1,030
Views
5
CrossRef citations to date
0
Altmetric
Review

Recent Advances in the Production, Analysis, and Application of Galacto-Oligosaccharides

ORCID Icon, ORCID Icon, , , , , & show all

References

  • Akissoé, L.; Madodé, Y. E.; Hemery, Y. M.; Donadjè, B. V.; Icard-Vernière, C.; Hounhouigan, D. J.; Mouquet-Rivier, C.; et al. Impact of Traditional Processing on Proximate Composition, Folate, Mineral, Phytate, and Alpha-Galacto-Oligosaccharide Contents of Two West African Cowpea (Vigna Unguiculata L. Walp) Based Doughnuts. J. Food Compost. Anal 2021, 96, 103753. DOI: 10.1016/j.jfca.2020.103753.
  • Logtenberg, M. J.; Akkerman, R.; Hobé, R. G.; Donners, K. M. H.; Van Leeuwen, S. S.; Hermes, G. D. A.; Haan, B. J.; Faas, M. M.; Buwalda, P. L.; Zoetendal, E. G.; et al. Structure‐specific Fermentation of Galacto‐oligosaccharides, Isomalto‐oligosaccharides and Isomalto/malto‐polysaccharides by Infant Fecal Microbiota and Impact on Dendritic Cell Cytokine Responses. Mol. Nutr. Food Res 2021, 65(16), 2001077.
  • Gänzle, M. G. Enzymatic Synthesis of Galacto-Oligosaccharides and Other Lactose Derivatives (Hetero-Oligosaccharides) from Lactose. Int. Dairy. J 2012, 22(2), 116–122. DOI: 10.1016/j.idairyj.2011.06.010.
  • Dos Passos, F. R.; Lopes Maestre, K.; Florêncio da Silva, B.; Rodrigues, A. C.; Contini Triques, C.; Alves Garcia, H.; Fagundes-Klen, M. R.; Antonio da Silva, E.; Fiorese, M. L., et al. Production of a Synbiotic Composed of Galacto-Oligosaccharides and Saccharomyces Boulardii Using Enzymatic-Fermentative Method. Food Chem. 2021, 353, 129486. DOI: 10.1016/j.foodchem.2021.129486.
  • Catenza, K.; Donkor, K. Recent Approaches for the Quantitative Analysis of Functional Oligosaccharides Used in the Food Industry: A Review. Food Chem. 2021, 355, 129416. DOI: 10.1016/j.foodchem.2021.129416.
  • Ji, D., Sims, I., Xu, M., Stewart, I., Agyei, D.; et al. Production and Identification of Galacto-Oligosaccharides from Lactose Using β-D-Galactosidases from Lactobacillus Leichmannii 313. Carbohydr. Polym. Technol. Appl. 2021, 2, 100038. DOI: 10.1016/j.carpta.2021.100038.
  • Park, A.-R.; Oh, D.-K. Galacto-Oligosaccharide Production Using Microbial β-Galactosidase: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2010, 85(5), 1279–1286. DOI: 10.1007/s00253-009-2356-2.
  • Wang, G., Zhu, J., Liu, L., Yaqoob, M. U., Pei, X., Tao, W., Xiao, Z., Sun, W., Wang, M.; et al. Optimization for Galactooligosaccharides Synthesis: A Potential Alternative for Gut Health and Immunity. Life. Sci. 2020, 245, 117353. DOI: 10.1016/j.lfs.2020.117353.
  • Torres, D. P. M.; Gonçalves, M. D. P. F.; Teixeira, J. A.; Rodrigues, L. R., et al. Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics. Compr. Rev. Food Sci. Food Saf 2010, 9(5), 438–454.
  • de Roode, B. M.; Franssen, M. C. R.; vanderPadt, A.; Boom, R. M.; et al. Perspectives for the Industrial Enzymatic Production of Glycosides. Biotechnol. Prog. 2003, 19(5), 1391–1402.
  • Perdijk, O.; Van Baarlen, P.; Fernandez-Gutierrez, M. M.; Van den Brink, E.; Schuren, F. H.; Brugman, S., Savelkoul, H. F.; Kleerebezem, M., and Van Neerven, R. J. Sialyllactose and Galactooligosaccharides Promote Epithelial Barrier Functioning and Distinctly Modulate Microbiota Composition and Short Chain Fatty Acid Production in vitro. Front. Immunol.2019, 10(94), 1–14.
  • Mego, M., Manichanh, C., Accarino, A., Campos, D., Pozuelo, M., Varela, E., Vulevic, J., Tzortzis, G., Gibson, G., Guarner, F.; et al. Metabolic Adaptation of Colonic Microbiota to Galactooligosaccharides: A Proof-Of-Concept-Study. Aliment. pharmacol.Ther. 2017, 45(5), 670–680.
  • Barile, D.; Rastall, R. A. Human Milk and Related Oligosaccharides as Prebiotics. Curr. Opin. Biotechnol. 2013, 24(2), 214–219. DOI: 10.1016/j.copbio.2013.01.008.
  • Fischer, C.; Kleinschmidt, T. Synthesis of Galactooligosaccharides in Milk and Whey: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17(3), 678–697. DOI: 10.1111/1541-4337.12344.
  • Pázmándi, M.; Kovács, Z., and Maráz, A. Potential of Lactobacillus Strains for the Production of Fermented Functional Beverages Enriched in Galacto-Oligosaccharides; LW - Food Science and Technology, 2021; Vol. 143, p. 111097.
  • Lamsal, B. P. Production, Health Aspects and Potential Food Uses of Dairy Prebiotic Galactooligosaccharides. J. Sci. Food Agric 2012, 92(10), 2020–2028. DOI: 10.1002/jsfa.5712.
  • Mano, M. C. R.; Paulino, B. N.; Pastore, G. M. Whey Permeate as the Raw Material in Galacto-Oligosaccharide Synthesis Using Commercial Enzymes. Food. Res. Int 2019, 124, 78–85. DOI: 10.1016/j.foodres.2018.09.019.
  • Azcarate-Peril, M. A., Ritter, A. J., Savaiano, D., Monteagudo-Mera, A., Anderson, C., Magness, S. T., Klaenhammer, T. R.; et al. Impact of Short-Chain Galactooligosaccharides on the Gut Microbiome of Lactose-Intolerant Individuals. Proc. Nat. Acad. Sci. 2017, 114(3), E367–E375.
  • Tzortzis, G., Goulas, A. K., Gee, J. M., Gibson, G. R.; et al. A Novel Galactooligosaccharide Mixture Increases the Bifidobacterial Population Numbers in a Continuous in vitro Fermentation System and in the Proximal Colonic Contents of Pigs in vivo. J. Nutr. 2005, 135(7), 1726–1731.
  • Huh, K.; Toba, T.; Adachi, S. Oligosaccharide Structures Formed During Acid Hydrolysis of Lactose. Food Chem. 1991, 39(1), 39–49. DOI: 10.1016/0308-8146(91)90083-Z.
  • Hansson, T.; Kaper, T.; van der Oost, J.; de Vos, W. M.; Adlercreutz, P.; et al. Improved Oligosaccharide Synthesis by Protein Engineering of β‐glucosidase CelB from Hyperthermophilic Pyrococcus Furiosus. Biotechnol. Bioeng. 2001, 73(3), 203–210.
  • Valero, J. I. S. ProQuest Dissertations Publishing: Doctoral dissertation, Ohio State University, 2009. https://www.proquest.com/openview/29618ec14a2348419793c00c3687f4a3/1?pq-origsite=gscholar&cbl=18750
  • Ramachandran, C.; Oh, D.-H. Systematic Review on Application of Whey Towards Production of Galacto-Oligosaccharide Using β-Galactosidase Enzyme from Pichia Pastoris. J. Food Hyg. Saf. 2020, 35(4), 304–311. DOI: 10.13103/JFHS.2020.35.4.304.
  • Yang, S., et al. Understanding the Factors Controlling the Removal of Trace Organic Contaminants by White-Rot Fungi and Their Lignin Modifying Enzymes: A Critical Review. Bioresource Technology. 2013, 141, 97–108.
  • Lisboa, C. R.; de Simoni Martinez, L.; Trindade, R. A.; de Almeida Costa, F. A.; de Medeiros Burkert, J. F.; Burkert, C. A. V.; et al. Response Surface Methodology Applied to the Enzymatic Synthesis of Galacto-Oligosaccharides from Cheese Whey. Food Sci. Biotechnol. 2012, 21(6), 1519–1524.
  • Iqbal, M. W., Riaz, T., Hassanin, H. A. M., Zhang, W., Saeed, M., Mahmood, S., Abdalla, M., Mu, W.; et al. Biochemical Characterization of Recombinant L-Fucose Isomerase from Caldanaerobius Polysaccharolyticus for L-Fuculose Production. Int. J. Biol. Macromol. 2020, 146, 965–975. DOI: 10.1016/j.ijbiomac.2019.09.221.
  • Iqbal, M. W., Riaz, T., Hassanin, H. A. M., Ni, D., Mahmood Khan, I., Rehman, A., Mahmood, S., Adnan, M., Mu, W.; et al. Characterization of a Novel D-Arabinose Isomerase from Thermanaeromonas Toyohensis and Its Application for the Production of D-Ribulose and L-Fuculose. Enzyme Microb. Technol. 2019, 131, 109427. DOI: 10.1016/j.enzmictec.2019.109427.
  • Yañez-Ñeco, C. V., Rodriguez-Colinas, B., Amaya-Delgado, L., Ballesteros, A., Gschaedler, A., Plou, F., Arrizon, J.; et al. Galactooligosaccharide Production from Pantoea Anthophila Strains Isolated from “Tejuino”, A Mexican Traditional Fermented Beverage. Catalysts. 2017, 7(8), 242.
  • Martins, G. N.; Ureta, M. M.; Tymczyszyn, E. E.; Castilho, P. C.; Gomez-Zavaglia, A., et al. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front Nutr. 2019, 6, 78. DOI: 10.3389/fnut.2019.00078.
  • Zechel, D. L.; Withers, S. G. Dissection of Nucleophilic and Acid–Base Catalysis in Glycosidases. Curr. Opin. Chem. Biol. 2001, 5(6), 643–649.
  • Matthews, B. W. The Structure of E. Coli β-Galactosidase. C R Biol 2005, 328(6), 549–556. DOI: 10.1016/j.crvi.2005.03.006.
  • Vera, C., Guerrero, C., Conejeros, R., Illanes, A.; et al. Synthesis of Galacto-Oligosaccharides by β-Galactosidase from Aspergillus Oryzae Using Partially Dissolved and Supersaturated Solution of Lactose. Enzyme Microb. Technol 2012, 50(3), 188–194.
  • Panesar, P. S., Kaur, R., Singh, R. S., Kennedy, J. F.; et al. Biocatalytic Strategies in the Production of Galacto-Oligosaccharides and Its Global Status. Int. J. Biol. Macromol 2018, 111, 667–679. DOI: 10.1016/j.ijbiomac.2018.01.062.
  • Füreder, V.; Rodriguez-Colinas, B.; Cervantes, F. V.; Fernandez-Arrojo, L.; Poveda, A.; Jimenez-Barbero, J.; Ballesteros, A. O.; Plou, F. J., et al. Selective Synthesis of Galactooligosaccharides Containing β(1→3) Linkages with β-Galactosidase from Bifidobacterium Bifidum (Saphera). J. Agric. Food. Chem 2020, 68(17), 4930–4938.
  • Huang, J., et al. A Novel β-Galactosidase from Klebsiella Oxytoca ZJUH1705 for Efficient Production of Galacto-Oligosaccharides from Lactose. Appl. Microbiol. Biotechnol 2020, 104, 6161–6172.
  • Gomaa, E. Z. β-Galactosidase from Lactobacillus Delbrueckii and Lactobacillus Reuteri: Optimization, Characterization and Formation of Galactooligosaccharides. Indian J. of Biotechnol. 2018, 17, 407–415.
  • Hsu, C.; Lee, S.; Chou, C. Enzymatic Production of Galactooligosaccharides by β-Galactosidase from Bifidobacterium Longum BCRC 15708. J. Agric. Food. Chem 2007, 55(6), 2225–2230.
  • Splechtna, B.; Nguyen, T.-H.; Steinböck, M.; Kulbe, K. D.; Lorenz, W.; Haltrich, D., et al. Production of Prebiotic Galacto-Oligosaccharides from Lactose Using β-Galactosidases from Lactobacillus Reuteri. J. Agric. Food. Chem 2006, 54(14), 4999–5006.
  • Iwasaki, K.-I.; Nakajima, M.; Nakao, S.-I. Galacto-Oligosaccharide Production from Lactose by an Enzymic Batch Reaction Using β-Galactosidase. Process Biochem 1996, 31(1), 69–76. DOI: 10.1016/0032-9592(94)00067-0.
  • Carević, M.; Vukašinović-Sekulić, M.; Ćorović, M.; Rogniaux, H.; Ropartz, D.; Veličković, D.; Bezbradica, D., et al. Evaluation of β-Galactosidase from Lactobacillus Acidophilus as Biocatalyst for Galacto-Oligosaccharides Synthesis: Product Structural Characterization and Enzyme Immobilization. J. Biosci. Bioeng 2018, 126(6), 697–704.
  • Eskandarloo, H.; Abbaspourrad, A. Production of Galacto-Oligosaccharides from Whey Permeate Using β-Galactosidase Immobilized on Functionalized Glass Beads. Food Chem 2018, 251, 115–124. DOI: 10.1016/j.foodchem.2018.01.068.
  • Srivastava, A.; Mishra, S.; Chand, S. Synthesis of Galacto-Oligosaccharides from Lactose Using Immobilized Cells of Kluyveromyces Marxianus NCIM 3551. J. Mol. Catal. B Enzym 2016, 123, 147–153. DOI: 10.1016/j.molcatb.2015.11.017.
  • Pavani, A.; Prabhakar, T. Production of Galacto-Oligosaccharides by Marine Derived Fungus Aspergillus Flavus. Biosci. Biotechnol. Res. Asia. 2016, 6(1), 161–167.
  • Misson, M., Jin, B., Chen, B., Zhang, H.; et al. Enhancing Enzyme Stability and Metabolic Functional Ability of β-Galactosidase Through Functionalized Polymer Nanofiber Immobilization. Bioprocess Biosyst. Eng 2015, 38(10), 1915–1923.
  • Benjamins, E., Boxem, L., KleinJan-Noeverman, J., Broekhuis, T. A.; et al. Assessment of Repetitive Batch-Wise Synthesis of Galacto-Oligosaccharides from Lactose Slurry Using Immobilised β-Galactosidase from Bacillus Circulans Int. Dairy. J 2014, 38(2), 160–168.
  • Güleç, H. A.; Gürdaş, S.; Albayrak, N.; Mutlu, M., et al. Immobilization of Aspergillus Oryzae β-Galactosidase on Low-Pressure Plasma-Modified Cellulose Acetate Membrane Using Polyethyleneimine for Production of Galactooligosaccharide. Biotechnol. Bioprocess Eng 2010, 15(6), 1006–1015.
  • Nakkharat, P.; Haltrich, D. β-Galactosidase from Talaromyces Thermophilus Immobilized on to Eupergit C for Production of Galacto-Oligosaccharides During Lactose Hydrolysis in Batch and Packed-Bed Reactor. World J. Microbiol. Biotechnol 2007, 23(6), 759–764. DOI: 10.1007/s11274-006-9292-4.
  • Zheng, P.; Yu, H.; Sun, Z.; Ni, Y.; Zhang, W.; Fan, Y.; Xu, Y., et al. Production of Galacto-Oligosaccharides by Immobilized Recombinant β-Galactosidase from Aspergillus Candidus. Biotechnol. J. Healthcare Nutr. Technol 2006, 1(12), 1464–1470.
  • Albayrak, N.; Yang, S. T. Production of Galacto‐oligosaccharides from Lactose by Aspergillus Oryzae β‐galactosidase Immobilized on Cotton Cloth Biotechnol. Bioeng 2002, 77(1), 8–19. DOI: 10.1002/bit.1195.
  • Shin, H.-J.; Ji-Won, Y. Enzymatic Production of Galactooligosaccharide by Bullera Singularis β-Galactosidase. J. Microbiol. Biotechnol 1998, 8(5), 484–489.
  • Hassan, N.; Nguyen, T.-H.; Intanon, M.; Kori, L. D.; Patel, B. K. C.; Haltrich, D.; Divne, C.; Tan, T. C.; et al. Biochemical and Structural Characterization of a Thermostable β-Glucosidase from Halothermothrix Orenii for Galacto-Oligosaccharide Synthesis. Appl. Microbiol. Biotechnol. 2015, 99(4), 1731–1744.
  • Placier, G., Watzlawick, H., Rabiller, C., Mattes, R.; et al. Evolved β-Galactosidases from Geobacillus Stearothermophilus with Improved Transgalactosylation Yield for Galacto-Oligosaccharide Production. Appl. Environ. Microbiol 2009, 75(19), 6312–6321.
  • Park, H.-Y., Kim, H.-J., Lee, J.-K., Kim, D., Oh, D.-K.; et al. Galactooligosaccharide Production by a Thermostable β-Galactosidase from Sulfolobus Solfataricus. World J. Microbiol. Biotechnol 2008, 24(8), 1553–1558.
  • Ji, E.-S.; Park, N.-H.; Oh, D.-K. Galacto-Oligosaccharide Production by a Thermostable Recombinant β-Galactosidase from Thermotoga Maritima. World J. Microbiol. Biotechnol 2005, 21(5), 759–764. DOI: 10.1007/s11274-004-5487-8.
  • Choi, J. J.; Oh, E.-J.; Lee, Y.-J.; Suh, D.; Lee, J.; Lee, S.-W.; Shin, H.-T.; Kwon, S.-T.; et al. Enhanced Expression of the Gene for β-Glycosidase of Thermus Caldophilus GK24 and Synthesis of Galacto-Oligosaccharides by the Enzyme. Biotechnol. Appl. Biochem 2003, 38(2), 131–136.
  • Bruins, M., Strubel, M., van Lieshout, J. F. T., Janssen, A. E. M., Boom, R. M.; et al. Oligosaccharide Synthesis by the Hyperthermostable β-Glucosidase from Pyrococcu;s Furiosus: Kinetics and Modelling. Enzyme Microb. Technol 2003, 33(1), 3–11.
  • Hung, M.-N.; Lee, B. Purification and Characterization of a Recombinant β-Galactosidase with Transgalactosylation Activity from Bifidobacterium Infantis HL96. Appl. Microbiol. Biotechnol 2002, 58(4), 439–445. DOI: 10.1007/s00253-001-0911-6.
  • Akiyama, K.; Takase, M.; Horikoshi, K.; Okonogi, S.; et al. Production of Galactooligosaccharides from Lactose Using a β-Glucosidase from Thermus Sp. Z-1. Biosci. Biotechnol. Biochem. 2001, 65(2), 438–441.
  • Splechtna, B.; Petzelbauer, I.: Baminger, U.; Haltrich, D.; Kulbe, K. D.; Nidetzky, B.; et al. Production of a Lactose-Free Galacto-Oligosaccharide Mixture by Using Selective Enzymatic Oxidation of Lactose into Lactobionic Acid. Enzyme Microb. Technol 2001, 29(6–7), 434–440.
  • Fara, A.; Sabater, C.; Palacios, J.; Requena, T.; Montilla, A.; Zárate, G.; et al. Prebiotic Galactooligosaccharides Production from Lactose and Lactulose by Lactobacillus Delbrueckii Subsp. Bulgaricus CRL450. Food Funct; 2020, 11(7), 5875–5886.
  • Benavente, R.; Pessela, B.; Curiel, J.; de las Rivas, B.; Muñoz, R.; Guisán, J.; Mancheño, J.; Cardelle-Cobas, A.; Ruiz-Matute, A.; Corzo, N.; et al. Improving Properties of a Novel β-Galactosidase from Lactobacillus Plantarum by Covalent Immobilization. Molecules. 2015, 20(5), 7874–7889.
  • Wu, Y., Yuan, S., Chen, S., Wu, D., Chen, J., Wu, J.; et al. Enhancing the Production of Galacto-Oligosaccharides by Mutagenesis of Sulfolobus Solfataricus β-Galactosidase. Food Chem 2013, 138(2–3), 1588–1595.
  • Iqbal, S., Nguyen, T.-H., Nguyen, T. T., Maischberger, T., Haltrich, D.; et al. β-Galactosidase from Lactobacillus Plantarum WCFS1: Biochemical Characterization and Formation of Prebiotic Galacto-Oligosaccharides. Carbohydr. Res 2010, 345(10), 1408–1416.
  • Lu, L., Xiao, M., Xu, X., Li, Z., Li, Y.; et al. A Novel β-Galactosidase Capable of Glycosyl Transfer from Enterobacter Agglomerans B1. Biochem. Biophys. Res. Commun 2007, 356(1), 78–84.
  • Nguyen, T.-H.; Splechtna, B.; Krasteva, S.; Kneifel, W.; Kulbe, K. D.; Divne, C.; Haltrich, D.; et al. Characterization and Molecular Cloning of a Heterodimeric β-Galactosidase from the Probiotic Strain Lactobacillus Acidophilus R22. FEMS Microbiol. Lett 2007, 269(1), 136–144.
  • Cho, Y.-J.; Shin, H.-J.; Bucke, C. Purification and Biochemical Properties of a Galactooligosaccharide Producing β-Galactosidase from Bullera Singularis. Biotechnol. Lett 2003, 25(24), 2107–2111. DOI: 10.1023/B:BILE.0000007077.58019.bb.
  • Cao, T.; Pázmándi, M.; Galambos, I.; Kovács, Z., et al. Continuous Production of Galacto-Oligosaccharides by an Enzyme Membrane Reactor Utilizing Free Enzymes. Membranes. (Basel). 2020, 10(9), 203.
  • Oh, N. S., Kim, K., Oh, S., Kim, Y.; et al. Enhanced Production of Galactooligosaccharides Enriched Skim Milk and Applied to Potentially Synbiotic Fermented Milk with Lactobacillus Rhamnosus 4B15. Food Sci. Anim. Resour. 2019, 39(5), 725.
  • González-Delgado, I.; López-Muñoz, M.-J.; Morales, G.; Segura, Y.; et al. Optimisation of the Synthesis of High Galacto-Oligosaccharides (GOS) from Lactose with β-Galactosidase from Kluyveromyces Lactis. Int. Dairy. J 2016, 61, 211–219. DOI: 10.1016/j.idairyj.2016.06.007.
  • Frenzel, M.; et al. Comparison of the Galacto-Oligosaccharide Forming Activity of Different β-Galactosidases. LWT-Food Sci. Technol 2015, 60(2), 1068–1071.
  • Ren, H., Fei, J., Shi, X., Zhao, T., Cheng, H., Zhao, N., Chen, Y., Ying, H.; et al. Continuous Ultrafiltration Membrane Reactor Coupled with Nanofiltration for the Enzymatic Synthesis and Purification of Galactosyl-Oligosaccharides. Sep. Purif. Technol 2015, 144, 70–79. DOI: 10.1016/j.seppur.2015.02.020.
  • Rodriguez-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A. O., Plou, F. J.; et al. Galactooligosaccharides Formation During Enzymatic Hydrolysis of Lactose: Towards a Prebiotic-Enriched Milk. Food Chem 2014, 145, 388–394. DOI: 10.1016/j.foodchem.2013.08.060.
  • Nakkharat, P.; Kulbe, K. D.; Yamabhai, M.; Haltrich, D.; et al. Formation of Galacto-Oligosaccharides During Lactose Hydrolysis by a Novel β-Galactosidase from the Moderately Thermophilic fungusTalaromyces Thermophilus. Biotechnol. J. Healthcare Nutr. Technol. 2006, 1(6), 633–638.
  • Chockchaisawasdee, S.; Athanasopoulos, V. I.; Niranjan, K.; Rastall, R. A.; et al. Synthesis of Galacto‐oligosaccharide from Lactose Using β‐galactosidase from Kluyveromyces Lactis: Studies on Batch and Continuous UF Membrane‐fitted Bioreactors. Biotechnol. Bioeng 2005, 89(4), 434–443.
  • Srivastava, A.; Mishra, S.; Chand, S. Transgalactosylation of Lactose for Synthesis of Galacto-Oligosaccharides Using Kluyveromyces Marxianus NCIM 3551. N. Biotechnol 2015, 32(4), 412–418. DOI: 10.1016/j.nbt.2015.04.004.
  • Gobinath, D.; Prapulla, S. G. Permeabilized Probiotic Lactobacillus Plantarum as a Source of β-Galactosidase for the Synthesis of Prebiotic Galactooligosaccharides. Biotechnol. Lett 2014, 36(1), 153–157. DOI: 10.1007/s10529-013-1345-9.
  • Fai, A. E. C., da Silva, J. B., de Andrade, C. J., Bution, M. L., Pastore, G. M.; et al. Production of Prebiotic Galactooligosaccharides from Lactose by Pseudozyma Tsukubaensis and Pichia Kluyveri. Biocatal Agric. Biotechnol 2014, 3(4), 343–350.
  • Yu, L.; O’-Sullivan, D. J. Production of Galactooligosaccharides Using a Hyperthermophilic β-Galactosidase in Permeabilized Whole Cells of Lactococcus Lactis. J. Dairy. Sci 2014, 97(2), 694–703. DOI: 10.3168/jds.2013-7492.
  • Rodriguez-Colinas, B., de Abreu, M. A., Fernandez-Arrojo, L., de Beer, R., Poveda, A., Jimenez-Barbero, J., Haltrich, D., Ballesteros Olmo, A. O., Fernandez-Lobato, M., Plou, F. J.; et al. Production of Galacto-Oligosaccharides by the β-Galactosidase from Kluyveromyces Lactis: Comparative Analysis of Permeabilized Cells versus Soluble Enzyme. J. Agric. Food. Chem 2011, 59(19), 10477–10484.
  • Schwab, C.; Lee, V.; Sørensen, K. I.; Gänzle, M. G.; et al. Production of Galactooligosaccharides and Heterooligosaccharides with Disrupted Cell Extracts and Whole Cells of Lactic Acid Bacteria and Bifidobacteria. Int. Dairy. J 2011, 21(10), 748–754.
  • Goulas, A.; Tzortzis, G.; Gibson, G. R. Development of a Process for the Production and Purification of α-And β-Galactooligosaccharides from Bifidobacterium Bifidum NCIMB 41171. Int. Dairy. J 2007, 17(6), 648–656. DOI: 10.1016/j.idairyj.2006.08.010.
  • Tzortzis, G.; Goulas, A. K.; Gibson, G. R. Synthesis of Prebiotic Galactooligosaccharides Using Whole Cells of a Novel Strain, Bifidobacterium Bifidum NCIMB 41171. Appl. Microbiol. Biotechnol 2005, 68(3), 412–416. DOI: 10.1007/s00253-005-1919-0.
  • Rico-Rodríguez, F., Villamiel, M., Ruiz-Aceituno, L., Serrato, J. C., Montilla, A.; et al. Effect of the Lactose Source on the Ultrasound-Assisted Enzymatic Production of Galactooligosaccharides and Gluconic Acid. Ultrason. Sonochem 2020, 67, 104945. DOI: 10.1016/j.ultsonch.2019.104945.
  • Durand, P., Lehn, P., Callebaut, I., Fabrega, S., Henrissat, B., Mornon, J.-P.; et al. Active-Site Motifs of Lysosomal Acid Hydrolases: Invariant Features of Clan GH-A Glycosyl Hydrolases Deduced from Hydrophobic Cluster Analysis. Glycobiology. 1997, 7(2), 277–284.
  • Tzortzis, G.; Jay, A. J.; Baillon, M. L. A.; Gibson, G. R.; Rastall, R. A.; et al. Synthesis of α-Galactooligosaccharides with α-Galactosidase from Lactobacillus Reuteri of C;nine Origin. Appl. Microbiol. Biotechnol 2003, 63(3), 286–292.
  • Wang, Y.; Black, B. A.; Curtis, J. M.; Gänzle, M. G.; et al. Characterization of α-Galacto-Oligosaccharides Formed via Heterologous Expression of α-Galactosidases from Lactobacillus Reuteri in Lactococcus Lactis. Appl. Microbiol. Biotechnol 2014, 98(6), 2507–2517.
  • Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B.; et al. The Carbohydrate-Active EnZymes Database (CAZy): An Expert Resource for Glycogenomics. Nucleic Acids. Res. 2009, 37(suppl_1), D233–D238.
  • Galas, E.; Romanowska, I. Purification and Some Properties of Beta-Glucosidase from Aspergillus Niger IBT-90. Acta Microbiol. Pol 1997, 46(3), 241–252.
  • Yang, L., Chen, T.-J., Wang, F., Li, L., Yu, W.-B., Si, Y.-K., Chen, J.-J., Liu, W.-C., Zhu, P., Gong, W.; et al. Structures of β-Glycosidase LXYL-P1-2 Reveals the Product Binding State of GH3 Family and a Specific Pocket for Taxol Recognition. Commun. Biol. 2020, 3(1), 1–8.
  • Han, K.-W., Yoo, J., Oh, E.-J., Choi, J. J., Kim, H.-K., Kwon, S.-T.; et al. Cloning, Analysis and Expression of the Gene for β-Glycosidase of Thermus Caldophilus GK24 and Properties of the Enzyme. Biotechnol. Lett 2001, 23(5), 379–384.
  • Vera, C.; Córdova, A.; Aburto, C.; Guerrero, C.; Suárez, S.; Illanes, A.; et al. Synthesis and Purification of Galacto-Oligosaccharides: State of the Art. World J. Microbiol. Biotechnol 2016, 32(12), 1–20.
  • Sako, T.; Matsumoto, K.; Tanaka, R. Recent Progress on Research and Applications of Non-Digestible Galacto-Oligosaccharides. Int. Dairy. J. 1999, 9(1), 69–80. DOI: 10.1016/S0958-6946(99)00046-1.
  • Huang, J., Zhu, S., Zhao, L., Chen, L., Du, M., Zhang, C., Yang, S.-T.; et al. A Novel β-Galactosidase from Klebsiella Oxytoca ZJUH1705 for Effcient Production of Galacto-Oligosaccharides from Lactose. Appl. Microbiol. Biotechnol 2020, 104(14), 6161–6172.
  • Mammarella, E. J.; Rubiolo, A. C. Study of the Deactivation of β-Galactosidase Entrapped in Alginate-Carrageenan Gels. J. Mol. Catal. B Enzym 2005, 34(1–6), 7–13. DOI: 10.1016/j.molcatb.2005.04.007.
  • Husain, Q., Ansari, S. A., Alam, F., Azam, A.; et al. Immobilization of Aspergillus Oryzae β Galactosidase on Zinc Oxide Nanoparticles via Simple Adsorption Mechanism. Int. J. Biol. Macromol 2011, 49(1), 37–43.
  • Sheu, D.-C., Li, S.-Y., Duan, K.-J., Chen, C. W.; et al. Production of Galactooligosaccharides by B-Galactosidase Immobilized on Glutaraldehyde-Treated Chitosan Beads. Biotechnol. Tech 1998, 12(4), 273–276.
  • Di Serio, M.; Maturo, C.; De Alteriis, E.; Parascandola, P.; Tesser, R.; Santacesaria, E.; et al. Lactose Hydrolysis by Immobilized β-Galactosidase: The Effect of the Supports and the Kinetics. Catal Today. 2003, 79-80, 333–339. DOI: 10.1016/S0920-5861(03)00059-2.
  • Ravikumar, Y.; Razack, S. A.; Ponpandian, L. N.; Zhang, G.; Yun, J.; Huang, J.; Lee, D.; Li, X.; Dou, Y., and Qi, X. Microbial hosts for production of D-arabitol: Current state-of-art and future prospects. Trends in Food Science & Technology. 2022, 120,100–110. DOI: 10.1016/j.tifs.2021.12.029.
  • Ansari, S. A.; Satar, R. Recombinant β-Galactosidases–past, Present and Future: A Mini Review. J. Mol. Catal. B Enzym 2012, 81, 1–6. DOI: 10.1016/j.molcatb.2012.04.012.
  • Iqbal, M. W.; Riaz, T.; Mahmood, S.; Ali, K.; Khan, I. M.; Rehman, A.; Zhang, W., and Mu, W. (2021). A review on selective l-fucose/d-arabinose isomerases for biocatalytic production of l-fuculose/d-ribulose. International Journal of Biological Macromolecules, 168, 558–571. DOI: 10.1016/j.ijbiomac.2020.12.021.
  • Warmerdam, A.; Boom, R. M., and Janssen, A. E. β-Galactosidase Stability at High Substrate Concentrations. Springerplus. 2013, 2(1), 1–8. DOI: 10.1186/2193-1801-2-402.
  • Onishi, N.; Kira, I.; Yokozeki, K. Galacto‐oligosaccharide Production from Lactose by Sirobasidium Magnum CBS6803. Lett. Appl. Microbiol 1996, 23(4), 253–256. DOI: 10.1111/j.1472-765x.1996.tb00077.x.
  • Ravikumar, Y.; Ponpandian, L. N.; Zhang, G.; Yun, J., and Qi, X. Harnessing -arabinose isomerase for biological production of -tagatose: Recent advances and its applications. Trends in Food Science & Technology, 2021, 107, 16–30. DOI: 10.1016/j.tifs.2020.11.020.
  • Berger, J.; Lee, B.; Lacroix, C. Oligosaccharides Synthesis by Free and Immobilized β-Galactosidases from Thermus Aquaticus YT-1. Biotechnol. Lett 1995, 17(10), 1077–1080. DOI: 10.1007/BF00143104.
  • Hernández, O., Ruiz-Matute, A. I., Olano, A., Moreno, F. J., Sanz, M. L.; et al. Comparison of Fractionation Techniques to Obtain Prebiotic Galactooligosaccharides. Int. Dairy. J 2009, 19(9), 531–536.
  • Li, W., Sun, Y., Ye, H., Zeng, X.; et al. Synthesis of Oligosaccharides with Lactose and N-Acetylglucosamine as Substrates by Using β-D-Galactosidase from Bacillus Circulans. Eur. Food Res. Tech. 2010, 231(1), 55–63.
  • Goulas, A. K.; Grandison, A. S.; Rastall, R. A. Fractionation of Oligosaccharides by Nanofiltration. J. Sci. Food Agric 2003, 83(7), 675–680. DOI: 10.1002/jsfa.1335.
  • An, S. M.; Wu, J. H.; Qian, L. F.; Gao, Y. L.; Wu, Y., and Yu, G. P. Applications of Ultrafiltration-Nanofiltration Membrane Continuous Combination Technology for Refining of Milk-Derived Oligosaccharides. In Advanced Materials Research, Zeng, J., Zhu, H., Kong, J., Eds. Trans Tech Publications, Ltd: Trans Tech Publ. 2013; Vol. 634-638; 1429–1434. DOI: 10.4028/scientific.net/AMR.634-638.1429.
  • Pruksasri, S., Nguyen, T.-H., Haltrich, D., Novalin, S.; et al. Fractionation of a Galacto-Oligosaccharides Solution at Low and High Temperature Using Nanofiltration. Sep. Purif. Technol 2015, 151, 124–130. DOI: 10.1016/j.seppur.2015.07.015.
  • Van Laere, K. M. J., Abee, T., Schols, H. A., Beldman, G., Voragen, A. G. J.; et al. Characterization of a Novel β-Galactosidase from Bifidobacterium Adolescentis DSM 20083 Active Towards Transgalactooligosaccharides. Appl. Environ. Microbiol 2000, 66(4), 1379–1384.
  • Barboza, M., Sela, D. A., Pirim, C., LoCascio, R. G., Freeman, S. L., German, J. B., Mills, D. A., Lebrilla, C. B.; et al. Glycoprofiling Bifidobacterial Consumption of Galacto-Oligosaccharides by Mass Spectrometry Reveals Strain-Specific, Preferential Consumption of Glycans. Appl. Environ. Microbiol 2009, 75(23), 7319–7325.
  • Ladirat, S., Schols, H. A., Nauta, A., Schoterman, M. H. C., Schuren, F. H. J., Gruppen, H.; et al. In vitro Fermentation of Galacto-Oligosaccharides and Its Specific Size-Fractions Using Non-Treated and Amoxicillin-Treated Human Inoculum. Bioact. Carbohydr. Dietary Fibre 2014, 3(2), 59–70.
  • Montañés, F.; Fornari, T.; Olano, A.; Ibáñez, E.; et al. Supercritical Fluid Purification of Complex Carbohydrate Mixtures Produced by Enzimatic Transglycosilation and Isomerized with Complexating Reagents. J. Supercrit. Fluids. 2010, 53(1–3), 25–33.
  • Moravčík, J.; Gramblička, M.; Wiśniewski, Ł.; Vaňková, K.; Polakovič, M.; et al. Influence of the Ionic Form of a Cation-Exchange Adsorbent on Chromatographic Separation of Galactooligosaccharides. Chem. Papers. 2012, 66(6), 583–588.
  • Wiśniewski, Ł.; Pereira, C. S. M.; Polakovič, M.; Rodrigues, A. E.; et al. Chromatographic Separation of Prebiotic Oligosaccharides. Case Study: Separation of Galacto-Oligosaccharides on a Cation Exchanger. Adsorption. 2014, 20(2–3), 483–492.
  • Wiśniewski, Ł.; Antosova, M.; Polakovic, M. Simulated Moving Bed Chromatography Separation of Galacto-Oligosaccharides. Acta Chim. Slovaca. 2013, 6(2), 206–210. DOI: 10.2478/acs-2013-0033.
  • Guerrero, C., Vera, C., Novoa, C., Dumont, J., Acevedo, F., Illanes, A.; et al. Purification of Highly Concentrated Galacto-Oligosaccharide Preparations by Selective Fermentation with Yeasts. Int. Dairy. J 2014, 39(1), 78–88.
  • Sangwan, V.; et al. Galactooligosaccharides Purification Using Microbial Fermentation and Assessment of Its Prebiotic Potential by in vitro Method. Int. J. Curr. Microbiol. App. Sci 2014, 3(4), 573–585.
  • Aburto, C.; Guerrero, C.; Vera, C.; Wilson, L.; Illanes, A.; et al. Simultaneous Synthesis and Purification (SSP) of Galacto-Oligosaccharides in Batch Operation. LWT-Food Sci. Technol 2016, 72, 81–89. DOI: 10.1016/j.lwt.2016.04.029.
  • Pruksasri, S. OhioLINK Electronic Theses and Dissertations Center: Doctoral dissertation, Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=osu1190137539
  • Botelho-Cunha, V. A.; Mateus, M.; Petrus, J. C. C.; de Pinho, M. N.; et al. Tailoring the Enzymatic Synthesis and Nanofiltration Fractionation of Galacto-Oligosaccharides. Biochem. Eng. J 2010, 50(1–2), 29–36.
  • Liu, X.; Wu, J. H.; Gao, Y.; Wu, Y.; Qian, L.; Wang, Z. Characterization of Structure and Cellular Immunity Bioactivity of Milk-Derived Galactooligosacchrides Prepared by Lactobacillus Delbrueckii Subsp. Bulgaricus Fermentation. 2018.
  • Sharma, R. R.; Agrawal, R.; Chellam, S. Temperature Effects on Sieving Characteristics of Thin-Film Composite Nanofiltration Membranes: Pore Size Distributions and Transport Parameters. J. Membr. Sci 2003, 223(1–2), 69–87. DOI: 10.1016/S0376-7388(03)00310-7.
  • Hall, M. Chapter 21 - Size Exclusion Chromatography (SEC). In Biopharmaceutical Processing, Jagschies, G.; et al, Ed.; GE Healthcare Life Sciences, Uppsala, Sweden: Elsevier, 2018; pp. 421–432.
  • Liu, S., Li, Z., Yu, B., Wang, S., Shen, Y., Cong, H.; et al. Recent Advances on Protein Separation and Purification Methods. Adv. Colloid Interface Sci 2020, 284, 102254. DOI: 10.1016/j.cis.2020.102254.
  • Xu, Y., and Ghosh, R. Increase in Speed, Loading Capacity, and Resolution of Preparative Size Exclusion Chromatography Using a Z2 Cuboid Packed-Bed Device. Journal of Chromatography A, 19. doi:10.2139/ssrn.4063480.
  • Marín-Navarro, J.; Talens-Perales, D.; Oude-Vrielink, A.; Cañada, F. J.; Polaina, J.; et al. Immobilization of Thermostable β-Galactosidase on Epoxy Support and Its Use for Lactose Hydrolysis and Galactooligosaccharides Biosynthesis. World J. Microbiol. Biotechnol 2014, 30(3), 989–998.
  • Masuda, T.; Sonobe, T.; Matsuda, F.; Horie, M. Process for Fractional Separation of Multi-Component Fluid Mixture. 1993, Google Patents.
  • Sangwan, V.; Tomar, S. K. Estimation of Microbial GOS by High Performance Liquid Chromatography. Chemical Analysis of Value Added Dairy Products and Their Quality Assurance. 2011, 233.
  • Vaňková, K.; Polakovič, M. Optimization of Single-Column Chromatographic Separation of Fructooligosaccharides. Process Biochem 2010, 45(8), 1325–1329. DOI: 10.1016/j.procbio.2010.04.025.
  • Rajendran, A.; Paredes, G.; Mazzotti, M. Simulated Moving Bed Chromatography for the Separation of Enantiomers. J. Chromatogr. A. 2009, 1216(4), 709–738. DOI: 10.1016/j.chroma.2008.10.075.
  • Michelon, M.; Manera, A. P.; Carvalho, A. L.; Maugeri Filho, F.; et al. Concentration and Purification of Galacto‐oligosaccharides Using Nanofiltration Membranes. Int. J. Food Sci. Technol 2014, 49(8), 1953–1961.
  • Vanneste, J.; De Ron, S.; Vandecruys, S.; Soare, S. A.; Darvishmanesh, S.; Van der Bruggen, B.; et al. Techno-Economic Evaluation of Membrane Cascades Relative to Simulated Moving Bed Chromatography for the Purification of Mono-And Oligosaccharides. Sep. Purif. Technol 2011, 80(3), 600–609.
  • Zhang, M., Luo, L., Liu, S., Hu, H., Huang, R., Sun, Y., Lei, H., Wei, X.; et al. Detection of Galactooligosaccharides with High Lactose Interference in Infant Formula Using a Simple Single Epimer Chromatography. Food Chem 2021, 342, 128367. DOI: 10.1016/j.foodchem.2020.128367.
  • Bras, N. F.; Fernandes, P. A.; Ramos, M. J. QM/MM Studies on the β-Galactosidase Catalytic Mechanism: Hydrolysis and Transglycosylation Reactions. J. Chem. Theory Comput 2010, 6(2), 421–433. DOI: 10.1021/ct900530f.
  • Dais, P.; Spyros, A. 31P NMR Spectroscopy in the Quality Control and Authentication of Extra‐virgin Olive Oil: A Review of Recent Progress. Magn. Reson. Chem 2007, 45(5), 367–377. DOI: 10.1002/mrc.1985.
  • Widjaja, L. Optimization and validation of the extraction, purification and analysis of galactooligosaccharides (GOS) in beans. Guelph, Ontario, Canada: University of Guelph, 2020. http://hdl.handle.net/10214/17878
  • Lin, H., Li, S., Xu, C., Pang, M., Wang, S.; et al. Simultaneous Determination of Galactose, Glucose, Lactose and Galactooligosaccharides in Galactooligosaccharides Raw Materials by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection. Food Chem 2018, 263, 29–36. DOI: 10.1016/j.foodchem.2018.04.092.
  • Neri, D. F. M.; Balcão, V. M.; Cardoso, S. M.; Silva, A. M. S.; Domingues, M. D. R. M.; Torres, D. P. M.; Rodrigues, L. R. M.; Carvalho, L. B.; Teixeira, J. A. C.; et al. Characterization of Galactooligosaccharides Produced by β-Galactosidase Immobilized Onto Magnetized Dacron. Int. Dairy. J 2011, 21(3), 172–178.
  • Logtenberg, M. J., Donners, K. M. H., Vink, J. C. M., van Leeuwen, S. S., de Waard, P., de Vos, P., Schols, H. A.; et al. Touching the High Complexity of Prebiotic Vivinal Galacto-Oligosaccharides Using Porous Graphitic Carbon Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry. J. Agric. Food. Chem 2020, 68(29), 7800–7808.
  • Chen, Y.; Liu, Y. Characterization of Galacto‐oligosaccharides Using High‐performance Anion Exchange Chromatography‐tandem Mass Spectrometry. J. Sep. Sci 2021, 44(11), 2221–2233. DOI: 10.1002/jssc.202100064.
  • Ambrogi, V., et al. Infant-Associated Bifidobacterial β-Galactosidases and Their Ability to Synthesize Galacto-Oligosaccharides. Front. Microbiol 2021, 12, 662959.
  • Botvynko, A.; Bednářová, A.; Henke, S.; Shakhno, N.; Čurda, L.; et al. Production of Galactooligosaccharides Using Various Combinations of the Commercial β-Galactosidases. Biochem. Biophys. Res. Commun 2019, 517(4), 762–766.
  • Hernández-Hernández, O.; Calvillo, I.; Lebrón-Aguilar, R.; Moreno, F. J.; Sanz, M. L.; et al. Hydrophilic Interaction Liquid Chromatography Coupled to Mass Spectrometry for the Characterization of Prebiotic Galactooligosaccharides. J. Chromatogr. A. 2012, 1220, 57–67. DOI: 10.1016/j.chroma.2011.11.047.
  • Pico, J., Vidal, N. P., Widjaja, L., Falardeau, L., Albino, L., Martinez, M. M.; et al. Development and Assessment of GC/MS and HPAEC/PAD Methodologies for the Quantification of α-Galacto-Oligosaccharides (GOS) in Dry Beans (Phaseolus Vulgaris). Food Chem 2021, 349, 129151. DOI: 10.1016/j.foodchem.2021.129151.
  • Petzelbauer, I.; Nidetzky, B.; Haltrich, D.; Kulbe, K. D.; et al. Development of an Ultra‐high‐temperature Process for the Enzymatic Hydrolysis of Lactose. I. The Properties of Two Thermostable β‐glycosidases. Biotechnol. Bioeng 1999, 64(3), 322–332.
  • Hernández-Hernández, O.; Calvillo, I.; Lebrón-Aguilar, R.; Moreno, F. J., and Sanz, M. L. Comparison of Fractionation Techniques to Obtain Prebiotic Galactooligosaccharides. International Dairy Journal. 2009. 19(9), 531–536. DOI: 10.1016/j.idairyj.2009.03.002.
  • Borromei, C.; Cavazza, A.; Merusi, C.; Corradini, C.; et al. Characterization and Quantitation of Short‐chain Fructooligosaccharides and Inulooligosaccharides in Fermented Milks by High‐performance Anion‐exchange Chromatography with Pulsed Amperometric Detection. J. Sep. Sci 2009, 32(21), 3635–3642.
  • Gutierrez Reyes, C. D., Jiang, P., Donohoo, K., Atashi, M., Mechref, Y. S.; et al. Glycomics and Glycoproteomics: Approaches to Address Isomeric Separation of Glycans and Glycopeptides. J. Sep. Sci. 2021, 44(1), 403–425.
  • Szabo, Z., Thayer, J. R., Agroskin, Y., Lin, S., Liu, Y., Srinivasan, K., Saba, J., Viner, R., Huhmer, A., Rohrer, J.; et al. In-Depth Analyses of Native N-Linked Glycans Facilitated by High-Performance Anion Exchange Chromatography-Pulsed Amperometric Detection Coupled to Mass Spectrometry. Anal. Bioanal. Chem. 2017, 409(12), 3089–3101.
  • Ruhaak, L. R.; Lebrilla, C. B. Advances in Analysis of Human Milk Oligosaccharides. Adv Nutr 2012, 3(3), 406S–414S. DOI: 10.3945/an.112.001883.
  • Morales, V.; Sanz, M. L.; Olano, A.; Corzo, N.; et al. Rapid Separation on Activated Charcoal of High Oligosaccharides in Honey. Chromatographia. 2006, 64(3–4), 1–6.
  • El Rassi, Z. Journal of Chromatography Library; 1000 AE Amsterdam The Netherlands: Elsevier, 2002 Carbohydrate Analysis by Modern Chromatography and Electrophoresis ; Vol. 66.
  • Ruiz-Aceituno, L.; Carrero-Carralero, C.; Ruiz-Matute, A. I.; Ramos, L.; Sanz, M. L.; Martínez-Castro, I.; et al. Characterization of Cyclitol Glycosides by Gas Chromatography Coupled to Mass Spectrometry. J. Chromatogr. A. 2017, 1484, 58–64. DOI: 10.1016/j.chroma.2017.01.001.
  • Fan, K.; Zhang, M. Recent Developments in the Food Quality Detected by Non-Invasive Nuclear Magnetic Resonance Technology. Crit. Rev. Food Sci. Nutr 2019, 59(14), 2202–2213. DOI: 10.1080/10408398.2018.1441124.
  • Ruh, A.; Kiselev, V. G. Larmor Frequency Dependence on Structural Anisotropy of Magnetically Heterogeneous Media. J. Mag. Reson. 2019, 307, 106584. DOI: 10.1016/j.jmr.2019.106584.
  • Lu, L., Gu, G., Xiao, M., Wang, F.; et al. Separation and Structure Analysis of Trisaccharide Isomers Produced from Lactose by Lactobacillus Bulgaricus L3 β-Galactosidase. Food Chem 2010, 121(4), 1283–1288.
  • Coulier, L., Timmermans, J., Bas, R., Van Den Dool, R., Haaksman, I., Klarenbeek, B., Slaghek, T., Van Dongen, W.; et al. In-Depth Characterization of Prebiotic Galacto-Oligosaccharides by a Combination of Analytical Techniques. J. Agric. Food. Chem 2009, 57(18), 8488–8495.
  • Moreno, F. J., and Sanz, M. L. Food Oligosaccharides: Production, Analysis and Bioactivity; Institute of Food Technologists Series: John Wiley & Sons, 2014; pp. 552. ISBN 1118817346, 9781118817346.
  • Ebere, E.; Obinna, I., and Wirnkor, V. Applications of Column, Paper, Thin Layer and Ion Exchange Chromatography in Purifying Samples: Mini Review. SF J. Pharm. Anal. Chem. 2019, 2, 1–6.
  • Cummins, P. M.; Dowling, O., and O’-Connor, B. F. Ion-Exchange Chromatography: Basic Principles and Application to the Partial Purification of Soluble Mammalian Prolyl Oligopeptidase. In Protein Chromatography, Walls, D., Loughran, S. T., Eds. Humana Press, 2011; pp. 215–228. DOI: 10.1007/978-1-60761-913-0_12.
  • Zhang, Z.; Xiao, Z.; Linhardt, R. J. Thin Layer Chromatography for the Separation and Analysis of Acidic Carbohydrates. J. Liq. Chromatogr. Relat. Technol. 2009, 32(11–12), 1711–1732. DOI: 10.1080/10826070902956402.
  • Hashmi, A.; Naeem, N.; Farooq, Z.; Masood, S.; Iqbal, S.; Naseer, R.; et al. Effect of Prebiotic Galacto-Oligosaccharides on Serum Lipid Profile of Hypercholesterolemics. Probiotics Antimicrob. Proteins. 2016, 8(1), 19–30.
  • Martin, P.; Koplin, J.J.; Eckert, J.K.; Lowe, A.J.; Ponsonby, A.L.; Osborne, N.J.; Gurrin, L.C.; Robinson, M.N.; Hill, D.J.; Tang, M.L.K.; et al. The Prevalence and Socio‐demographic Risk Factors of Clinical Eczema in Infancy: A Population‐based Observational Study. Clin. Exp. Allergy. 2013, 43(6), 642–651.
  • Szari, S.; Quinn, J. A. Supporting a Healthy Microbiome for the Primary Prevention of Eczema. Clin. Rev. Allergy Immunol 2019, 57(2), 286–293. DOI: 10.1007/s12016-019-08758-5.
  • Teuri, U.; Korpela, R. Galacto-Oligosaccharides Relieve Constipation in Elderly People. Ann. Nutr. Metab 1998, 42(6), 319–327. DOI: 10.1159/000012751.
  • Li, X.; Zhang, Z.; Zabed, H. M.; Yun, J.; Zhang, G., and Qi, X. An Insight into the Roles of Dietary Tryptophan and Its Metabolites in Intestinal Inflammation and Inflammatory Bowel Disease. Mol. Nutr. Food Res2021, 65(5), 2000461. DOI: 10.1002/mnfr.202000461.
  • Sairanen, U., Piirainen, L., Nevala, R., Korpela, R.; et al. Yoghurt Containing Galacto-Oligosaccharides, Prunes and Linseed Reduces the Severity of Mild Constipation in Elderly Subjects. Eur. J. Clin. Nutr 2007, 61(12), 1423–1428.
  • Kotetishvili, M.; Kreger, A.; Wauters, G.; Morris, J. G.; Sulakvelidze, A.; Stine, O. C.; et al. Multilocus Sequence Typing for Studying Genetic Relationships Among Yersinia Species. J. Clin. Microbiol 2005, 43(6), 2674–2684.
  • Ben, X.-M., Li, J., Feng, Z.-T., Shi, S.-Y., Lu, Y.-D., Chen, R., Zhou, X.-Y.; et al. Low Level of Galacto-Oligosaccharide in Infant Formula Stimulates Growth of Intestinal Bifidobacteria and Lactobacilli. World J. Gastroenterol 2008, 14(42), 6564.
  • Lee, P.; Yacyshyn, B. R.; Yacyshyn, M. B. Gut Microbiota and Obesity: An Opportunity to Alter Obesity Through Faecal Microbiota Transplant (FMT). Diabetes Obesity Metab. 2019, 21(3), 479–490. DOI: 10.1111/dom.13561.
  • Sangwan, V.; Tomar, S. K.; Singh, R. R. B.; Singh, A. K.; Ali, B.; et al. Galactooligosaccharides: Novel Components of Designer Foods. J. Food Sci 2011, 76(4), R103–R111.
  • Bruno-Barcena, J. M.; Azcarate-Peril, M. A. Galacto-Oligosaccharides and Colorectal Cancer: Feeding Our Intestinal Probiome. J. Funct. Foods 2015, 12, 92–108. DOI: 10.1016/j.jff.2014.10.029.
  • Osborn, D. A., and Sinn, J. K. Prebiotics in Infants for Prevention of Allergic Disease and Food Hypersensitivity. Cochrane Database Syst. Rev 2007(4 doi:10.1002/14651858.CD005996.pub4).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.