1,736
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Number Magnitude Processing and Verbal Working Memory in Children with Mild Intellectual Disabilities

, , &
Pages 139-153 | Received 07 Aug 2019, Accepted 11 Mar 2020, Published online: 24 Mar 2020

References

  • Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131(1), 30–60. doi:10.1037/0033-2909.131.1.30
  • Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–90).  New York, NY: Academic Press.
  • Baddeley, A. D. (1990). Working memory. Oxford: Oxford University Press.
  • Baddeley, A. D. (1997). Human memory: Theory and practice ( rev. ed.). Hove, UK: Psychology Press.
  • Bashash, L., Outhred, L., & Bochner, S. (2003). Counting skills and number concepts of students with moderate intellectual disabilities. International Journal of Disability, Development and Education, 50(3), 325–345. doi:10.1080/1034912032000120480
  • Bennett-Gates, D., & Zigler, E. (1998). Resolving the developmental-difference debate: An evaluation of the triarchic and systems theory models. In J. A. Burack, R. M. Hodapp, & E. Zigler (Eds.), Handbook of mental retardation and development (pp. 115–131). Cambridge, UK: Cambridge University Press.
  • Brankaer, C., Ghesquiére, P., & De Smedt, B. (2013). The development of numerical magnitude processing and its association with working memory in children with mild intellectual disabilities. Research in Developmental Disabilities, 34(10), 3361–3371. doi:10.1016/j.ridd.2013.07.001
  • Brankaer, C., Ghesquiére, P., & De Smedt, B. (2014). Numerical magnitude processing deficits in children with mathematical difficulties are independent of intelligence. Research in Developmental Disabilities, 35(11), 2603–2613. doi: 10.1016/j.ridd.2014.06.022
  • Brankaer, C., Ghesquière, P., & De Smedt, B. (2011). Numerical magnitude processing in children with mild intellectual disabilities. Research in Developmental Disabilities, 32(6), 2853–2859. doi:10.1016/j.ridd.2011.05.020
  • Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118(1), 32–44. doi:10.1016/j.cognition.2010.09.005
  • Butterworth, B. (1999). The mathematical brain. London, UK: Macmillan.
  • Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14(12), 534–541. doi:10.1016/j.tics.2010.09.007
  • Clarke, B., & Shinn, M. R. (2004). Preliminary investigation into the identification and development of early mathematics curriculum-based measurement. School Psychology Review, 33, 234–248.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552. doi:10.1016/j.tics.2003.10.005
  • de Hevia, M. D., Vallar, G., & Girelli, L. (2006). Numbers and space: A cognitive illusion? Experimental Brain Research, 168(1–2), 254–264. doi:10.1007/s00221-005-0084-0
  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42. doi:10.1016/0010-0277(92)90049-N
  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press.
  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 309–314. doi:10.1016/j.tics.2004.05.002
  • Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., Seethaler, P. M., … Schatschneider, C. (2010). Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities? Developmental Psychology, 46(6), 1731–1746. doi:10.1037/a0020662
  • Gallistel, C., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1–2), 43–74. doi:10.1016/0010-0277(92)90050-R
  • Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. doi:10.1037/a0025510
  • Gelman, R., & Butterworth, B. (2005). Number and language: How are they related? Trends in Cognitive Sciences, 9(1), 6–10. doi:10.1016/j.tics.2004.11.004
  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.
  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the ‘number sense’: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465. doi:10.1037/a0012682
  • Henry, L., & MacLean, M. (2002). Working memory performance in children with and without intellectual disabilities. American Journal of Mental Retardation, 107(6), 421–432. doi:10.1352/0895-8017(2002)107<0421:WMPICW>2.0.CO;2
  • Hoard, M. K., Geary, D. C., & Hamson, C. O. (1999). Numerical and arithmetical cognition: Performance of low- and average-IQ children. Mathematical Cognition, 5(1), 65–94. doi:10.1080/135467999387324
  • Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics achievement: The contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5(272), 1–18. doi:10.3389/fpsyg.2014.00272
  • Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382–10385. doi:10.1073/pnas.0812142106
  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 105(19), 6829–6833. doi:10.1073/pnas.0801268105
  • Janssen, R., De Boeck, P., Viaene, M., & Vallaeys, L. (1999). Simple mental addition in children with and without mild mental retardation. Journal of Experimental Child Psychology, 74(3), 261–281. doi:10.1006/jecp.1999.2527
  • Käser, T., Baschera, G.-M., Kohn, J., Kucian, K., Richtmann, V., Grond, U., … von Aster, M. (2013). Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition. Frontiers in Psychology, 4(August), 489. doi:10.3389/fpsyg.2013.00489
  • Kohlberg, L. (1968). Early education: A cognitive-developmental view. Child Development, 39(4), 1013–1062. doi:10.2307/1127272
  • Krajewski, K., & Schneider, W. (2009). Exploring the impact of phonological awareness, visuo-spatial working memory, and preschool quantity–number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103(4), 516–531. doi:10.1016/j.jecp.2009.03.009
  • Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., … von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782–795. doi:10.1016/j.neuroimage.2011.01.070
  • Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300. doi:10.1111/j.1467-7687.2011.01080.x
  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520. doi:10.1038/2151519a0
  • Mussolin, C., Mejias, S., & Noël, M.-P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10–25. doi:10.1016/j.cognition.2009.10.006
  • Noël, M.-P., & Rousselle, L. (2011). Developmental changes in the profiles of dyscalculia: An explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience, 5(December), 165. doi:10.3389/fnhum.2011.00165
  • Núñez, R. (2017a). Number – biological enculturation beyond natural selection. Trends in Cognitive Sciences, 21(6), 404–405. doi:10.1016/j.tics.2017.03.013
  • Núñez, R. (2017b). Is there really an evolved capacity for number? Trends in Cognitive Sciences, 21(6), 409–424. doi:10.1016/j.tics.2017.03.005
  • Passolunghi, M. C., & Lanfranchi, S. (2012). Domain-specific and domain-general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal of Educational Psychology, 82(1), 42–63. doi:10.1111/j.2044-8279.2011.02039.x
  • Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542–551. doi:10.1016/j.tics.2010.09.008
  • Piazza, M., Fumarola, A., Chinello, A., & Melcher, D. (2011). Subitizing reflects visuo-spatial object individuation capacity. Cognition, 121(1), 147–153. doi:10.1016/j.cognition.2011.05.007
  • Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24(4), 450–472. doi: 10.1016/j.cogdev.2009.09.003
  • Raven, J. C. (1976). Standard progressive matrices. Oxford, UK: Oxford Psychologists Press.
  • Raven, J. C., Court, J. H., & Raven, J. (1996). Standard progressive matrices, Raven manual: Section 3 (1996 ed.). Oxford, UK: Oxford Psychologists Press.
  • Schuchardt, K., Gebhardt, M., & Mäehler, C. (2010). Working memory functions in children with different degrees of intellectual disability. Journal of Intellectual Disability Research, 54(4), 346–353. doi:10.1111/j.1365-2788.2010.01265.x
  • Träff, U., Olsson, L., Skagerlund, K., & Östergren, R. (2020). Kindergarten domain-specific and domain-general cognitive precursors of hierarchical mathematical development: A longitudinal study. Journal of Educational Psychology, 112(1), 93–109. doi:10.1037/edu0000369
  • Van der Molen, M. J., Van Luit, J. E. H., Jongmans, M. J., & Van der Molen, M. W. (2009). Memory profiles in children with mild intellectual disabilities: Strengths and weaknesses. Research in Developmental Disabilities, 30(6), 1237–1247. doi:10.1016/j.ridd.2009.04.005
  • Wechsler, D. (2003). Wechsler intelligence scale for children(4th ed., WISC-IV). San Antonio, TX: Harcourt Assessment. doi:10.1037/t15174-000
  • Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an adaptive game intervention on accessing number sense in low-socioeconomic status kindergarten children. Mind, Brain, and Education, 3(4), 224–234. doi:10.1111/mbe.2009.3.issue-4
  • Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions: BBF, 2(1), 20. doi:10.1186/1744-9081-2-20
  • Wynn, K. (1990). Children’s understanding of counting. Cognition, 36(2), 155–193. doi:10.1016/0010-0277(90)90003-3
  • Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24(2), 220–251. doi:10.1016/0010-0285(92)90008-P
  • Wynn, K. (1995). Origins of numerical knowledge. Mathematical Cognition, 1, 35–60.
  • Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11. doi:10.1016/S0010-0277(99)00066-9
  • Zigler, E., & Balla, D. (1982). Mental retardation. The developmental-difference controversy. Hillsdale, NJ: Lawrence Erlbaum Associates.