760
Views
4
CrossRef citations to date
0
Altmetric
Review

Gamma Aminobutyric Acid (GABA) Enrichment in Plant-Based Food – A Mini Review

, ORCID Icon &

References

  • Abdou, A. M.; Higashiguchi, S.; Horie, K.; Kim, M.; Hatta, H.; Yokogoshi, H. Relaxation and Immunity Enhancement Effects of γ‐aminobutyric Acid (GABA) Administration in Humans. BioFactors. 2006, 26(3), 201–208.
  • He, Y.; Ouyang, J.; Hu, Z.; Yang, J.; Chu, Y.; Huang, S.; Yang, Y.; Liu, C. Intervention Mechanism of Repeated Oral GABA Administration on Anxiety-Like Behaviors Induced by Emotional Stress in Rats. Psychiatry Res. 2019, 271, 649–657.
  • Yamatsu, A.; Yamashita, Y.; Pandharipande, T.; Maru, I.; Kim, M. Effect of Oral γ-Aminobutyric Acid (GABA) Administration on Sleep and Its Absorption in Humans. Food Sci. Biotechnol. 2016, 25(2), 547–551.
  • Li, W.; Wei, M.; Wu, J.; Rui, X.; Dong, M. Novel Fermented Chickpea Milk with Enhanced Level of γ-Aminobutyric Acid and Neuroprotective Effect on PC12 Cells. PeerJ. 2016, 4, e2292.
  • Aoki, H.; Furuya, Y.; Endo, Y.; Fujimoto, K. Effect of γ-Aminobutyric Acid-Enriched Tempeh-Like Fermented Soybean (GABA-Tempeh) on the Blood Pressure of Spontaneously Hypertensive Rats. Biosci. Biotechnol. Biochem. 2003, 67(8), 1806–1808.
  • Jang, E. K.; Kim, N. Y.; Ahn, H. J.; Ji, G. E. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus Brevis with Aspergillus Oryzae. J. Microbiol. Biotechnol. 2015, 25(8), 1315–1320.
  • Huang, Q.; Liu, C.; Wang, C.; Hu, Y.; Qiu, L.; Xu, P. Neurotransmitter γ-Aminobutyric Acid-Mediated Inhibition of the Invasive Ability of Cholangiocarcinoma Cells. Oncol. Lett. 2011, 2(3), 519–523.
  • Deng, Y.; Xu, L.; Zeng, X.; Li, Z.; Qin, B.; He, N. New Perspective of GABA as an Inhibitor of Formation of Advanced Lipoxidation End-Products: It’s Interaction with Malondiadehyde. J. Biomed. Nanotechnol. 2010, 6(4), 318–324.
  • Lee, B. J.; Kim, J. S.; Kang, Y. M.; Lim, J. H.; Kim, Y. M.; Lee, M. S.; Jeong, M. H.; Ahn, C. B.; Je, J. Y. Antioxidant Activity and γ-Aminobutyric Acid (GABA) Content in Sea Tangle Fermented by Lactobacillus Brevis BJ20 Isolated from Traditional Fermented Foods. Food Chem. 2010, 122(1), 271–276.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 119, Gamma-Aminobutyric Acid. PubChem. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/gamma-Aminobutyric-acid
  • de Leon, A. S., and Tadi, P. Biochemistry, Gamma Aminobutyric Acid; Florida, U.S: StatPearls Publihsing, 2019.
  • Shelp, B. J.; Aghdam, M. S.; Flaherty, E. J. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. Plants. 2021, 10(9), 1939.
  • Michaeli, S.; Fromm, H. Closing the Loop on the GABA Shunt in Plants: Are GABA Metabolism and Signaling Entwined?. Front Plant Sci. 2015, 6, 419.
  • Li, L.; Dou, N.; Zhang, H.; Wu, C. The Versatile GABA in Plants. Plant Signal. Behav. 2021, 16(3), 1862565.
  • Diana, M.; Quílez, J.; Rafecas, M. Gamma-Aminobutyric Acid as a Bioactive Compound in Foods: A Review. J. Funct. Food. 2014, 10, 407–420.
  • Steward, F. C. γ-Aminobutyric Acid: A Constituent of the Potato Tuber?. Sci. 1949, 110, 439–440.
  • Spiering, M. J. The Discovery of GABA in the Brain. J. Biol. Chem. 2018, 293(49), 19159–19160.
  • Shelp, B. J.; Bown, A. W.; McLean, M. D. Metabolism and Functions of Gamma-Aminobutyric Acid. Trends Plant Sci. 1999, 4(11), 446–452.
  • Shelp, B. J.; Bozzo, G. G.; Trobacher, C. P.; Chiu, G.; Bajwa, V. S. Strategies and Tools for Studying the Metabolism and Function of γ-Aminobutyrate in Plants. I. Pathway Structure. Botany. 2012, 90(8), 651–668.
  • Shelp, B. J.; Bozzo, G. G.; Zarei, A.; Simpson, J. P.; Trobacher, C. P.; Allan, W. L. Strategies and Tools for Studying the Metabolism and Function of γ-Aminobutyrate in Plants. II. Integrated Analysis. Botany. 2012, 90(9), 781–793.
  • Shelp, B. J.; Bozzo, G. G.; Trobacher, C. P.; Zarei, A.; Deyman, K. L.; Brikis, C. J. Hypothesis/review: Contribution of Putrescine to 4-Aminobutyrate (GABA) Production in Response to Abiotic Stress. Plant Sci. 2012, 193, 130–135.
  • Signorelli, S.; Dans, P. D.; Coitiño, E. L.; Borsani, O.; Monza, J. Connecting Proline and γ-Aminobutyric Acid in Stressed Plants Through Non-Enzymatic Reactions. PLoS One. 2015, 10(3), e0115349.
  • Clark, S. M.; Di Leo, R.; Dhanoa, P. K.; Van Cauwenberghe, O. R.; Mullen, R. T.; Shelp, B. J. Biochemical Characterization, Mitochondrial Localization, Expression, and Potential Functions for an Arabidopsis γ-Aminobutyrate Transaminase That Utilizes Both Pyruvate and Glyoxylate. J. Exp. Bot. 2009, 60(6), 1743–1757.
  • Xu, N.; Wei, L.; Liu, J. Biotechnological Advances and Perspectives of Gamma-Aminobutyric Acid Production. World J. Microbiol. Biotechnol. 2017, 33(3), 1–11.
  • Diez-Gutiérrez, L.; San Vicente, L.; Barron, L. J. R.; Del Carmen Villaran, M.; Chávarri, M. Gamma-Aminobutyric Acid and Probiotics: Multiple Health Benefits and Their Future in the Global Functional Food and Nutraceuticals Market. J. Funct. Food. 2020, 64, 103669.
  • Baum, G.; Chen, Y. A. L. I.; Arazi, T.; Takatsuji, H.; Fromm, H. A Plant Glutamate Decarboxylase Containing a Calmodulin Binding Domain. Cloning, Sequence, and Functional Analysis. J. Biol. Chem. 1993, 268(26), 19610–19617.
  • Wang, L.; Liu, M.; Guo Lv, Y.; Zhang, H. Purification of Calmodulin from Rice Bran and Activation of Glutamate Decarboxylase by Ca2+/calmodulin. J. Sci. Food Agric. 2010, 90(4), 669–675.
  • Yang, R.; Chen, H.; Han, Y.; Gu, Z. Purification of Diamine Oxidase and Its Properties in Germinated Fava Bean (Vicia Faba L.). J. Sci. Food Agric. 2012, 92(8), 1709–1715.
  • Yang, R.; Guo, Q.; Gu, Z. GABA Shunt and Polyamine Degradation Pathway on γ-Aminobutyric Acid Accumulation in Germinating Fava Bean (Vicia Faba L.) Under Hypoxia. Food Chem. 2013, 136(1), 152–159.
  • Ko, C. Y.; Lin, H. T. V.; Tsai, G. J. Gamma-Aminobutyric Acid Production in Black Soybean Milk by Lactobacillus Brevis FPA 3709 and the Antidepressant Effect of the Fermented Product on a Forced Swimming Rat Model. Process Biochem. 2013, 48(4), 559–568.
  • Wu, Z.; Wang, P.; Pan, D.; Zeng, X.; Guo, Y.; Zhao, G. Effect of Adzuki Bean Sprout Fermented Milk Enriched in γ-Aminobutyric Acid on Mild Depression in a Mouse Model. J. Dairy. Sci. 2021, 104(1), 78–91.
  • Shimada, M.; Hasegawa, T.; Nishimura, C.; Kan, H.; Kanno, T.; Nakamura, T.; Matsubayashi, T. Anti-Hypertensive Effect of γ-Aminobutyric Acid (GABA)-Rich Chlorella on High-Normal Blood Pressure and Borderline Hypertension in Placebo-Controlled Double Blind Study. Clin. Exp. Hypertens. 2009, 31(4), 342–354.
  • Purwana, I.; Zheng, J.; Li, X.; Deurloo, M.; Son, D. O.; Zhang, Z.; Liang, C.; Shen, E.; Tadkase, A.; Feng, Z. P., et al. GABA Promotes Human β-Cell Proliferation and Modulates Glucose Homeostasis. Diabetes. 2014, 63(12), 4197–4205. DOI:10.2337/db14-0153.
  • Hosseini Dastgerdi, A.; Sharifi, M.; Soltani, N. GABA Administration Improves Liver Function and Insulin Resistance in Offspring of Type 2 Diabetic Rats. Sci. Rep. 2021, 11(1), 1–27.
  • Ngo, D. H.; Vo, T. S. An Updated Review on Pharmaceutical Properties of Gamma-Aminobutyric Acid. Molecules. 2019, 24(15), 2678.
  • Le, P. H.; Parmentier, N.; Le, T. T.; Raes, K. Evaluation of Using a Combination of Enzymatic Hydrolysis and Lactic Acid Fermentation for γ-Aminobutyric Acid Production from Soymilk. Lwt. 2021, 142, 111044.
  • Tiansawang, K.; Luangpituksa, P.; Varanyanond, W.; Hansawasdi, C. GABA (γ-Aminobutyric Acid) Production, Antioxidant Activity in Some Germinated Dietary Seeds and the Effect of Cooking on Their GABA Content. Food Sci. Technol. 2016, 36(2), 313–321.
  • Huang, G.; Cai, W.; Xu, B. Improvement in Beta-Carotene, Vitamin B2, GABA, Free Amino Acids and Isoflavones in Yellow and Black Soybeans Upon Germination. LWT. 2017, 75, 488–496.
  • Chung, H. J.; Jang, S. H.; Cho, H. Y.; Lim, S. T. Effects of Steeping and Anaerobic Treatment on GABA (γ-Aminobutyric Acid) Content in Germinated Waxy Hull-Less Barley. LWT-Food Sci. Technol. 2009, 42(10), 1712–1716.
  • Coda, R.; Rizzello, C. G.; Gobbetti, M. Use of Sourdough Fermentation and Pseudo-Cereals and Leguminous Flours for the Making of a Functional Bread Enriched of γ-Aminobutyric Acid (GABA). Int. J. Food Microbiol. 2010, 137(2–3), 236–245.
  • Youn, Y. S.; Park, J. K.; Jang, H. D.; Rhee, Y. W. Sequential Hydration with Anaerobic and Heat Treatment Increases GABA (γ-Aminobutyric Acid) Content in Wheat. Food Chem. 2011, 129(4), 1631–1635.
  • Cai, S.; Gao, F.; Zhang, X.; Wang, O.; Wu, W.; Zhu, S.; Zhang, D.; Zhou, F.; Ji, B. Evaluation of γ-Aminobutyric Acid, Phytate and Antioxidant Activity of Tempeh-Like Fermented Oats (Avena Sativa L.) Prepared with Different Filamentous Fungi. J. Food Sci. Technol. 2014, 51(10), 2544–2551.
  • Moongngarm, A.; Saetung, N. Comparison of Chemical Compositions and Bioactive Compounds of Germinated Rough Rice and Brown Rice. Food Chem. 2010, 122(3), 782–788.
  • Ding, J.; Yang, T.; Feng, H.; Dong, M.; Slavin, M.; Xiong, S.; Zhao, S. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice During Germination Under Normoxic and Hypoxic Conditions. J. Agric. Food. Chem. 2015, 64(5), 1094–1102.
  • Ding, J.; Ulanov, A. V.; Dong, M.; Yang, T.; Nemzer, B. V.; Xiong, S.; Zhao, S.; Feng, H. Enhancement of Gama-Aminobutyric Acid (GABA) and Other Health-Related Metabolites in Germinated Red Rice (Oryza Sativa L.) by Ultrasonication. Ultrason. Sonochem. 2018, 40, 791–797.
  • Park, N.; Lee, T. K.; Nguyen, T. T. H.; An, E. B.; Kim, N. M.; You, Y. H.; Park, T. S.; Kim, D. The Effect of Fermented Buckwheat on Producing L‐carnitine‐and γ‐aminobutyric Acid (Gaba)‐enriched Designer Eggs. J. Sci. Food Agric. 2017, 97(9), 2891–2897.
  • Hao, J.; Wu, T.; Li, H.; Wang, W.; Liu, H. Dual Effects of Slightly Acidic Electrolyzed Water (SAEW) Treatment on the Accumulation of γ-Aminobutyric Acid (GABA) and Rutin in Germinated Buckwheat. Food Chem. 2016, 201, 87–93.
  • Oh, S. H.; Moon, Y. J.; Oh, C. H. γ-Aminobutyric Acid (GABA) Content of Selected Uncooked Foods. Prev. Nutr. Food Sci. 2003, 8(1), 75–78.
  • Briguglio, M.; Dell’-Osso, B.; Panzica, G.; Malgaroli, A.; Banfi, G.; Zanaboni Dina, C.; Galentino, R.; Porta, M. Dietary Neurotransmitters: A Narrative Review on Current Knowledge. Nutrients. 2018, 10(5), 591.
  • Cohen, N.; Cohen, J.; Asatiani, M. D.; Varshney, V. K.; Yu, H. T.; Yang, Y. C.; Li, Y. H.; Mau, J. L.; Wasser, S. P. Chemical Composition and Nutritional and Medicinal Value of Fruit Bodies and Submerged Cultured Mycelia of Culinary-Medicinal Higher Basidiomycetes Mushrooms. Int. J. Med. Mushrooms. 2014, 16(3), 273–291.
  • Saito, T.; Matsukura, C.; Sugiyama, M.; Watahiki, A.; Ohshima, I.; Iijima, Y.; Konishi, C.; Fujii, T.; Inai, S.; Fukuda, N., et al. Screening for γ-Aminobutyric Acid (GABA)-Rich Tomato Varieties. J. Jpn. Soc. Hortic. Sci. 2008, 77(3), 242–250.
  • Kuo, Y. H.; Rozan, P.; Lambein, F.; Frias, J.; Vidal-Valverde, C. Effects of Different Germination Conditions on the Contents of Free Protein and Non-Protein Amino Acids of Commercial Legumes. Food Chem. 2004, 86(4), 537–545.
  • Liao, W. C.; Wang, C. Y.; Shyu, Y. T.; Yu, R. C.; Ho, K. C. Influence of Preprocessing Methods and Fermentation of Adzuki Beans on γ-Aminobutyric Acid (GABA) Accumulation by Lactic Acid Bacteria. J. Funct. Food. 2013, 5(3), 1108–1115.
  • Song, H. Y.; Yu, R. C. Optimization of Culture Conditions for Gamma-Aminobutyric Acid Production in Fermented Adzuki Bean Milk. J. Food Drug Anal. 2018, 26(1), 74–81.
  • Duţă, D. E.; Culeţu, A., and Mohan, G. Reutilization of Cereal Processing By-Products in Bread Making. In Sustainable Recovery and Reutilization of Cereal Processing By-Products; Galanakis, C., Eds.; Cambridge, U.K: Woodhead Publishing, 2018; p. 279–317.
  • Venturi, M.; Galli, V.; Pini, N.; Guerrini, S.; Granchi, L. Use of Selected Lactobacilli to Increase γ-Aminobutyric Acid (GABA) Content in Sourdough Bread Enriched with Amaranth Flour. Foods. 2019, 8(6), 218.
  • Dhakal, R.; Bajpai, V. K.; Baek, K. H. Production of GABA (γ-Aminobutyric Acid) by Microorganisms: A Review. Braz. J. Microbiol. 2012, 43(4), 1230–1241.
  • Wan-Mohtar, W. A. A. Q. I.; Sohedein, M. N. A.; Ibrahim, M. F.; Ab Kadir, S.; Suan, O. P.; Weng Loen, A. W.; Sassi, S.; Ilham, Z. Isolation, Identification, and Optimization of γ-Aminobutyric Acid (GABA)-Producing Bacillus Cereus Strain KBC from a Commercial Soy Sauce Moromi in Submerged-Liquid Fermentation. Processes. 2020, 8(6), 652.
  • Linares, D. M.; O’-Callaghan, T. F.; O’-Connor, P. M.; Ross, R. P.; Stanton, C. Streptococcus thermophilus APC151 Strain is Suitable for the Manufacture of Naturally GABA-Enriched Bioactive Yogurt. Front. Microbiol. 2016, 7, 1876.
  • Hepsomali, P.; Groeger, J. A.; Nishihira, J.; Scholey, A. Effects of Oral Gamma-Aminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review. Front. Neurosci. 2020, 14, 923.
  • Oketch-Rabah, H. A.; Madden, E. F.; Roe, A. L.; Betz, J. M. United States Pharmacopeia (USP) Safety Review of Gamma-Aminobutyric Acid (GABA). Nutrients. 2021, 13(8), 2742.
  • Hinton, T.; Jelinek, H. F.; Viengkhou, V.; Johnston, G. A.; Matthews, S. Effect of GABA-Fortified Oolong Tea on Reducing Stress in a University Student Cohort. Front Nutr. 2019, 6, 27.
  • Byun, J. I.; Shin, Y. Y.; Chung, S. E.; Shin, W. C. Safety and Efficacy of Gamma-Aminobutyric Acid from Fermented Rice Germ in Patients with Insomnia Symptoms: A Randomized, Double-Blind Trial. J. Clin. Neurol. 2018, 14(3), 291–295.
  • Yamakoshi, J.; Shimoji, R.; Nakagawa, S.; Izui, N.; Ogihara, T. Hypotensive Effects and Safety of Less-Sodium Soy Sauce Containing γ-Aminobutyric Acid (GABA) on High-Normal Blood Pressure and Mild Hypertensive Subjects. Jpn. Pharmacol. Ther. 2006, 34(6), 691–709.
  • Inoue, K.; Shirai, T.; Ochiai, H.; Kasao, M.; Hayakawa, K.; Kimura, M.; Sansawa, H. Blood-Pressure-Lowering Effect of a Novel Fermented Milk Containing γ-Aminobutyric Acid (GABA) in Mild Hypertensives. Eur. J. Clin. Nutr. 2003, 57(3), 490–495.
  • Guo, Y.; Chen, H.; Song, Y.; Gu, Z. Effects of Soaking and Aeration Treatment on γ-Aminobutyric Acid Accumulation in Germinated Soybean (Glycine Max L.). Eur. Food Res. Technol. 2011, 232(5), 787–795.
  • Guo, Y.; Yang, R.; Chen, H.; Song, Y.; Gu, Z. Accumulation of γ-Aminobutyric Acid in Germinated Soybean (Glycine Max L.) in Relation to Glutamate Decarboxylase and Diamine Oxidase Activity Induced by Additives Under Hypoxia. Eur. Food Res. Technol. 2012, 234(4), 679–687.
  • Takahashi, Y.; Sasanuma, T.; Abe, T. Accumulation of Gamma-Aminobutyrate (GABA) Caused by Heat-Drying and Expression of Related Genes in Immature Vegetable Soybean (Edamame). Breed. Sci. 2013, 63(2), 205–210.
  • Yang, R.; Feng, L.; Wang, S.; Yu, N.; Gu, Z. Accumulation of γ‐aminobutyric Acid in Soybean by Hypoxia Germination and Freeze–thawing Incubation. J. Sci. Food Agric. 2016, 96(6), 2090–2096.
  • Rayavarapu, B.; Tallapragada, P.; Ms, U. Optimization and Comparison of ℽ-Aminobutyric Acid (GABA) Production by LAB in Soymilk Using RSM and ANN Models. Beni-Suef Univ. J. Appl. 2021, 10(1), 1–15.
  • Pyo, Y. H.; Song, S. M. Physicochemical and Sensory Characteristics of a Medicinal Soy Yogurt Containing Health-Benefit Ingredients. J. Agric. Food. Chem. 2009, 57(1), 170–175.
  • Hwang, C. E.; Haque, M.; Lee, J. H.; Song, Y. H.; Lee, H. Y.; Kim, S. C.; Cho, K. M. Bioconversion of γ-Aminobutyric Acid and Isoflavone Contents During the Fermentation of High-Protein Soy Powder Yogurt with Lactobacillus Brevis. Appl. Biol. Chem. 2018, 61(4), 409–421.
  • Park, K. B.; Oh, S. H. Production of Yogurt with Enhanced Levels of Gamma-Aminobutyric Acid and Valuable Nutrients Using Lactic Acid Bacteria and Germinated Soybean Extract. Bioresour. Technol. 2007, 98(8), 1675–1679.
  • Suwanmanon, K.; Hsieh, P. C. Effect of γ-Aminobutyric Acid and Nattokinase-Enriched Fermented Beans on the Blood Pressure of Spontaneously Hypertensive and Normotensive Wistar–kyoto Rats. J. Food Drug Anal. 2014, 22(4), 485–491.
  • Khang, D. T.; Vasiljevic, T.; Xuan, T. D. Bioactive Compounds, Antioxidant and Enzyme Activities in Germination of Oats (Avena Sativa L.). Int. Food Res. J. 2016, 23(5), 1980.
  • Sage, E. E.; Chang, Y. X.; Wickneswari, R.; Mackeen, M. M. High-Performance Liquid Chromatographic (HPLC) Analysis of a Crossbred Brown Rice Variety (UKMRC-9) Shows High GABA Content. Acta Aliment. 2020, 49(3), 356–363.
  • Kamjijam, B.; Suwannaporn, P.; Bednarz, H.; Jom, K. N.; Niehaus, K. Elevation of Gamma-Aminobutyric Acid (GABA) and Essential Amino Acids in Vacuum Impregnation Mediated Germinated Rice Traced by MALDI Imaging. Food Chem. 2021, 365, 130399.
  • Kradangar, P.; Songsermpong, S. Optimization of Fermentation Process on the Gaba Content and Quality of Fermented Rice Flour and Dry Fermented Rice Noodles. J. Food Process Preserv. 2015, 39(6), 1183–1191.
  • Srisuvor, N. The Properties of GABA (Gamma-Aminobutyric Acid) Rice Drinks Supplemented with Probiotic and Oligofructose During Chilled Storage. Songklanakarin Journal of Science & Technology. 2021, 43(2), 545–551.
  • Beaulieu, J. C.; Reed, S. S.; Obando-Ulloa, J. M.; Boue, S. M.; Cole, M. R. Green Processing, Germinating and Wet Milling Brown Rice (Oryza Sativa) for Beverages: Physicochemical Effects. Foods. 2020, 9(8), 1016.
  • Kim, Y.; Kim, Y.; Jhon, D. Y. Changes of the Chlorogenic Acid, Caffeine, Gama-Aminobutyric Acid (GABA) and Antioxidant Activities During Germination of Coffee Bean (Coffea Arabica). Emir. J. Food Agric. 2018, 675–680. DOI:10.9755/ejfa.2018.v30.i8.1763.
  • Jeng, K. C.; Chen, C. S.; Fang, Y. P.; Hou, R. C. W.; Chen, Y. S. Effect of Microbial Fermentation on Content of Statin, GABA, and Polyphenols in Pu-Erh Tea. J. Agric. Food. Chem. 2007, 55(21), 8787–8792.
  • Lin, S. D.; Mau, J. L.; Hsu, C. A. Bioactive Components and Antioxidant Properties of γ-Aminobutyric Acid (GABA) Tea Leaves. LWT - Food Sci. Technol. 2012, 46(1), 64–70.
  • Ratanaburee, A.; Kantachote, D.; Charernjiratrakul, W.; Penjamras, P.; Chaiyasut, C. Enhancement of γ-Aminobutyric Acid in a Fermented Red Seaweed Beverage by Starter Culture Lactobacillus Plantarum DW12. Electron. J. Biotechnol. 2011, 14(3), 1.
  • Kwon, S. Y.; Garcia, C. V.; Song, Y. C.; Lee, S. P. GABA-Enriched Water Dropwort Produced by Co-Fermentation with Leuconostoc Mesenteroides SM and Lactobacillus Plantarum K154. LWT. 2016, 73, 233–238.
  • Lee, K. W.; Shim, J. M.; Yao, Z.; Kim, J. A.; Kim, J. H. Properties of Kimchi Fermented with GABA-Producing Lactic Acid Bacteria as a Starter. J. Microbiol. Biotechnol. 2018, 28(4), 534–541.
  • Di Cagno, R.; Mazzacane, F.; Rizzello, C. G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M. Synthesis of γ-Aminobutyric Acid (GABA) by Lactobacillus Plantarum DSM19463: Functional Grape Must Beverage and Dermatological Applications. Appl. Microbiol. Biotechnol. 2010, 86(2), 731–741.
  • Kim, J. Y.; Lee, M. Y.; Ji, G. E.; Lee, Y. S.; Hwang, K. T. Production of γ-Aminobutyric Acid in Black Raspberry Juice During Fermentation by Lactobacillus Brevis GABA100. Int. J. Food Microbiol. 2009, 130(1), 12–16.
  • Zhang, Q.; Sun, Q.; Tan, X.; Zhang, S.; Zeng, L.; Tang, J.; Xiang, W. Characterization of γ-Aminobutyric Acid (GABA)-Producing Saccharomyces Cerevisiae and Coculture with Lactobacillus Plantarum for Mulberry Beverage Brewing. J. Biosci. Bioeng. 2020, 129(4), 447–453.
  • Shimajiri, Y.; Oonishi, T.; Ozaki, K.; Kainou, K.; Akama, K. Genetic Manipulation of the γ‐aminobutyric Acid (GABA) Shunt in Rice: Overexpression of Truncated Glutamate Decarboxylase (GAD 2) and Knockdown of γ‐aminobutyric Acid Transaminase (GABA‐T) Lead to Sustained and High Levels of GABA Accumulation in Rice Kernels. Plant Biotechnol. J. 2013, 11(5), 594–604.
  • Nonaka, S.; Arai, C.; Takayama, M.; Matsukura, C.; Ezura, H. Efficient Increase of Ɣ-Aminobutyric Acid (GABA) Content in Tomato Fruits by Targeted Mutagenesis. Sci. Rep. 2017, 7(1), 1–14.
  • Rizzo, G.; Baroni, L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients. 2018, 10(1), 43.
  • Jang, C. H.; Oh, J.; Lim, J. S.; Kim, H. J.; Kim, J. S. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods. 2021, 10(3), 636.
  • Swain, M. R.; Anandharaj, M.; Ray, R. C.; Rani, R. P. Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnol. Res. Int. 2014, 2014, 1–19.
  • Plengsaengsri, P.; Pimsuwan, T.; Wiriya-Aree, T.; Luecha, J.; Nualkaekul, S.; Deetae, P. Optimization of Process Conditions for the Development of Rice Milk by Using Response Surface Methodology. IOP Conf. Ser. Earth Environ. Sci. Oct 2019, 346(1), 12080.
  • Zhang, H.; Yao, H. Y.; Chen, F.; Wang, X. Purification and Characterization of Glutamate Decarboxylase from Rice Germ. Food Chem. 2007, 101(4), 1670–1676.
  • Mei, X.; Chen, Y.; Zhang, L.; Fu, X.; Wei, Q.; Grierson, D.; Zhou, Y.; Huang, Y.; Dong, F.; Yang, Z. Dual Mechanisms Regulating Glutamate Decarboxylases and Accumulation of Gamma-Aminobutyric Acid in Tea (Camellia Sinensis) Leaves Exposed to Multiple Stresses. Sci. Rep. 2016, 6(1), 1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.