495
Views
2
CrossRef citations to date
0
Altmetric
Review

Bioaccessibility and Application of Soybean Isoflavones: A Review

ORCID Icon, , ORCID Icon, , ORCID Icon &

References

  • Wuttke, W.; Jarry, H.; Westphalen, S.; Christoffel, V.; Seidlová-Wuttke, D. Phytoestrogens for Hormone Replacement Therapy? J. Steroid Biochem. Mol. Biol. 2002, 83(1–5), 133–147. DOI: 10.1016/s0960-0760(02)00259-5.
  • Setchell, K. D. R. The History and Basic Science Development of Soy Isoflavones. Menopause. 2017, 24(12), 1338–1350. DOI: 10.1097/GME.0000000000001018.
  • Setchell, K. D. R. Soy Isoflavones—benefits and Risks from Nature’s Selective Estrogen Receptor Modulators (SERMs). J. Am. Coll. Nutr. 2001, 20(sup5), 354S–362S. DOI: 10.1080/07315724.2001.10719168.
  • Alipour, M. R.; Karimi-Sales, E. Molecular Mechanisms of Protective Roles of Isoflavones Against Chemicals-Induced Liver Injuries. Chem.-Biol Interact. 2020, 329, 109213. DOI: 10.1016/j.cbi.2020.109213.
  • D’-Archivio, M.; Filesi, C.; Vari, R.; Scazzocchio, B.; Masella, R. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010, 11(4), 1321–1342. DOI: 10.3390/ijms11041321.
  • Cianciosi, D.; Forbes-Hernandez, T. Y.; Regolo, L.; Alvarez-Suarez, J. M.; Navarro-Hortal, M. D.; Xiao, J.; Quiles, J. L.; Battino, M.; Giampieri, F. The Reciprocal Interaction Between Polyphenols and Other Dietary Compounds: Impact on Bioavailability, Antioxidant Capacity and Other Physico-Chemical and Nutritional Parameters. Food Chem. 2022, 375, 131904. DOI: 10.1016/j.foodchem.2021.131904.
  • Izumi, T.; Piskula, M. K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M. J. Soy Isoflavone Aglycones are Absorbed Faster and in Higher Amounts Than Their Glucosides in Humans. Hum. Nutr. Metab. 2000, 130(7), 1695–1699. DOI: 10.1093/jn/130.7.1695.
  • Raimondi, S.; Roncaglia, L.; De Lucia, M.; Amaretti, A.; Leonardi, A.; Pagnoni, U. M.; Rossi, M. Bioconversion of Soy Isoflavones Daidzin and Daidzein by Bifidobacterium Strains. Appl. Microbiol. Biotechnol. 2009, 81(5), 943–950. DOI: 10.1007/s00253-008-1719-4.
  • Turner, N. J.; Thomson, B. M.; Shaw, I. C. Bioactive Isoflavones in Functional Foods: The Importance of Gut Microflora on Bioavailability. Nutr. Rev. 2003, 61(6), 204–213. DOI: 10.1301/nr.2003.jun.204-213.
  • Setchell, K. D. R.; Brown, N. M.; Zimmer-Nechemias, L.; Brashear, W. T.; Wolfe, B. E.; Kirschner, A. S.; Heubi, J. E. Evidence for Lack of Absorption of Soy Isoflavone Glycosides in Humans, Supporting the Crucial Role of Intestinal Metabolism for Bioavailability. Am. J. Clin. Nutr. 2002, 76(2), 447–453. DOI: 10.1093/ajcn/76.2.447.
  • Rizzo, G.; Baroni, L. S. Soy Foods and Their Role in Vegetarian Diets. Nutrients. 2018, 10(1), 43. DOI: 10.3390/nu10010043.
  • Nielsen, I. L. F.; Williamson, G. Review of the Factors Affecting Bioavailability of Soy Isoflavones in Humans. Nutr. Cancer. 2007, 57(1), 1–10. DOI: 10.1080/01635580701267677.
  • Zaheer, K.; Akhtar, M. H. An Updated Review of Dietary Isoflavones: Nutrition, Processing, Bioavailability, and Impacts on Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1280–1293. DOI: 10.1080/10408398.2014.989958.
  • Jung, Y. S.; Rha, C. S.; Baik, M. Y.; Baek, N. I.; Kim, D. O. A Brief History and Spectroscopic Analysis of Soy Isoflavones. Food Sci. Biotechnol. 2020, 29(12), 1605–1617. DOI: 10.1007/s10068-020-00815-6.
  • Messina, M.; Mejia, S. B.; Cassidy, A.; Duncan, A.; Kurzer, M.; Nagato, C.; Ronis, M.; Rowland, I.; Sievenpiper, J.; Barnes, S. Neither Soyfoods nor Isoflavones Warrant Classification as Endocrine Disruptors: A Technical Review of the Observational and Clinical Data. Crit. Rev. Food Sci. Nutr. 2021, 1–57. DOI:10.1080/10408398.2021.1895054.
  • Murphy, P. A.; Barua, K.; Hauck, C. C. Solvent Extraction Selection in the Determination of Isoflavones in Soy Foods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 777(1–2), 129–138. DOI: 10.1016/s1570-0232(02)00342-2.
  • Cho, C. H.; Jung, Y. S.; Nam, T. G.; Rha, C. S.; Ko, M. J.; Jang, D.; Kim, H. S.; Kim, D. O. pH-Adjusted Solvent Extraction and Reversed-Phase HPLC Quantification of Isoflavones from Soybean (Glycine Max (L.) Merr.). J. Food Sci. 2020, 85(3), 673–681. DOI: 10.1111/1750-3841.15051.
  • King, R. A.; Bignell, C. M. Concentrations of Isoflavone Phytoestrogens and Their Glucosides in Australian Soya Beans and Soya Foods. Aust. J. Nutr. Diet. 2000, 57(2), 70–78.
  • Zhu, S. F.; Wang, S. L.; Wei, D. Z.; Yang, Z. Z. Study on Extraction Conditions of Soybean Isoflavone. Food Sci. 2001, 22(03), 54–57. DOI: 10.3321/j.issn:1002-6630.2001.03.015.
  • Shi, X. M.; Yue, L.; Wu, L. R. Extraction and Refining of Soybean Isoflavone. China Oils Fats. 2001, 02, 3–5. DOI: 10.3321/j.issn:1003-7969.2001.02.001.
  • Bingham, S. A.; Atkinson, C.; Liggins, J.; Bluck, L.; Coward, A. Phyto-Oestrogens: Where are We Now? Br. J. Nutr. 1998, 79(5), 393–406. DOI: 10.1079/BJN19980068.
  • Daems, F.; Romnee, J. M.; Heuskin, S.; Froidmont, É.; Lognay, G. Analytical Methods Used to Quantify Isoflavones in Cow’s Milk: A Review. Dairy Sci. Technol. 2016, 96(3), 261–283. DOI: 10.1007/s13594-015-0276-8.
  • Kamiloglu, S.; Tomas, M.; Ozdal, T.; Capanoglu, E. Effect of Food Matrix on the Content and Bioavailability of Flavonoids. Trends Food Sci. Technol. 2021, 117, 15–33. DOI: 10.1016/j.tifs.2020.10.030.
  • Setchell, K. D. R.; Clerici, C.; Lephart, E. D.; Cole, S. J.; Heenan, C.; Castellani, D.; Wolfe, B. E.; Nechemias-Zimmer, L.; Brown, N. M.; Lund, T.-D.-S.-E. A Potent Ligand for Estrogen Receptor β, is the Exclusive Enantiomeric Form of the Soy Isoflavone Metabolite Produced by Human Intestinal Bacterial Flora. Am. J. Clin. Nutr. 2005, 81(5), 1072–1079. DOI: 10.1093/ajcn/81.5.1072.
  • Gaya, P.; Medina, M.; Sanchez-Jimenez, A.; Landete, J. M. Phytoestrogen Metabolism by Adult Human Gut Microbiota. Molecules 2016, 21(8),1034. DOI: 10.3390/molecules21081034.
  • Dixon, R. A. P. Annu. Rev. Plant Biol. 2004, 55(1), 225–261. DOI: 10.1146/annurev.arplant.55.031903.141729
  • Kulling, S. E.; Honig, D. M.; Metzler, M. Oxidative Metabolism of the Soy Isoflavones Daidzein and Genistein in Humans in vitro and in vivo. J. Agric. Food. Chem. 2001, 49(6), 3024–3033. DOI: 10.1021/jf0012695.
  • Teng, H.; Chen, L. Polyphenols and Bioavailability: An Update. Crit. Rev. Food Sci. Nutr. 2019, 59(13), 2040–2051. DOI: 10.1080/10408398.2018.1437023.
  • Setchell, K. D. R. Phytoestrogens: The Biochemistry, Physiology, and Implications for Human Health of Soy Isoflavones. Am. J. Clin. Nutr. 1998, 68(6), 1333–1346. DOI: 10.1093/ajcn/68.6.1333S.
  • Cohen, R.; Schwartz, B.; Peri, I.; Shimoni, E. Improving Bioavailability and Stability of Genistein by Complexation with High-Amylose Corn Starch. J. Agric. Food. Chem. 2011, 59(14), 7932–7938. DOI: 10.1021/jf2013277.
  • Jakobek, L. Interactions of Polyphenols with Carbohydrates, Lipids and Proteins. Food Chem. 2015, 175, 556–567. DOI: 10.1016/j.foodchem.2014.12.013.
  • Kumi-Diaka, J.; Oseni, S. O.; Famuyiwa, T.; Branly, R. Therapeutic Impact of Vitamin C on the Anticancer Activities of Genistein Isoflavone in Radiosensitized Lncap Prostate Cancer Cells. J. Cancer Prev. Curr. Res. 2015, 2(4), 00048. DOI: 10.15406/jcpcr.2015.02.00048.
  • Rao, A.; Woodruff, R. D.; Wade, W. N.; Kute, T. E.; Cramer, S. D. Genistein and Vitamin D Synergistically Inhibit Human Prostatic Epithelial Cell Growth. J. Nutr. 2002, 132(10), 3191–3194. DOI: 10.1093/jn/131.10.3191.
  • Zuniga, K. E.; Erdman, J. W. Combined Consumption of Soy Germ and Tomato Powders Results in Altered Isoflavone and Carotenoid Bioavailability in Rats. J. Agric. Food. Chem. 2011, 59(10), 5335–5341. DOI: 10.1021/jf2004157.
  • Tew, B. Y.; Xu, X.; Wang, H. J.; Murphy, P. A.; Hendrich, S. A Diet High in Wheat Fiber Decreases the Bioavailability of Soybean Isoflavones in a Single Meal Fed to Women. J. Nutr. 1996, 126(4), 871–877. DOI: 10.1093/jn/126.4.871.
  • Lipovac, M.; Pfitscher, A.; Hobiger, S.; Laschitz, T.; Imhof, M.; Chedraui, P.; Jungbauer, A. Red Clover Isoflavone Metabolite Bioavailability is Decreased After Fructooligosaccharide Supplementation. Fitoterapia. 2015, 105, 93–101. DOI: 10.1016/j.fitote.2015.06.011.
  • Moradi, M.; Daneshzad, E.; Azadbakht, L. The Effects of Isolated Soy Protein, Isolated Soy Isoflavones and Soy Protein Containing Isoflavones on Serum Lipids in Postmenopausal Women: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2020, 60(20), 3414–3428. DOI: 10.1080/10408398.2019.1689097.
  • Leonard, L. M.; Choi, M. S.; Cross, T. W. L. Maximizing the Estrogenic Potential of Soy Isoflavones Through the Gut Microbiome. Implication for Cardiometabolic Health in Postmenopausal Women. Nutrients. 2022, 14(3), 553.
  • Jackson, C.-J.-C.; Dini, J. P.; Lavandier, C.; Rupasinghe, H. P. V.; Faulkner, H.; Poysa, V.; Buzzell, D.; DeGrandis, S. Effects of Processing on the Content and Composition of Isoflavones During Manufacturing of Soy Beverage and Tofu. Process Biochem. 2002, 37(10), 1117–1123. DOI: 10.1016/S0032-9592(01)00323-5.
  • Barnes, S.; Prasain, J.; D’-Alessandro, T.; Arabshahi, A.; Botting, N.; Lila, M. A.; Jackson, G.; Janle, E.; Weaver, C. M. The Metabolism and Analysis of Isoflavones and Other Dietary Polyphenols in Foods and Biological Systems. Food Funct. 2011, 2(5), 235–244. DOI: 10.1039/c1fo10025d.
  • Ahn-Jarvis, J. H.; Teegarden, M. D.; Schwartz, S. J.; Lee, K.; Vodovotz, Y. Modulating Conversion of Isoflavone Glycosides to Aglycones Using Crude Beta-Glycosidase Extracts from Almonds and Processed Soy. Food Chem. 2017, 237, 685–692. DOI: 10.1016/j.foodchem.2017.05.122.
  • Toda, T.; Sakamoto, A.; Takayanagi, T.; Yokotsuka, K. Changes in Isoflavone Compositions of Soybean Foods During Cooking Process. Food Sci. Technol. Res. 2000, 6(4), 314–319. DOI: 10.3136/fstr.6.314.
  • Coward, L.; Smith, M.; Kirk, M.; Barnes, S. Chemical Modification of Isoflavones in Soyfoods During Cooking and Processing. Am. J. Clin. Nutr. 1998, 68(6), 1486–1491. DOI: 10.1093/ajcn/68.6.1486S.
  • Qu, S.; Kwon, S. J.; Duan, S.; Lim, Y. J.; Eom, S. H. Isoflavone Changes in Immature and Mature Soybeans by Thermal Processing. Molecules. 2021, 26(24), 7471. DOI: 10.3390/molecules26247471.
  • Shin, D. J.; Kim, W.; Kim, Y. Physicochemical and Sensory Properties of Soy Bread Made with Germinated, Steamed, and Roasted Soy Flour. Food Chem. 2013, 141(1), 517–523. DOI: 10.1016/j.foodchem.2013.03.005.
  • Kuligowski, M.; Sobkowiak, D.; Polanowska, K.; Jasińska-Kuligowska, I. Effect of Different Processing Methods on Isoflavone Content in Soybeans and Soy Products. J. Food Compost. Anal. 2022, 110, 104535. DOI: 10.1016/j.jfca.2022.104535.
  • Chen, Y.; Shan, S.; Cao, D.; Tang, D. Steam Flash Explosion Pretreatment Enhances Soybean Seed Coat Phenolic Profiles and Antioxidant Activity. Food Chem. 2020, 319, 126552. DOI: 10.1016/j.foodchem.2020.126552.
  • Lopez-Gamez, G.; Elez-Martinez, P.; Martin-Belloso, O.; Soliva-Fortuny, R. Recent Advances Toward the Application of Non-Thermal Technologies in Food Processing: An Insight on the Bioaccessibility of Health-Related Constituents in Plant-Based Products. Foods. 2021, 10(7), 1538. DOI: 10.3390/foods10071538.
  • Bau, T. R.; Ida, E. I. Soymilk Processing with Higher Isoflavone Aglycone Content. Food Chem. 2015, 183, 161–168. DOI: 10.1016/j.foodchem.2015.03.026.
  • Morales-de la Peña, M.; Welti-Chanes, J.; Martín-Belloso, O. Impact of Pulsed Electric Field Pre-Treatment on the Isoflavone Profile of Soymilk. Beverages. 2022, 8(2), 19. DOI: 10.3390/beverages8020019.
  • Lu, C.; Li, F.; Yan, X.; Mao, S.; Zhang, T. Effect of Pulsed Electric Field on Soybean Isoflavone Glycosides Hydrolysis by Beta-Glucosidase: Investigation on Enzyme Characteristics and Assisted Reaction. Food Chem. 2022, 378, 132032. DOI: 10.1016/j.foodchem.2021.132032.
  • Rodríguez-Roque, M. J.; De Ancos, B.; Sánchez-Vega, R.; Sánchez-Moreno, C.; Elez-Martínez, P.; Martín-Belloso, O. In vitro Bioaccessibility of Isoflavones from a Soymilk-Based Beverage as Affected by Thermal and Non-Thermal Processing. Innovative Food Sci. Emerging Technol. 2020, 66, 102504. DOI: 10.1016/j.ifset.2020.102504.
  • Falcao, H. G.; Handa, C. L.; Silva, M. B. R.; de Camargo, A. C.; Shahidi, F.; Kurozawa, L. E.; Ida, E. I. Soybean Ultrasound Pre-Treatment Prior to Soaking Affects Beta-Glucosidase Activity, Isoflavone Profile and Soaking Time. Food Chem. 2018, 269, 404–412. DOI: 10.1016/j.foodchem.2018.07.028.
  • Morales-de la Pena, M.; Martin-Belloso, O.; Welti-Chanes, J. High-Power Ultrasound as Pre-Treatment in Different Stages of Soymilk Manufacturing Process to Increase the Isoflavone Content. Ultrason. Sonochem. 2018, 49, 154–160. DOI: 10.1016/j.ultsonch.2018.07.044.
  • Zhao, C. C.; Kim, P. H.; Eun, J. B. Influence of High-Intensity Ultrasound Application on the Physicochemical Properties, Isoflavone Composition, and Antioxidant Activity of Tofu Whey. Lwt. 2020, 117, 108618. DOI: 10.1016/j.lwt.2019.108618.
  • Falcao, H. G.; Silva, M. B. R.; de Camargo, A. C.; Shahidi, F.; Franchin, M.; Rosalen, P. L.; Alencar, S. M.; Kurozawa, L. E.; Ida, E. I. Optimizing the Potential Bioactivity of Isoflavones from Soybeans via Ultrasound Pretreatment: Antioxidant Potential and NF-KappaB Activation. J. Food Biochem. 2019, 43(11), e13018. DOI: 10.1111/jfbc.13018.
  • Yu, G.; Zhu, H.; Huang, Y.; Zhang, X.; Sun, L.; Wang, Y.; Xia, X. Preparation of Daidzein Microparticles Through Liquid Antisolvent Precipitation Under Ultrasonication. Ultrason. Sonochem. 2021, 79, 105772. DOI: 10.1016/j.ultsonch.2021.105772.
  • Ma, M.; Xu, W.; Wang, P.; Gu, Z.; Zhang, H.; Yang, R. UV-B- Triggered H2O2 Production Mediates Isoflavones Synthesis in Germinated Soybean. Food Chem.: X. 2022, 14, 100331. DOI: 10.1016/j.fochx.2022.100331.
  • Bhalla, Y.; Chadha, K.; Chadha, R.; Karan, M. Daidzein Cocrystals: An Opportunity to Improve Its Biopharmaceutical Parameters. Heliyon. 2019, 5(11), e02669. DOI: 10.1016/j.heliyon.2019.e02669.
  • Zhu, Y. Y.; Thakur, K.; Feng, J. Y.; Cai, J. S.; Zhang, J. G.; Hu, F.; Wei, Z. J. B-Vitamin Enriched Fermented Soymilk: A Novel Strategy for Soy-Based Functional Foods Development. Trends Food Sci. Technol. 2020, 105, 43–55. DOI: 10.1016/j.tifs.2020.08.019.
  • Jang, H. H.; Noh, H.; Kim, H. W.; Cho, S. Y.; Kim, H. J.; Lee, S. H.; Lee, S.-H.; Gunterc, M. J.; Ferraric, P.; Scalbert, A., et al. Metabolic Tracking of Isoflavones in Soybean Products and Biosamples from Healthy Adults After Fermented Soybean Consumption. Food Chem. 2020, 330, 127317. DOI: 10.1016/j.foodchem.2020.127317.
  • Liu, Y.; Ma, Y. Q. A Method for Increasing the Content of Aglycone Isoflavone in Soybean Sauce. Cn101999633a, May 23, 2017
  • Lee, D. H.; Kim, M. J.; Ahn, J.; Lee, S. H.; Lee, H.; Kim, J. H.; Park, S. H.; Jang, Y. J.; Ha, T. Y.; Jung, C. H. Nutrikinetics of Isoflavone Metabolites After Fermented Soybean Product (Cheonggukjang) Ingestion in Ovariectomized Mice. Mol. Nutr Food Res. 2017, 61(12), 1700322. DOI: 10.1002/mnfr.201700322.
  • Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation Transforms the Phenolic Profiles and Bioactivities of Plant-Based Foods. Biotechnol. Adv. 2021, 49, 107763. DOI: 10.1016/j.biotechadv.2021.107763.
  • Gioia, D. D.; Strahsburger, E.; de Lacey, A. M. L.; Bregola, V.; Marotti, I.; Aloisio, I.; Biavati, B.; Dinelli, G. Flavonoid Bioconversion in Bifidobacterium Pseudocatenulatum B7003: A Potential Probiotic Strain for Functional Food Development. J. Funct. Foods. 2014, 7, 671–679. DOI: 10.1016/j.jff.2013.12.018.
  • I, C. H.; Kim, S. K. Method for Mass Production of Isoflavone Aglycone from Soybean Curd Residues. KR100882280, February 6, 2009.
  • Fang, X.; Huang, B. L.; Wang, J.; Liao, Z. L.; Zhong, Q. P.; Wang, L. Sour Pulp Bean Curd Rich in Aglycone Type Isoflavone and Preparation Method Thereof. CN111616227A, September 4, 2020.
  • Zhu, Y. Y.; Thakur, K.; Feng, J. Y.; Cai, J. S.; Zhang, J. G.; Hu, F.; Wei, Z. J., Spano, G., Wei, Z.-J. Riboflavin-Overproducing Lactobacilli for the Enrichment of Fermented Soymilk: Insights into Improved Nutritional and Functional Attributes. Appl. Microbiol. Biotechnol. 2020, 104(13), 5759–5772. DOI: 10.1007/s00253-020-10649-1.
  • Li, J.; Lu, H.; Liu, L.; Wu, X. X.; Li, C.; Ding, C.; Li, J. &. Probiotic Fermentation of Soymilk to Improve the Transformation of Bound Soybean Isoflavones. Food Ferment. Ind. 2020, 15, 40–55. DOI: 10.13995/j.cnki.11-1802/ts.029347.
  • Zhang, L.; Zhu, Y. A Kind of Fermented Beverage of Soybean Whey Rich in Aglycone Isoflavones. CN109007476A, November 18, 2018.
  • Xu, N.; Peng, Y. M.; Huang, Y.; Hu, Y.; Zhou, M. Z.; Gao, B.; Wang, C.; Li, D. S. Soy Sauce Rich in Soybean Isoflavone Aglycone and Production Process Thereof. CN105341869A, February 24, 2016.
  • Li, C.; Xu, T.; Liu, X. W.; Wang, X.; Xia, T. The Expression of β-Glucosidase During Natto Fermentation Increased the Active Isoflavone Content. Food Biosci. 2021, 43, 101286. DOI: 10.1016/j.fbio.2021.101286.
  • Samruan, W.; Gasaluck, P.; Oonsivilai, R. Total Phenolic and Flavonoid Contents of Soybean Fermentation by Bacillus Subtilis SB-MYP-1. Adv. Mater. Res. 2014, 931931-932, 1587–1591. DOI: 10.4028/scientific.net/AMR.931-932.1587.
  • Yang, H.; Zhang, L. Changes in Some Components of Soymilk During Fermentation with the Basidiomycete Ganoderma Lucidum. Food Chem. 2009, 112(1), 1–5. DOI: 10.1016/j.foodchem.2008.05.024.
  • Fernandes, M. S.; Lima, F. S.; Rodrigues, D.; Handa, C.; Guelfi, M.; Garcia, S.; Ida, E. I. Evaluation of the Isoflavone and Total Phenolic Contents of Kefir-Fermented Soymilk Storage and After the in vitro Digestive System Simulation. Food Chem. 2017, 229, 373–380. DOI: 10.1016/j.foodchem.2017.02.095.
  • Da Silva, L. H.; Celeghini, R. M. S.; Chang, Y. K. Effect of the Fermentation of Whole Soybean Flour on the Conversion of Isoflavones from Glycosides to Aglycones. Food Chem. 2011, 128(3), 640–644.
  • Kuligowski, M.; Pawłowska, K.; Jasińska-Kuligowska, I.; Nowak, J. Isoflavone Composition, Polyphenols Content and Antioxidative Activity of Soybean Seeds During Tempeh Fermentation. CyTa–J. Food. 2016, 15, 27–33. DOI: 10.1080/19476337.2016.1197316.
  • Hwang, C. E.; Kim, S. C.; Kim, D. H.; Lee, H. Y.; Suh, H. K.; Cho, K. M.; Lee, J. H. Enhancement of Isoflavone Aglycone, Amino Acid, and CLA Contents in Fermented Soybean Yogurts Using Different Strains: Screening of Antioxidant and Digestive Enzyme Inhibition Properties. Food Chem. 2021, 340, 128199. DOI: 10.1016/j.foodchem.2020.128199.
  • Rekha, C. R.; Vijayalakshmi, G. Bioconversion of Isoflavone Glycosides to Aglycones, Mineral Bioavailability and Vitamin B Complex in Fermented Soymilk by Probiotic Bacteria and Yeast. J. Appl. Microbiol. 2010, 109(4), 1198–1208. DOI: 10.1111/j.1365-2672.2010.04745.x.
  • Li, J. B.; Chen, H. Y.; Dai, A. X.; Chen, H. C.; Ni, Z. A Kind of Fermentation Process Effectively Improving Bean Dregs Determination of Soybean Isoflavone in Feed Aglycones Content. CN110063409A, July 30, 2019.
  • Li, D. X.; Guo, Y.; Wu, J.; Lin, Z. Q.; Zhang, Z. Q. Preparation Method of a Fermented Beverage Rich in Soybean Isoflavone Aglycone. CN113558193A, October 29, 2021.
  • Peiroten, A.; Gaya, P.; Landete, J. M. Application of Recombinant Lactic Acid Bacteria and Bifidobacteria Able to Enrich Soy Beverage in Dihydrodaidzein and Dihydrogenistein. Food. Res. Int. 2020, 134, 109257. DOI: 10.1016/j.foodres.2020.109257.
  • Wu, Z.; Song, L.; Feng, S.; Liu, Y.; He, G.; Yioe, Y.; Liu, S. Q.; Huang, D. Germination Dramatically Increases Isoflavonoid Content and Diversity in Chickpea (Cicer Arietinum L.) Seeds. J. Agric. Food. Chem. 2012, 60(35), 8606–8615. DOI: 10.1021/jf3021514.
  • Oyedeji, A. B.; Mellem, J. J.; Ijabadeniyi, O. A. Potential for Enhanced Soy Storage Protein Breakdown and Allergen Reduction in Soy-Based Foods Produced with Optimized Sprouted Soybeans. Lwt. 2018, 98, 540–545. DOI: 10.1016/j.lwt.2018.09.019.
  • Hu, W.; Liu, X.; Xiong, Y.; Liu, T.; Li, Z.; Song, J.; Wang, J.; Wang, X.; Li, X. Nutritional Evaluation and Transcriptome Analyses of Short-Time Germinated Seeds in Soybean (Glycine Max L. Merri.). Sci. Rep. 2021, 11(1), 22714. DOI: 10.1038/s41598-021-02132-2.
  • Zhu, D.; Hettiarachchy, N. S.; Horax, R.; Chen, P. Isoflavone Contents in Germinated Soybean Seeds. Plant Foods Hum. Nutr. 2005, 60(3), 147–151. DOI: 10.1007/s11130-005-6931-0.
  • Yoshiaraa, L. Y.; Mandarinob, J. M. G.; Carrão-Panizzic, M. C.; Madeiraa, T. B.; da Silvaa, J. B.; de Camargoa, A. C.; Shahidid, F.; Idaa, E. I. Germination Changes the Isoflavone Profile and Increases the Antioxidant Potential of Soybean. J. Food Bioact. 2018, 3, 144–150. DOI: 10.31665/jfb.2018.3157.
  • Kuligowski, M.; Jasińska-Kuligowska, K.; Polanowska, I.; Jasińska-Kuligowska, I. Effect of Different Processing Methods on Isoflavone Content in Soybeans and Soy Products. J. Food Compos. Anal. 2022, 110, 104535. DOI: 10.1016/j.jfca.2022.104535.
  • Lee, H. Y.; Kim, J. S.; Kim, Y. S.; Kim, W. J. Isoflavone and Quality Improvement of Soymilk by Using Germinated Soybean. Korean J. Food Sci. Technol. 2005, 37(3), 443–448.
  • Yi, Y. Q.; Tian, X.; Fang, W. M.; Yang, Z. F.; Xu, J. P. Soybean Powder Rich in Soybean Isoflavone and Its Preparation Method and Application. CN112154728A, January 1, 2021.
  • Yin, Y.; Tian, X.; Yang, J.; Yang, Z.; Tao, J.; Fang, W. Melatonin Mediates Isoflavone Accumulation in Germinated Soybeans (Glycine Max L.) Under Ultraviolet-B Stress. Plant Physiol. Biochem. 2022, 175, 23–32. DOI: 10.1016/j.plaphy.2022.02.001.
  • Yin, Y.; Tian, X.; He, X.; Yang, J.; Yang, Z.; Fang, W. Exogenous Melatonin Stimulated Isoflavone Biosynthesis in NaCl-Stressed Germinating Soybean (Glycine Max L.). Plant Physiol. Biochem. 2022, 185, 123–131. DOI: 10.1016/j.plaphy.2022.05.033.
  • Wang, S. Y.; Zhang, Y. J.; Zhu, G. Y.; Shi, X. C.; Chen, X.; Herrera‐balandrano, D. D.; Liu, F.-Q.; Laborda, P. Occurrence of Isoflavones in Soybean Sprouts and Strategies to Enhance Their Content: A Review. J. Food Sci. 2022, 87(5), 1961–1982. DOI: 10.1111/1750-3841.16131.
  • Ahmed, A.; Nasim, F. H.; Batool, K.; Bibi, A., Batool, K., Bibi, A. Microbial β-Glucosidases: Screening, Characterization, Cloning and Applications. J Appl Environ. Microbiol. 2017, 5(2), 31–46. DOI: 10.12691/jaem-5-2-2.
  • Ningtyas, D. W.; Hati, S.; Prakash, S. Bioconversion and Bioaccessibility of Isoflavones from Sogurt During in vitro Digestion. Food Chem. 2021, 343, 128553. DOI: 10.1016/j.foodchem.2020.128553.
  • Horii, K.; Adachi, T.; Matsuda, T.; Tanaka, T.; Sahara, H.; Shibasaki, S.; Ogino, C.; Hata, Y.; Ueda, M.; Kondo, A. Improvement of Isoflavone Aglycones Production Using β-Glucosidase Secretory Produced in Recombinant Aspergillus Oryzae. J. Mol. Catal. B Enzym. 2009, 59(4), 297–301. DOI: 10.1016/j.molcatb.2008.11.013.
  • Ha, W. H.; Kim, H. S.; Lim, J. H.; Jeon, C. L.; Kwon, E. J. Whole Soybean Curd Beverage, and Manufacturing Method Thereof. KR101777245, September 11, 2017.
  • Wang, R.; Thakur, K.; Feng, J.-Y.; Zhu, Y.-Y.; Zhang, F.; Russo, P.; Spanoc, G.; Zhang, J.-G.; Wei, Z.-J. Functionalization of Soy Residue (Okara) by Enzymatic Hydrolysis and LAB Fermentation for B2 Bio-Enrichment and Improved in vitro Digestion. Food Chem. 2022, 387, 132947. DOI: 10.1016/j.foodchem.2022.132947.
  • Guo, M. M.; Yang, Q.; Duan, Z. Q. Investigation on the Hydrolysis of Soybean Isoflavones Catalyzed by Cellulase. China Oils Fats. 2022. DOI: 10.19902/j.cnki.zgyz.1003-7969.220009.
  • de Queiros, L. D.; Dias, F. F. G.; de Avila, A. R. A.; Macedo, J. A.; Macedo, G. A.; de Moura Bell, J. M. L. N. Effects of Enzyme-Assisted Extraction on the Profile and Bioaccessibility of Isoflavones from Soybean Flour. Food Res. Int 2021, 14147, 110474. DOI: 10.1016/j.foodres.2021.110474.
  • Penha, C. B.; Falcao, H. G.; Ida, E. I.; Speranza, P.; Kurozawa, L. E. Enzymatic Pretreatment in the Extraction Process of Soybean to Improve Protein and Isoflavone Recovery and to Favor Aglycone Formation. Food. Res. Int. 2020, 137, 109624. DOI: 10.1016/j.foodres.2020.109624.
  • Yao, Y. J.; Wang, L. F.; Ju, X. R. Immobilization of β-Glucosidase Onto Cellulose Particles for Application in Hydrolysis of Soybean Isoflavones. Food Sci. 2017, 38(24), 177–182.
  • Qu, Y.; Luo, Y.; Yang, X.; Zhang, Y.; Yang, E.; Xu, H.; He, Y.; Chagan, I.; Yan, J. Highly Efficient Biotransformation of Phenolic Glycosides Using a Recombinant β-Glucosidase from White Rot Fungus Trametes Trogii. Front. Microbiol. 2022, 13, 762502. DOI: 10.3389/fmicb.2022.762502.
  • Chao, P. W.; Yang, K. M.; Chiang, Y. C.; Chiang, P. Y. The Formulation and the Release of Low–methoxyl Pectin Liquid-Core Beads Containing an Emulsion of Soybean Isoflavones. Food Hydrocolloids. 2022, 130, 107722. DOI: 10.1016/j.foodhyd.2022.107722.
  • Sanatkar, R.; Rahimi Kalateh Shah Mohammad, G.; Karimi, E.; Oskoueian, E., and Hendra, R. Evaluation of Daidzein-Loaded Chitosan Microcapsules for the Colon Cancer Drug Delivery: Synthesis, Characterization and Release Behaviour. Polym. Bull. 2021, 1–15. https://doi.org/10.1007/s00289-021-03853-0.
  • Wang, S.; Shao, G.; Yang, J.; Liu, J.; Wang, J.; Zhao, H.; Yanga, L.; Liua, H.; Zhua, D.; Lic, Y., et al. The Production of Gel Beads of Soybean Hull Polysaccharides Loaded with Soy Isoflavone and Their pH-Dependent Release. Food Chem. 2020, 313, 126095. DOI: 10.1016/j.foodchem.2019.126095.
  • Jangid, A. K.; Solanki, R.; Patel, S.; Pooja, D.; Kulhari, H. Genistein Encapsulated Inulin-Stearic Acid Bioconjugate Nanoparticles: Formulation Development, Characterization and Anticancer Activity. Int. J. Biol. Macromol. 2022, 206, 213–221. DOI: 10.1016/j.ijbiomac.2022.02.031.
  • Liu, Q.; Sun, Y.; Cheng, J.; Guo, M. Development of Whey Protein Nanoparticles as Carriers to Deliver Soy Isoflavones. LWT. 2022, 155, 112953. DOI: 10.1016/j.lwt.2021.112953.
  • Soleimanpour, M.; Tamaddon, A. M.; Kadivar, M.; Abolmaali, S. S.; Shekarchizadeh, H. Fabrication of Nanostructured Mesoporous Starch Encapsulating Soy-Derived Phytoestrogen (Genistein) by Well-Tuned Solvent Exchange Method. Int. J. Biol. Macromol. 2020, 159, 1031–1047. DOI: 10.1016/j.ijbiomac.2020.05.124.
  • Fan, W.; Zhang, S.; Wu, Y.; Lu, T.; Liu, J.; Cao, X.; Liu, S.; Yan, L.; Shi, X.; Liu, G., et al. Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis. ACS Appl. Mater. Interfaces. 2021, 13(34), 40249–40266. DOI: 10.1021/acsami.1c09215.
  • Branca, F.; Lorenzetti, S. Health Effects of Phytoestrogens. Forum. Nutr. 2005, 57, 100–111. DOI: 10.1159/000083773.
  • Gao, X. Z.; Liu, H.; Ding, X. L.; Chen, Q. S. Progress on the Study and Application of Soybean Isoflavones. Food Sci. 2004, 25(11), 386–392.
  • Clerici, C.; Setchell, K. D. R.; Battezzati, P. M.; Pirro, M.; Giuliano, V.; Asciutti, S.; Castellani, D.; Nardi, E.; Sabatino, G.; Orlandi, S., et al. Pasta Naturally Enriched with Isoflavone Aglycons from Soy Germ Reduces Serum Lipids and Improves Markers of Cardiovascular Risk. Am. Soc. Nutr. 2007, 137(10), 2270–2278.
  • Zhang, J. Y. Soybean Isoflavone Milk Powder and Its Preparation Method. CN1454487, November 12, 2003.
  • Zhang, J. Blood Sugar Reducing Food. CN105011144A, November 23, 2015.
  • Wen, J. H. Dietary Supplement for Coronary Diseases. CN102697044A, October 3, 2012.
  • Tan, W. W. Health-Care Purple Rice Wine and Preparation Method Thereof. CN112300889A, February 2, 2021.
  • Hu, X. J.; Zhang, R. P.; Xu, Y.; Xu, P. H. Isoflavones Effervescent Tablet and Preparation Method Thereof. CN107373272A, December 11, 2017.
  • Zhang, H. D.; Wang, B.; Pu, Y. J.; Chen, F.; Gu, P. H. Formulated Composite Powder for Calcium Supplement. CN102389117A, March 28, 2012.
  • Lei, C. L. Preparation Method of Milk Beverage for Releasing Osteoporosis. CN101700071A, May 5, 2010.
  • Liu, A. G. Health Care Composition for Preventing Osteoporosis. CN101347462, January 21, 2009.
  • Che, H. L.; Wu, B. S. Bone Arthrosis Ruggedization Milk. CN101156630, April 9, 2008.
  • Takashi, S.; Masahito, T.; Kazuya, Y.; Kinya, T. Bone Fortifier Dietary Supplements. JP2020128436, August 27, 2017.
  • Gao, L. A Kind of Composition and Method of Making the Same of Delaying Female Aging. CN101590087, December 2, 2009.
  • Zhao, Y. P.; Li, W. W.; Chen, Y. K.; Li, Y. H.; Zhang, L.; Wang, X.; Zhang, P. F. Application of Soybean Isoflavone in Preparing Medicine and Health Food for Treating Spine Aging Diseases. CN113384573A, September 14, 2021.
  • Wang, Z. Pharmaceutical Composition or Health-Care Product for Improving Sleeping and Delaying Senility and Preparation Method Thereof. CN101537079, September 23, 2009.
  • Takashi, S.; Takumi, M.; Hiroshi, T.; Masahito, T.; Kazuya, Y.; Kinya, T. Powder Green Juice Drink. JP2017112935, June 29, 2017.
  • Xu, K. Y. B.; Tonic, H. CN102599516A, July 25, 2012.
  • He, C. S.; Jiang, F.; Hou, A. M.; Huang, Y. Granule with Beauty and Health Function. CN1876178, December 13, 2006.
  • Jin, D. C.; Xue, S. J.; Pu, H. J.; Liang, W. F.; Cui, M. X.; Zhou, Y. L. Health-Preserving Wine with Health-Care Function and Application Thereof. CN112481067A, May 12, 2021.
  • Ma, H.; Li, H. Y.; Chao, M. Y. Preparation Process of Beauty Maintaining and Young Keeping Enzyme. CN114009641A, February 8, 2022.
  • Kuang, D. W. The Medicine of a Kind of Enhancing Immunity or Health Food. CN106138478A, November 23, 2016.
  • Gao, W. Anti-Senility and Health-Care Food. CN1718100, January 11, 2006.
  • Feng, L. L.; Fan, F. Y.; Yang, B. L.; Yang, F. M.; You, C. M.; Tang, P. Y. Instant Herbal Health-Care Medicament with the Function of Enhancing Immunity and Preparation Method Thereof. CN102150841A, August 17, 2010.
  • Sun, Q. K.; Han, J. Process for Soybean Isoflavone Beverage. CN1439310, September 3, 2003.
  • Gao, X. L.; Ma, G. Z.; Feng, W. Soybean Isoflavone Soft Capsule and Its Preparation Technology. CN1475213, February 18, 2004.
  • Su, H. C.; Guo, M. N. Selenium-Containing Cordyceps Militaris Compound Preparation for Preventing and Treating Female Climacteric Syndromes. CN104940241A, September 30, 2015.
  • Wen, J. H. Nutritional Health-Care Product for Improving Menopausal Symptoms. CN103070940A, May 1, 2013.
  • Yang, C. J.; Wang, T.; Shi, L. H.; Qu, T.; Xu, H. N.; Ju, D.; Li, M. Composition for Relieving Female Climacteric Syndrome and Preparation Method Thereof. CN106509890A, March 22, 2017.
  • Cho, K. M.; Lee, D. H.; Lee, B. W.; Kang, S. S.; Hwang, C. E.; Lee, H. Y.; Ahn, M. J.; Lee, Y. Y.; Park, J. Y.; Sim, E. Y., et al. Soybean Fermented Composition Having Enhanced Physiological Activity and Health Functional Food for Alleviating Climacteric or Menopausal Syndrome Comprising the Same. KR20170054682, May 18, 2017.
  • Zhao, K. A Kind of Chocolate and Preparation Method Thereof Rich in Isoflavones. CN109511764A, March 26, 2019.
  • Li, D.; Li, X. L.; Li, R.; Pu, G. H. Functional Dairy Product. CN101053347, October 17, 2007.
  • Wei, T. T.; Chandy, M.; Nishiga, M.; Zhang, A.; Kumar, K. K.; Thomas, D.; Manhas, A.; Rhee, S.; Justesen, J. M.; Chen, I. Y., et al. Cannabinoid Receptor 1 Antagonist Genistein Attenuates Marijuana-Induced Vascular Inflammation. Cell. 2022, 185(10), 1676–1693. DOI: 10.1016/j.cell.2022.06.006.
  • Liu, X. X.; Li, S. H.; Chen, J. Z.; Sun, K.; Wang, X. J.; Wang, X. G.; Hui, R. T. Effect of Soy Isoflavones on Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2012, 22(6), 463–470. DOI: 10.1016/j.numecd.2010.09.006.
  • Nachvak, S. M.; Moradi, S.; Anjom-Shoae, J.; Rahmani, J.; Nasiri, M.; Maleki, V.; Sadeghi, O. S. Soy Isoflavones, and Protein Intake in Relation to Mortality from All Causes, Cancers, and Cardiovascular Diseases: A Systematic Review and Dose–response Meta-Analysis of Prospective Cohort Studies. J. Acad. Nutr. Diet. 2019, 119(9), 1483–1500. DOI: 10.1016/j.jand.2019.04.011.
  • Barańska, A.; Błaszczuk, A.; Kanadys, W.; Baczewska, B.; Jędrych, M.; Wawryk-Gawda, E.; Polz-Dacewicz, M. Effects of Soy Protein Containing of Isoflavones and Isoflavones Extract on Plasma Lipid Profile in Postmenopausal Women as a Potential Prevention Factor in Cardiovascular Diseases: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2021, 13(8), 2531. DOI: 10.3390/nu13082531.
  • Man, B.; Cui, C.; Zhang, X.; Sugiyama, D.; Barinas-Mitchell, E.; Sekikawa, A. The Effect of Soy Isoflavones on Arterial Stiffness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Nutr. 2021, 60(2), 603–614. DOI: 10.1007/s00394-020-02300-6.
  • Morvaridzadeh, M.; Nachvak, S. M.; Agah, S.; Sepidarkish, M.; Dehghani, F.; Rahimlou, M.; Pizarro, A. B.; Heshmati, J. Effect of Soy Products and Isoflavones on Oxidative Stress Parameters: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Food Res. 2020, 137, 109578. DOI: 10.1016/j.foodres.2020.109578.
  • Taku, K.; Melby, M. K.; Kronenberg, F.; Kurzer, M. S.; Messina, M. Extracted or Synthesized Soybean Isoflavones Reduce Menopausal Hot Flash Frequency and Severity: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Menopause. 2012, 19(7), 776–790. DOI: 10.1097/gme.0b013e3182410159.
  • Cui, C.; Birru, R. L.; Snitz, B. E.; Ihara, M.; Kakuta, C.; Lopresti, B. J.; Aizenstein, H. J.; Lopez, O. L.; Mathis, C. A.; Miyamoto, Y., et al. Effects of Soy Isoflavones on Cognitive Function: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Rev. 2020, 78(2), 134–144. DOI: 10.1093/nutrit/nuz050.
  • Pintova, S.; Dharmupari, S.; Moshier, E.; Zubizarreta, N.; Ang, C.; Holcombe, R. F. Genistein Combined with FOLFOX or Folfox–bevacizumab for the Treatment of Metastatic Colorectal Cancer: Phase I/II Pilot Study. Cancer Chemother. Pharmacol. 2019, 84(3), 591–598. DOI: 10.1007/s00280-019-03886-3.
  • Kanadys, W.; Barańska, A.; Błaszczuk, A.; Polz-Dacewicz, M.; Drop, B.; Malm, M.; Kanecki, K. Effects of Soy Isoflavones on Biochemical Markers of Bone Metabolism in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health. 2021, 18(10), 5346. DOI: 10.3390/ijerph18105346.
  • Boutas, I.; Kontogeorgi, A.; Dimitrakakis, C.; Kalantaridou, S. N. Soy Isoflavones and Breast Cancer Risk: A Meta-Analysis. Vivo. 2022, 36(2), 556–562. DOI: 10.21873/invivo.12737.
  • Barańska, A.; Błaszczuk, A.; Polz-Dacewicz, M.; Kanadys, W.; Malm, M.; Janiszewska, M.; Jędrych, M. Effects of Soy Isoflavones on Glycemic Control and Lipid Profile in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2021, 13(6), 1886. DOI: 10.3390/nu13061886.
  • Zhao, T. T.; Jin, F.; Li, J. G.; Xu, Y. Y.; Dong, H. T.; Liu, Q.; Xing, P.; Zhu, G.-L.; Xu, H.; Miao, Z. F. Dietary Isoflavones or Isoflavone-Rich Food Intake and Breast Cancer Risk: A Meta-Analysis of Prospective Cohort Studies. Clin. Nutr. 2019, 38(1), 136–145. DOI: 10.1016/j.clnu.2017.12.006.
  • Quaas, A. M.; Kono, N.; Mack, W. J.; Hodis, H. N.; Felix, J. C.; Paulson, R. J.; Shoupe, D. The Effect of Isoflavone Soy Protein Supplementation on Endometrial Thickness, Hyperplasia and Endometrial Cancer Risk in Postmenopausal Women: A Randomized Controlled Trial. Menopause. 2013, 20(8), 840. DOI: 10.1097/GME.0b013e3182804353.
  • Qiu, S.; Jiang, C. Soy and Isoflavones Consumption and Breast Cancer Survival and Recurrence: A Systematic Review and Meta-Analysis. Eur. J. Nutr. 2019, 58(8), 3079–3090. DOI: 10.1007/s00394-018-1853-4.
  • Mori, M.; Okabe, Y.; Tanimoto, H.; Shimazu, T.; Mori, H.; Yamori, Y. Isoflavones as Putative Anti‐aging Food Factors in Asia and Effects of Isoflavone Aglycone‐rich Fermented Soybeans on Bone and Glucose Metabolisms in Post‐menopausal Women. Geriatr. Gerontol. Int. 2008, 8, S8–S15. DOI: 10.1111/j.1447-0594.2007.00399.x.
  • Bilir, B.; Sharma, N. V.; Lee, J.; Hammarstrom, B.; Svindland, A.; Kucuk, O.; Moreno, C. S. Effects of Genistein Supplementation on Genome‑wide DNA Methylation and Gene Expression in Patients with Localized Prostate Cancer. Int. J. Oncol. 2017, 51(1), 223–234. DOI: 10.3892/ijo.2017.4017.
  • Chen, X.; Gu, J.; Wu, Y.; Liang, P.; Shen, M.; Xi, J.; Qin, J. Clinical Characteristics of Colorectal Cancer Patients and Anti-Neoplasm Activity of Genistein. Biomed. Pharmacother. 2020, 124, 109835. DOI: 10.1016/j.biopha.2020.109835.
  • Braxas, H.; Rafraf, M.; Karimi Hasanabad, S.; Asghari Jafarabadi, M. Effectiveness of Genistein Supplementation on Metabolic Factors and Antioxidant Status in Postmenopausal Women with Type 2 Diabetes Mellitus. Can. J. Diabetes. 2019, 43(7), 490–497. DOI: 10.1016/j.jcjd.2019.04.007.
  • Squadrito, F.; Marini, H.; Bitto, A.; Altavilla, D.; Polito, F.; Adamo, E. B.; D’-Anna, R.; Arcoraci, V.; Burnett, B. P.; Minutoli, L., et al. Genistein in the Metabolic Syndrome: Results of a Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2013, 98(8), 3366–3374.
  • Amanat, S.; Eftekhari, M. H.; Fararouei, M.; Bagheri Lankarani, K.; Massoumi, S. J. Genistein Supplementation Improves Insulin Resistance and Inflammatory State in Non-Alcoholic Fatty Liver Patients: A Randomized, Controlled Trial. Clin. Nutr. 2018, 37(4), 1210–1215. DOI: 10.1016/j.clnu.2017.05.028.
  • Ye, Y. B.; Chen, A. L.; Lu, W.; Zhuo, S. Y.; Liu, J.; Guan, J. H.; Deng, W. P.; Fang, S.; Li, Y. B.; Chen, Y. M. Daidzein and Genistein Fail to Improve Glycemic Control and Insulin Sensitivity in Chinese Women with Impaired Glucose Regulation: A Double-Blind, Randomized, Placebo-Controlled Trial. Mol. Nutr Food Res. 2015, 59(2), 240–249. DOI: 10.1002/mnfr.201400390.
  • Byun, M. S.; Yu, O. K.; Cha, Y. S.; Park, T. S. Korean Traditional Chungkookjang ImprovesBody Composition, Lipid Profiles and Atherogenic Indices in Overweight/obese Subjects: A Double-Blind, Randomized, Crossover, Placebo-Controlled Clinical Trial. Eur. J. Clin. Nutr. 2016, 70(10), 1116–1122. DOI: 10.1038/ejcn.2016.77.
  • Liu, Z. M.; Ho, S. C.; Chen, Y. M.; Tomlinson, B.; Ho, S.; To, K.; Woo, J. Effect of Whole Soy and Purified Daidzein on Ambulatory Blood Pressure and Endothelial Function—a 6-Month Double-Blind, Randomized Controlled Trial Among Chinese Postmenopausal Women with Prehypertension. Eur. J. Clin. Nutr. 2015, 69(10), 1161–1168. DOI: 10.1038/ejcn.2015.24.
  • Jensen, S. N.; Cady, N. M.; Shahi, S. K.; Peterson, S. R.; Gupta, A.; Gibson-Corley, K. N.; Mangalam, A. K. Isoflavone Diet Ameliorates Experimental Autoimmune Encephalomyelitis Through Modulation of Gut Bacteria Depleted in Patients with Multiple Sclerosis. Sci. Adv. 2021, 7(28), eabd4595. DOI: 10.1126/sciadv.abd4595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.