones from a Waste Stream of Soy Processing. Food. Res. Int. 2004, 37, 867–874.
  • Ochando-Pulido, J. M. A Review on the Use of Membrane Technology and Fouling Control for Olive Mill Wastewater Treatment. Sci. Total Environ. 2016, 563–564, 664–675.
  • Brunetti, A.; Macedonio, F.; Barbieri, G.; Drioli, E. Membrane Engineering for Environmental Protection and Sustainable Industrial Growth: Options for Water and Gas Treatment. Environ. Eng. Res. 2015, 20(4), 307–328.
  • Pervov, A. G.; Andrianov, A. P.; Gorbunova, T. P.; Bagdasaryan, A. S. Membrane Technologies in the Solution of Environmental Problems. Pet. Chem. 2015, 55(10), 879–886.
  • AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A. Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation. Water. 2021, 13, 1327.
  • Mohammad, A. W.; Ng, C. Y.; Lim, Y. P.; Ng, G. H. Ultrafiltration in Food Processing Industry: Review on Application, Membrane Fouling, and Fouling Control. Food Bioprocess Technol. 2012, 5(4), 1143–1156.
  • Mustafa, G.; Wyns, K.; Vandezande, P.; Buekenhoudt, A.; Meynen, V. Novel Grafting Method Efficiently Decreases Irreversible Fouling of Ceramic Nanofiltration Membranes. J. Membr. Sci. 2014, 470, 369–377.
  • Mustafa, G.; Wyns, K.; Buekenhoudt, A.; Meynen, V. Antifouling Grafting of Ceramic Membranes Validated in a Variety of Challenging Wastewaters. Water Res. 2016, 104, 242–253.
  • Susanto, H.; Feng, Y.; Ulbricht, M. Fouling Behavior During Ultrafiltration of Aqueous Solutions of Polyphenolic Compounds During Ultrafiltration. J. Food Eng. 2009, 91, 333–340.
  • Persico, M.; Dhulster, P.; Bazinet, L. Redundancy Analysis for Determination of the Main Physicochemical Characteristics of Filtration Membranes Explaining Their Fouling by Peptides. J. Membr. Sci. 2018, 563, 708–717.
  • Diez, B.; Rosal, R. A Critical Review of Membrane Modification Techniques for Fouling and Biofouling Control in Pressure‑driven Membrane Processes. Nanotechnol. Environ. Eng. 2020, 5, 15.
  • Upadhyaya, L.; Qian, X.; Wickramasinghe, R. R. Chemical Modification of Membrane Surface – Overview. Curr. Opin. Chem. Eng. 2018, 20, 13–18.
  • Torres-Cartas, S.; Catalá-Icardo, M.; Meseguer-Lloret, S.; Simó-Alfonso, E. F.; Herrero-Martínez, J. M. Recent Advances in Molecularly Imprinted Membranes for Sample Treatment and Separation. Separations. 2020, 7, 69.
  • Villa, C. C.; Sanchez, L. T.; Valencia, G. A.; Ahmed, S.; Gutiérrez, T. J. Molecularly Imprinted Polymers for Food Applications: A Review. Trends Food Sci. Technol. 2021, 111, 642–669.
  • Damar Huner, I.; Gulec, H. A. Fouling Behavior of Poly(ether)sulfone Ultrafiltration Membrane During Concentration of Whey Proteins: Effect of Hydrophilic Modification Using Atmospheric Pressure Argon Jet Plasma. Colloids Surf. B Biointerfaces. 2017, 160, 510–519.
  • Ratnaningsih, E.; Reynard, R.; Khoiruddin, K.; Wenten, I. G.; Boopathy, R. Recent Advancements of UF-Based Separation for Selective Enrichment of Proteins and Bioactive Peptides – a Review. Appl. Sci. 2021, 11, 1078.
  • Susanto, H.; Arafat, H.; Janssen, E. M. L.; Ulbricht, M. Ultrafiltration of Polysaccharide-Protein Mixtures: Elucidation of Fouling Mechanisms and Fouling Control by Membrane Surface Modification. Sep. Purif. Technol. 2008, 63, 558–565.
  • Kandiyote, N. S.; Avisdris, T.; Arnusch, C. J.; Kasher, R. Grafted Polymer Coatings Enhance Fouling Inhibition by an Antimicrobial Peptide on Reverse Osmosis Membranes. Langmuir. 2019, 35, 1935–1943.
  • Faizal, C. K. M.; Kikuchi, Y.; Kobayashi, T. Molecular Imprinting Targeted for α-Tocopherol by Calix[4]resorcarenes Derivative in Membrane Scaffold Prepared by Phase Inversion. J. Membr. Sci. 2020, 334, 110–116.
  • Kryvshenko, G. A.; Apel, P. Y.; Abramchuk, S. S.; Beklemishev, M. K. A Highly Permeable Membrane for Separation of Quercetin Obtained by Nickel(ii) Ion-Mediated Molecular Imprinting. Sep. Sci. Technol. 2012, 47, 1715–1724.
  • Nasir, A. M.; Ishak, N. H.; Said, M. S. M.; Dzahir, I. H. M. One‑pot Synthesis of Molecular‑imprinted Membrane for Selective Extraction of Caffeic Acid. Polym. Bulletin. 2020, 77, 3953–3968.
  • Nasir, A. M., and Ishak, N. Optimizing Double Imprinted Polymeric Membrane (DIPM) for the Simultaneous Selective Extraction of Quercetin and Caffeic Acid. Sep. Sci. Technol. 2021, 57(7), 1052-1066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.