363
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Feedback processing in adolescents with prenatal cocaine exposure: an electrophysiological investigation

, , , , &

References

  • Ackerman, J. P., Riggins, T., & Black, M. M. (2010). A review of the effects of prenatal cocaine exposure among school-aged children. Pediatrics, 125, 554–565. doi:10.1542/peds.2009-0637
  • Amiez, C., Neveu, R., Warrot, D., Petrides, M., Knoblauch, K., & Procyk, E. (2013). The location of feedback-related activity in the midcingulate cortex is predicted by local morphology. Journal of Neuroscience, 33, 2217–2228. doi:10.1523/JNEUROSCI.2779-12.2013
  • Baker, A. E., Wood, J. M., & Holroyd, C. B. (2016). Atypical valuation of monetary and cigarette rewards in substance dependent smokers. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 127, 1358–1365. doi:10.1016/j.clinph.2015.11.002
  • Banis, S., Geerligs, L., & Lorist, M. M. (2014). Acute stress modulates feedback processing in men and women: Differential effects on the feedback-related negativity and theta and beta power. PloS One, 9, e95690. doi:10.1371/journal.pone.0095690
  • Barch, D. M., Braver, T. S., Akbudak, E., Conturo, T., Ollinger, J., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Cerebral Cortex, 11, 837–848. doi:10.1093/cercor/11.9.837
  • Begleiter, H., Porjesz, B., Chou, C. L., & Aunon, J. I. (1983). P3 and stimulus incentive value. Psychophysiology, 20, 95–101. doi:10.1111/psyp.1983.20.issue-1
  • Bellebaum, C., & Daum, I. (2008). Learning-related changes in reward expectancy are reflected in the feedback-related negativity. The European Journal of Neuroscience, 27, 1823–1835. doi:10.1111/j.1460-9568.2008.06138.x
  • Bellebaum, C., Polezzi, D., & Daum, I. (2010). It is less than you expected: The feedback-related negativity reflects violations of reward magnitude expectations. Neuropsychologia, 48, 3343–3350. doi:10.1016/j.neuropsychologia.2010.07.023
  • Bennett, D., Bendersky, M., & Lewis, M. (2007). Preadolescent health risk behavior as a function of prenatal cocaine exposure and gender. Journal of Developmental and Behavioral Pediatrics : JDBP, 28, 467–472. doi:10.1097/DBP.0b013e31811320d8
  • Boucher, O., Jacobson, J. L., Burden, M. J., Dewailly, E., Jacobson, S. W., & Muckle, G. (2014). Prenatal tobacco exposure and response inhibition in school-aged children: An event-related potential study. Neurotoxicology and Teratology, 44, 81–88. doi:10.1016/j.ntt.2014.06.003
  • Bridgett, D. J., & Mayes, L. C. (2011). Development of inhibitory control among prenatally cocaine exposed and non-cocaine exposed youths from late childhood to early adolescence: The effects of gender and risk and subsequent aggressive behavior. Neurotoxicology and Teratology, 33, 47–60. doi:10.1016/j.ntt.2010.08.002
  • Cohen, M. X., Elger, C. E., & Ranganath, C. (2007). Reward expectation modulates feedback-related negativity and EEG spectra. NeuroImage, 35, 968–978. doi:10.1016/j.neuroimage.2006.11.056
  • Crowley, M. J., Wu, J., Crutcher, C., Bailey, C. A., Lejuez, C. W., & Mayes, L. C. (2009). Risk-taking and the feedback negativity response to loss among at-risk adolescents. Developments Neurosci-Basel, 31, 137–148. doi:10.1159/000207501
  • Crowley, M. J., Wu, J., Hommer, R. E., South, M., Molfese, P. J., Fearon, R. M., & Mayes, L. C. (2013). A developmental study of the feedback-related negativity from 10-17 years: Age and sex effects for reward versus non-reward. Developmental Neuropsychology, 38, 595–612. doi:10.1080/87565641.2012.694512
  • Dong, X., Du, X., & Qi, B. (2016). Conceptual knowledge influences decision making differently in individuals with high or low cognitive flexibility: An ERP study. PloS One, 11, e0158875. doi:10.1371/journal.pone.0158875
  • Euser, A. S., Greaves-Lord, K., Crowley, M. J., Evans, B. E., Huizink, A. C., & Franken, I. H. (2013). Blunted feedback processing during risky decision making in adolescents with a parental history of substance use disorders. Development and Psychopathology, 25, 1119–1136. doi:10.1017/S0954579413000412
  • Fein, G., & Chang, M. (2008). Smaller feedback ERN amplitudes during the BART are associated with a greater family history density of alcohol problems in treatment-naive alcoholics. Drug and Alcohol Dependence, 92, 141–148. doi:10.1016/j.drugalcdep.2007.07.017
  • Fisher, P. A., Lester, B. M., DeGarmo, D. S., Lagasse, L. L., Lin, H., Shankaran, S., … Higgins, R. (2011). The combined effects of prenatal drug exposure and early adversity on neurobehavioral disinhibition in childhood and adolescence. Development and Psychopathology, 23, 777–788. doi:10.1017/S0954579411000290
  • Frank, M. J., Woroch, B. S., & Curran, T. (2005). Error-related negativity predicts reinforcement learning and conflict biases. Neuron, 47, 495–501. doi:10.1016/j.neuron.2005.06.020
  • Franken, I. H., van Strien, J. W., Franzek, E. J., & van de Wetering, B. J. (2007). Error-processing deficits in patients with cocaine dependence. Biological Psychology, 75, 45–51. doi:10.1016/j.biopsycho.2006.11.003
  • Franken, I. H. A., Van Strien, J. W., & Kuijpers, I. (2010). Evidence for a deficit in the salience attribution to errors in smokers. Drug and Alcohol Dependence, 106, 181–185. doi:10.1016/j.drugalcdep.2009.08.014
  • Gautam, P., Warner, T. D., Kan, E. C., & Sowell, E. R. (2015). Executive function and cortical thickness in youths prenatally exposed to cocaine, alcohol and tobacco. Developmental Cognitive Neuroscience, 16, 155–165. doi:10.1016/j.dcn.2015.01.010
  • Geier, C. F. (2013). Adolescent cognitive control and reward processing: Implications for risk taking and substance use. Hormones and Behavior, 64, 333–342. doi:10.1016/j.yhbeh.2013.02.008
  • Grave De Peralta Menendez, R., Murray, M. M., Michel, C. M., Martuzzi, R., & Gonzalez Andino, S. L. (2004). Electrical neuroimaging based on biophysical constraints. NeuroImage, 21, 527–539. doi:10.1016/j.neuroimage.2003.09.051
  • Gu, R., Huang, Y. X., & Luo, Y. J. (2010). Anxiety and feedback negativity. Psychophysiology, 47, 961–967.
  • Hajcak, G., Holroyd, C. B., Moser, J. S., & Simons, R. F. (2005). Brain potentials associated with expected and unexpected good and bad outcomes. Psychophysiology, 42, 161–170. doi:10.1111/psyp.2005.42.issue-2
  • Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2006). The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology, 71, 148–154. doi:10.1016/j.biopsycho.2005.04.001
  • Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It’s worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology, 44, 905–912. doi:10.1111/psyp.2007.44.issue-6
  • Hauser, T. U., Iannaccone, R., Stampfli, P., Drechsler, R., Brandeis, D., Walitza, S., & Brem, S. (2014). The feedback-related negativity (FRN) revisited: New insights into the localization, meaning and network organization. NeuroImage, 84, 159–168. doi:10.1016/j.neuroimage.2013.08.028
  • Hecht, G. S., Spear, N. E., & Spear, L. P. (1998). Alterations in the reinforcing efficacy of cocaine in adult rats following prenatal exposure to cocaine. Behavioral Neuroscience, 112, 410–418. doi:10.1037/0735-7044.112.2.410
  • Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. doi:10.1037/0033-295X.109.4.679
  • Homberg, V., Grunewald, G., & Grunewald-Zuberbier, E. (1981). The variation of p300 amplitude in a money-winning paradigm in children. Psychophysiology, 18, 258–262. doi:10.1111/j.1469-8986.1981.tb03030.x
  • Kaminer, Y., Bukstein, O., & Tarter, R. E. (1991). The Teen-Addiction Severity Index: Rationale and reliability. The International Journal of the Addictions, 26, 219–226. doi:10.3109/10826089109053184
  • Landi, N., Crowley, M. J., Wu, J., Bailey, C. A., & Mayes, L. C. (2012). Deviant ERP response to spoken non-words among adolescents exposed to cocaine in utero. Brain and Language, 120, 209–216. doi:10.1016/j.bandl.2011.09.002
  • Leventhal, A. M., Brightman, M., Ameringer, K. J., Greenberg, J., Mickens, L., Ray, L. A., … Sussman, S. (2010). Anhedonia associated with stimulant use and dependence in a population-based sample of American adults. Experiments Clinical Psychopharm, 18, 562–569. doi:10.1037/a0021964
  • Linares, T. J., Singer, L. T., Kirchner, H. L., Short, E. J., Min, M. Y. O., Hussey, P., & Minnes, S. (2006). Mental health outcomes of cocaine-exposed children at 6 years of age. Journal of Pediatric Psychology, 31, 85–97. doi:10.1093/jpepsy/jsj020
  • Luijten, M., Machielsen, M. W., Veltman, D. J., Hester, R., De Haan, L., & Franken, I. H. (2014). Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. Journal of Psychiatry & Neuroscience: JPN, 39, 149–169. doi:10.1503/jpn.130052
  • Malanga, C. J., Riday, T. T., Carlezon, W. A., Jr., & Kosofsky, B. E. (2008). Prenatal exposure to cocaine increases the rewarding potency of cocaine and selective dopaminergic agonists in adult mice. Biological Psychiatry, 63, 214–221. doi:10.1016/j.biopsych.2007.01.014
  • Mayes, L. C., Molfese, D. L., Key, A. P., & Hunter, N. C. (2005). Event-related potentials in cocaine-exposed children during a Stroop task. Neurotoxicology and Teratology, 27, 797–813. doi:10.1016/j.ntt.2005.05.011
  • Minnes, S., Singer, L., Min, M. O., Wu, M. A. P., Lang, A., & Yoon, S. (2014). Effects of prenatal cocaine/polydrug exposure on substance use by age 15. Drug and Alcohol Dependence, 134, 201–210. doi:10.1016/j.drugalcdep.2013.09.031
  • Morie, K., De Sanctis, P., Garavan, H., & Foxe, J. J. (2016). Regulating task-monitoring systems in response to variable reward contingencies and outcomes in Cocaine Addicts. Psychopharmacology, 233, 1105–1118. doi:10.1007/s00213-015-4191-8
  • Morie, K. P., De Sanctis, P., & Foxe, J. J. (2014a). Reward contingencies and the recalibration of task monitoring and reward systems: A high-density electrical mapping study. Neuroscience, 273, 100–117. doi:10.1016/j.neuroscience.2014.05.002
  • Morie, K. P., De Sanctis, P., Garavan, H., & Foxe, J. J. (2014b). Executive dysfunction and reward dysregulation: A high-density electrical mapping study in cocaine abusers. Neuropharmacology, 85, 397–407. doi:10.1016/j.neuropharm.2014.05.016
  • Morie, K., De Sanctis, P., Garavan, H., & Foxe, J. J. (2016). Regulating task-monitoring systems in response to variable reward contingencies and outcomes in Cocaine Addicts. Psychopharmacology, 233, 1105–1118. doi:10.1007/s00213-Q5.015-4191-8
  • Olvet, D. M., & Hajcak, G. (2009). The effect of trial-to-trial feedback on the error-related negativity and its relationship with anxiety. Cognitive, Affective & Behavioral Neuroscience, 9, 427–433. doi:10.3758/CABN.9.4.427
  • Padron, I., Fernandez-Rey, J., Acuna, C., & Pardo-Vazquez, J. L. (2016). Representing the consequences of our actions trial by trial: Complex and flexible encoding of feedback valence and magnitude. Neuroscience, 333, 264–276. doi:10.1016/j.neuroscience.2016.07.025
  • Parvaz, M. A., Konova, A. B., Proudfit, G. H., Dunning, J. P., Malaker, P., Moeller, S. J., … Goldstein, R. Z. (2015). Impaired neural response to negative prediction errors in cocaine addiction. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 35, 1872–1879. doi:10.1523/JNEUROSCI.2777-14.2015
  • Parvaz, M. A., Maloney, T., Moeller, S. J., Woicik, P. A., Alia-Klein, N., Telang, F., … Goldstein, R. Z. (2012). Sensitivity to monetary reward is most severely compromised in recently abstaining cocaine addicted individuals: A cross-sectional ERP study. Psychiatry Research: Neuroimaging, 203, 75–82. doi:10.1016/j.pscychresns.2012.01.001
  • Rando, K., Chaplin, T. M., Potenza, M. N., Mayes, L., & Sinha, R. (2013). Prenatal cocaine exposure and gray matter volume in adolescent boys and girls: Relationship to substance use initiation. Biologic Psychiatry, 74, 482–489. doi:10.1016/j.biopsych.2013.04.030
  • Reyna, V. F., & Farley, F. (2006). Risk and rationality in adolescent decision making: Implications for theory, practice, and public policy. Psychological Science in The Public Interest: A Journal of the American Psychological Society, 7, 1–44. doi:10.1111/j.1529-1006.2006.00026.x
  • Richardson, G. A., Larkby, C., Goldschmidt, L., & Day, N. L. (2013). Adolescent initiation of drug use: Effects of prenatal cocaine exposure. Journal American Academic Children Psychiatry, 52, 37–46. doi:10.1016/j.jaac.2012.10.011
  • Ridderinkhof, K. R., Van Den Wildenberg, W. P., Segalowitz, S. J., & Carter, C. S. (2004). Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56, 129–140. doi:10.1016/j.bandc.2004.09.016
  • Romens, S. E., Casement, M. D., McAloon, R., Keenan, K., Hipwell, A. E., Guyer, A. E., & Forbes, E. E. (2015). Adolescent girls’ neural response to reward mediates the relation between childhood financial disadvantage and depression. Journal Children Psychologist Psychiatry, 56, 1177–1184. doi:10.1111/jcpp.12410
  • Sato, A., Yasuda, A., Ohira, H., Miyawaki, K., Nishikawa, M., Kumano, H., & Kuboki, T. (2005). Effects of value and reward magnitude on feedback negativity and P300. Neuroreport, 16, 407–411. doi:10.1097/00001756-200503150-00020
  • Schuermann, B., Endrass, T., & Kathmann, N. (2012). Neural correlates of feedback processing in decision-making under risk. Frontiers in Human Neuroscience, 6, 204. doi:10.3389/fnhum.2012.00204
  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599. doi:10.1126/science.275.5306.1593
  • Sescousse, G., Redoute, J., & Dreher, J. C. (2010). The architecture of reward value coding in the human orbitofrontal cortex. Journal of Neuroscience, 30, 13095–13104. doi:10.1523/JNEUROSCI.3501-10.2010
  • Shenhav, A., Cohen, J. D., & Botvinick, M. M. (2016). Dorsal anterior cingulate cortex and the value of control. Nature Neuroscience, 19, 1286–1291. doi:10.1038/nn.4384
  • Takacs, A., Kobor, A., Janacsek, K., Honbolygo, F., Csepe, V., & Nemeth, D. (2015). High trait anxiety is associated with attenuated feedback-related negativity in risky decision making. Neuroscience Letters, 600, 188–192. doi:10.1016/j.neulet.2015.06.022
  • Twomey, D. M., Murphy, P. R., Kelly, S. P., & O’Connell, R. G. (2015). The classic P300 encodes a build-to-threshold decision variable. The European Journal of Neuroscience, 42, 1636–1643. doi:10.1111/ejn.12936
  • Wang, H. Y., Runyan, S., Yadin, E., & Friedman, E. (1995). Prenatal exposure to cocaine selectively reduces D1 dopamine receptor-mediated activation of striatal Gs proteins. The Journal of Pharmacology and Experimental Therapeutics, 273, 492–498.
  • Wang, L., Zheng, J., Huang, S., & Sun, H. (2015). P300 and decision making under risk and ambiguity. Computational Intelligence and Neuroscience, 2015, 108417. doi:10.1155/2015/108417
  • Wittmann, M. K., Kolling, N., Akaishi, R., Chau, B. K., Brown, J. W., Nelissen, N., & Rushworth, M. F. (2016). Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex. Nature Communications, 7, 12327. doi:10.1038/ncomms12327
  • Yeung, N., & Sanfey, A. G. (2004). Independent coding of reward magnitude and valence in the human brain. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 24, 6258–6264. doi:10.1523/JNEUROSCI.4537-03.2004
  • Yip, S. W., Potenza, E. B., Balodis, I. M., Lacadie, C. M., Sinha, R., Mayes, L. C., & Potenza, M. N. (2014). Prenatal cocaine exposure and adolescent neural responses to appetitive and stressful stimuli. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 39, 2824–2834. doi:10.1038/npp.2014.133
  • Zhang, D., Gu, R., Wu, T., Broster, L. S., Luo, Y., Jiang, Y., & Luo, Y. J. (2013). An electrophysiological index of changes in risk decision-making strategies. Neuropsychologia, 51, 1397–1407. doi:10.1016/j.neuropsychologia.2013.04.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.