1,273
Views
1
CrossRef citations to date
0
Altmetric
Articles

Mechanical Properties of the Developing Brain are Associated with Language Input and Vocabulary Outcome

ORCID Icon, &
Pages 258-272 | Received 01 Feb 2022, Accepted 26 Jul 2022, Published online: 08 Aug 2022

References

  • Alper, R. M., Beiting, M., Luo, R., Jaen, J., Peel, M., Levi, O., Robinson, C & Hirsh-Pasek, K. (2021). Change the things you can: Modifiable parent characteristics predict high-quality early language interaction within socioeconomic status. Journal of Speech, Language, and Hearing Research, 64(6), 1992–2004. doi:10.1044/2021_JSLHR-20-00412
  • Andersson, J. L. R., Smith, S. M., & Jenkinson, M. (2008). FNIRT - FMRIB; non-linear image registration tool. In Fourteenth Annual Meeting of the Organization for Human Brain Mapping, Melbourne, Australia (p. 496).
  • Asaridou, S. S., Demir-Lira, Ö. E., Goldin-Meadow, S., & Small, S. L. (2017). The pace of vocabulary growth during preschool predicts cortical structure at school age. Neuropsychologia, 98, 13–23. doi:10.1016/j.neuropsychologia.2016.05.018
  • Brito, N. H., & Noble, K. G. (2014). Socioeconomic status and structural brain development. Frontiers in Neuroscience, 8(SEP), 276. doi:10.3389/fnins.2014.00276
  • Brito, N. H. (2017). Influence of the home linguistic environment on early language development. Policy Insights from the Behavioral and Brain Sciences, 4(2), 155–162. doi:10.1177/2372732217720699
  • Champely, S., Ekstrom, C., Dalgaard, P., Gill, J., Weibelzahl, S., Anandkumar, A., and De Rosario, M. H. (2018). Package ‘pwr’. R package version, 1(2).
  • Chandrasekaran, B., Kraus, N., & Wong, P. C. M. (2012). Human inferior colliculus activity relates to individual differences in spoken language learning. Journal of Neurophysiology, 107(5), 1325–1336. doi:10.1152/JN.00923.2011
  • Chapman, S. B., Max, J. E., Gamino, J. F., McGlothlin, J. H., & Cliff, S. N. (2003). Discourse plasticity in children after stroke: Age at injury and lesion effects. Pediatric Neurology, 29(1), 34–41. doi:10.1016/S0887-8994(03)00012-2
  • Chaze, C. A., McIlvain, G., Smith, D. R., Villermaux, G. M., Delgorio, P. L., Wright, H. G., and Johnson, C. L. (2019). Altered brain tissue viscoelasticity in pediatric cerebral palsy measured by magnetic resonance elastography. NeuroImage: Clinical, 22, 101750
  • Daugherty, A. M., Schwarb, H. D., McGarry, M. D. J., Johnson, C. L., & Cohen, N. J. (2020). MR elastography of human hippocampal subfields: CA3-Dentate gyrus viscoelasticity predicts relational memory accuracy. Journal of Cognitive Neuroscience, 32(9), 1704. doi:10.1162/JOCN_A_01574
  • Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D, Goncalves, M., DuPre, E., Snyder, M. Oya, H. & Gorgolewski, K. J. (2019). FMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111. doi:10.1038/S41592-018-0235-4
  • Fernald, A., & Weisleder, A. (2011). Early language experience is vital to developing fluency in understanding. Handbook of Early Literacy Research, 3, 3–19.
  • Fernandez, B., Cardebat, D., Demonet, J. F., Joseph, P. A., Mazaux, J. M., Barat, M., & Allard, M. (2004). Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia. Stroke, 35(9), 2171–2176. doi:10.1161/01.STR.0000139323.76769.B0
  • Friederici, A. D. (2011). The brain basis of language processing: From structure to function. Physiological Reviews, 91(4), 1357–1392. doi:10.1152/PHYSREV.00006.2011/SUPPL_FILE/DESCRIPTIONS2.DOCX
  • Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., Flandin, G., Ghosh, S.S., Glatard, T., Halchenko, Y.O. Handwerker, D.A & Poldrack, R. A. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data 2016 3:1, 3(1), 1–9. doi:10.1038/sdata.2016.44
  • Guo, J., Bertalan, G., Meierhofer, D., Klein, C., biomaterialia, S. S.-A., Steiner, B., Wang, S., da Silva, R.V., Infante-Duarte, C., Koch, S, and Sack, I. (2019). Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity. Acta Biomaterialia, 99, 433–442. 2019
  • Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13(2), 65–73. doi:10.1016/j.tics.2008.11.003
  • Hadley, P. A., Rispoli, M., Holt, J. K., Papastratakos, T., Hsu, N., Kubalanza, M., & Mckenna, M. M. (2017). Input subject diversity enhances early grammatical growth: evidence from a parent-implemented intervention. Language Learning and Development, 13(1), 54–79. doi:10.1080/15475441.2016.1193020
  • Halchenko, Y., Goncalves, M., Castello, M. V. D. O., Ghosh, S., Salo, T., Hanke, M., Meyer, K. (2021). nipy/heudiconv:. doi:10.5281/ZENODO.5557588
  • Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore , USA: P.H. Brookes.
  • Hirsh-Pasek, K., Adamson, L. B., Bakeman, R., Owen, M. T., Golinkoff, R. M., Pace, A., Yust, P.K. & Suma, K. (2015). The contribution of early communication quality to low-income children’s language success. Psychological Science, 26(7), 1071–1083. doi:10.1177/0956797615581493
  • Hiscox, L. V., Johnson, C. L., McGarry, M. D. J., Schwarb, H., van Beek, E. J. R., Roberts, N., & Starr, J. M. (2020). Hippocampal viscoelasticity and episodic memory performance in healthy older adults examined with magnetic resonance elastography. Brain Imaging and Behavior, 14(1), 175–185. doi:10.1007/S11682-018-9988-8/FIGURES/2
  • Hiscox, L. V., Schwarb, H., McGarry, M. D. J., & Johnson, C. L. (2021). Aging brain mechanics: Progress and promise of magnetic resonance elastography. NeuroImage, 232, 117889. doi:10.1016/J.NEUROIMAGE.2021.117889
  • Hurtado, N., Marchman, V. A., & Fernald, A. (2008). Does input influence uptake? Links between maternal talk, processing speed and vocabulary size in Spanish‐learning children. Developmental science, 11(6), F31–F39.
  • Huttenlocher, J., Waterfall, H., Vasilyeva, M., Vevea, J., & Hedges, L. V. (2010). Sources of variability in children’s language growth. Cognitive Psychology, 61(4), 343–365. doi:10.1016/j.cogpsych.2010.08.002
  • Jasińska, K. K., Shuai, L., Lau, A. N. L., Frost, S., Landi, N., & Pugh, K. R. (2021). Functional connectivity in the developing language network in 4-year-old children predicts future reading ability. Developmental Science, 24(2), e13041. doi:10.1111/DESC.13041
  • Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841. doi:10.1016/S1053-8119(02)91132-8
  • Jenkinson, M., Beckmann, C. F., Behrens, T. E. J. J., Woolrich, M. W., & Smith, S. M. (2012). Fsl. NeuroImage, 62(2), 782–790. doi:10.1016/j.neuroimage.2011.09.015
  • Johnson, C. L., McGarry, M. D. J., Gharibans, A. A., Weaver, J. B., Paulsen, K. D., Wang, H., Georgiadis, J. G. (2013). Local mechanical properties of white matter structures in the human brain. NeuroImage, 79, 145–152. doi:10.1016/J.NEUROIMAGE.2013.04.089
  • Johnson, C., & Telzer, E. (2018). Magnetic resonance elastography for examining developmental changes in the mechanical properties of the brain. Developmental Cognitive Neuroscience, 33, 176–181. doi:10.1016/j.dcn.2017.08.010
  • Johnson, C. L., Schwarb, H., Horecka, K. M., McGarry, M. D. J., Hillman, C. H., Kramer, A. F., Cohen, N.J. & Barbey, A. K. (2018). Double dissociation of structure-function relationships in memory and fluid intelligence observed with magnetic resonance elastography. NeuroImage, 171, 99. doi:10.1016/J.NEUROIMAGE.2018.01.007
  • King, L. S., Camacho, M. C., Montez, D. F., Humphreys, K. L., & Gotlib, I. H. (2021). Naturalistic language input is associated with resting-state functional connectivity in infancy. The Journal of Neuroscience, 41(3), 424–434. doi:10.1523/JNEUROSCI.0779-20.2020
  • Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831–841. doi:10.1038/nrn1533
  • Kuhl, P. K. (2007). Is speech learning “gated” by the social brain? Developmental Science, 10(1), 110–120. doi:10.1111/j.1467-7687.2007.00572.x
  • Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67(5), 713–727. doi:10.1016/j.neuron.2010.08.038
  • Kuhl, P. K., Ramírez, R. R., Bosseler, A., Lin, J. F. L., & Imada, T. (2014). Infants’ brain responses to speech suggest Analysis by Synthesis. Proceedings of the National Academy of Sciences of the United States of America, 111(31), 11238–11245. doi:10.1073/pnas.1410963111
  • Leech, K., Wei, R., Harring, J. R., & Rowe, M. L. (2018). A brief parent-focused intervention to improve preschoolers’ conversational skills and school readiness. Developmental Psychology, 54(1), 15–28. doi:10.1037/dev0000411
  • Leech, K. A., & Rowe, M. L. (2020). An intervention to increase conversational turns between parents and young children. Journal of Child Language. doi:10.1017/S0305000920000252
  • Luo, R., Pace, A., Levine, D., Iglesias, A., de Villiers, J., Golinkoff, R. M., Wilson, M.S & Hirsh-Pasek, K. (2021). Home literacy environment and existing knowledge mediate the link between socioeconomic status and language learning skills in dual language learners. Early Childhood Research Quarterly, 55, 1–14. doi:10.1016/j.ecresq.2020.10.007
  • Luo, R., Masek, L. R., Alper, R. M., & Hirsh-Pasek, K. (2022). Maternal question use and child language outcomes: The moderating role of children’s vocabulary skills and socioeconomic status. Early Childhood Research Quarterly, 59, 109–120. doi:10.1016/J.ECRESQ.2021.11.007
  • Maguire, M. J., Schneider, J. M., Middleton, A. E., Ralph, Y., Lopez, M., Ackerman, R. A., & Abel, A. D. (2018). Vocabulary knowledge mediates the link between socioeconomic status and word learning in grade school. Journal of Experimental Child Psychology, 166, 679–695. doi:10.1016/j.jecp.2017.10.003
  • Manduca, A., Oliphant, T. E., Dresner, M. A., Mahowald, J. L., Kruse, S. A., Amromin, E., Felmlee, J.P., Greenleaf, J.F. & Ehman, R. L. (2001). Magnetic resonance elastography: Non-invasive mapping of tissue elasticity. Medical Image Analysis, 5(4), 237–254. doi:10.1016/S1361-8415(00)00039-6
  • Masek, L. R., Ramirez, A. G., McMillan, B. T. M., Hirsh-Pasek, K., & Golinkoff, R. M. (2021). Beyond counting words: A paradigm shift for the study of language acquisition. Child Development Perspectives, 15(4), 274–280. doi:10.1111/CDEP.12425
  • McGarry, M. D. J., & Van Houten, E. E. W. (2008). Use of a Rayleigh damping model in elastography. Medical and Biological Engineering and Computing, 46(8), 759–766. doi:10.1007/s11517-008-0356-5
  • McGarry, M. D. J., Van Houten, E. E. W., Perrĩez, P. R., Pattison, A. J., Weaver, J. B., & Paulsen, K. D. (2011). An octahedral shear strain-based measure of SNR for 3D MR elastography. Physics in Medicine and Biology, 56(13), 153–164. doi:10.1088/0031-9155/56/13/N02
  • McGarry, M. D. J., Houten, E. E. W. V., Johnson, C. L., Georgiadis, J. G., Sutton, B. P., Weaver, J. B., & Paulsen, K. D. (2012). Multiresolution MR elastography using nonlinear inversion. Medical Physics, 39(10), 6388–6396. doi:10.1118/1.4754649
  • McGarry, M., Johnson, C. L., Sutton, B. P., Van Houten, E. E., Georgiadis, J. G., Weaver, J. B., & Paulsen, K. D. (2013). Including spatial information in nonlinear inversion MR elastography using soft prior regularization. IEEE transactions on medical imaging, 32(10), 1901–1909.
  • McIlvain, G., Schwarb, H., Cohen, N. J., Telzer, E. H., & Johnson, C. L. (2018). Mechanical properties of the in vivo adolescent human brain. Developmental Cognitive Neuroscience, 34, 27–33. doi:10.1016/j.dcn.2018.06.001
  • McIlvain, G., Clements, R. G., Magoon, E. M., Spielberg, J. M., Telzer, E. H., & Johnson, C. L. (2020). Viscoelasticity of reward and control systems in adolescent risk taking. NeuroImage, 215, 116850. doi:10.1016/J.NEUROIMAGE.2020.116850
  • McLaughlin, K., & Gabard-Durnam, L. (2022 Experience-driven plasticity and the emergence of psychopathology: Amechanistic framework integrating development and the environment into the Research). Journal of psychopathology and clinical science,131(6): 575–587. doi:10.1037/abn0000598 .
  • Merz, E. C., Maskus, E. A., Melvin, S. A., He, X., & Noble, K. G. (2019). Socioeconomic disparities in language input are associated with children’s language related brain structure and reading skills. Child Development, cdev.13239. doi:10.1111/cdev.13239
  • Merz, E. C., Maskus, E. A., Melvin, S. A., He, X., & Noble, K. G. (2020). Socioeconomic disparities in language input are associated with children’s language-related brain structure and reading skills. Child Development, 91(3), 846–860. doi:10.1111/cdev.13239
  • Mitchell, A. M., & Brady, S. A. (2013). The effect of vocabulary knowledge on novel word identification. Annals of Dyslexia, 63(3–4), 201–216. doi:10.1007/S11881-013-0080-1
  • Morgan, P. L., Farkas, G., Hillemeier, M. M., Hammer, C. S., & Maczuga, S. (2015). 24-month-old children with larger oral vocabularies display greater academic and behavioral functioning at kindergarten entry. Child Development, 86(5), 1351–1370. doi:10.1111/cdev.12398
  • Murphy, M. C., Huston, J., & Ehman, R. L. (2019). MR elastography of the brain and its application in neurological diseases. NeuroImage, 187, 176–183. doi:10.1016/J.NEUROIMAGE.2017.10.008
  • Muthupillai, R., Lomas, D., Rossman, P. J., Greenleaf, J. F., Manduca, A., & Ehman, R. L. (1995). Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269 5232 1854–1857.
  • Nagy, W., Townsend, D., Lesaux, N., & Schmitt, N. (2012). Words as tools: Learning academic vocabulary as language acquisition. Reading Research Quarterly, 47(1), 91–108. doi:10.1002/RRQ.011
  • Network, N. E. C. C. R.; NICHD Early Child Care Research. (2007). Age of entry to kindergarten and children’s academic achievement and socioemotional development. Early Education and Development, 18(2), 337–368.
  • Newman, R., Rowe, M. L., & Bernstein Ratner, N. (2016). Input and uptake at 7 months predicts toddler vocabulary: The role of child-directed speech and infant processing skills in language development. Journal of Child Language, 43(5), 1158–1173. doi:10.1017/S0305000915000446
  • Noble, K. G., Wolmetz, M. E., Ochs, L. G., Farah, M. J., & McCandliss, B. D. (2006). Brain-behavior relationships in reading acquisition are modulated by socioeconomic factors. Developmental Science, 9(6), 642–654. doi:10.1111/j.1467-7687.2006.00542.x
  • Ozkaya, E., Fabris, G., Macruz, F., Suar, Z. M., Abderezaei, J., Su, B., Laksari, K., Wu, L., Camarillo, D.B., Pauly, K.B. & Kurt, M. (2021). Viscoelasticity of children and adolescent brains through MR elastography. Journal of the Mechanical Behavior of Biomedical Materials, 115, 104229. doi:10.1016/J.JMBBM.2020.104229
  • Pace, A., Luo, R., Hirsh-Pasek, K., & Golinkoff, R. M. (2017 Identifying pathways between socioeconomic status and language development). Annual Review of Linguistics 3 285–308 . doi:10.1146/annurev-linguistics-011516-034226
  • Pace, A., Alper, R., Burchinal, M. R., Golinkoff, R. M., & Hirsh-Pasek, K. (2019). Measuring success: Within and cross-domain predictors of academic and social trajectories in elementary school. Early Childhood Research Quarterly, 46, 112–125. doi:10.1016/j.ecresq.2018.04.001
  • Pan, B. A., Rowe, M. L., Singer, J. D., & Snow, C. E. (2005). Maternal correlates of growth in toddler vocabulary production in low-income families. Child Development, 76(4), 763–782. doi:10.1111/1467-8624.00498-i1
  • Qi, Z., & Legault, J. (2020). Neural hemispheric organization in successful adult language learning: Is left always right? Psychology of Learning and Motivation 72 119–163 .
  • Raizada, R. D. S., Richards, T. L., Meltzoff, A., & Kuhl, P. K. (2008). Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. NeuroImage, 40(3), 1392–1401. doi:10.1016/j.neuroimage.2008.01.021
  • Revicki, D. A., & Cella, D. F. (1997). Health status assessment for the twenty-first century: Item response theory, item banking and computer adaptive testing. Quality of Life Research, 6(6) 6:6, 595–600. 10.1023/A:1018420418455.
  • Rivera-Gaxiola, M., Silva-Pereyra, J., & Kuhl, P. K. (2005). Brain potentials to native and non-native speech contrasts in 7- and 11 -month-old American infants. Developmental Science, 8(2), 162–172. doi:10.1111/J.1467-7687.2005.00403.X
  • Rivera-Gaxiola, M., Klarman, L., Garcia-Sierra, A., & Kuhl, P. K. (2005). Neural patterns to speech and vocabulary growth in American infants. NeuroReport, 16(5), 495–498. doi:10.1097/00001756-200504040-00015
  • Romeo, R. R., Leonard, J. A., Robinson, S. T., West, M. R., Mackey, A. P., Rowe, M. L., & Gabrieli, J. D. E. (2018). Beyond the 30-million-word gap: Children’s conversational exposure is associated with language-related brain function. Psychological Science, 29(5), 700–710. doi:10.1177/0956797617742725. https://pubmed.ncbi.nlm.nih.gov/29442613
  • Romeo, R. R., Segaran, J., Leonard, J. A., Robinson, S. T., West, M. R., Mackey, A. P., Yendiki, A., Rowe, M.L. & Gabrieli, J. D. E. (2018). Language exposure relates to structural neural connectivity in childhood. Journal of Neuroscience, 38(36), 7870–7877. doi:10.1523/JNEUROSCI.0484-18.2018
  • Romeo, R. R., Christodoulou, J. A., Halverson, K. K., Murtagh, J., Cyr, A. B., Schimmel, C., Chang, P., Hook, P.E & Gabrieli, J. D. E. (2018). Socioeconomic status and reading disability: Neuroanatomy and plasticity in response to intervention. Cerebral Cortex, 28(7), 2297–2312. doi:10.1093/cercor/bhx131
  • Rota, G., Sitaram, R., Veit, R., Erb, M., Weiskopf, N., Dogil, G., & Birbaumer, N. (2009). Self-regulation of regional cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing. Human Brain Mapping, 30(5), 1605–1614. doi:10.1002/HBM.20621
  • Rowe, M. L. (2013). Decontextualized language input and preschoolers’ vocabulary development. Semin Speech Lang, 34(4), 260–266. doi:10.1055/s-0033-1353444
  • Rowe, Meredith, L. (2012). A Longitudinal Investigation of the role of quantity and quality of child-directed speech in vocabulary development. Child Development, 83(5), 1762–1774. doi:10.1111/j.1467-8624.2012.01805.x
  • RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com
  • Sack, I., Jöhrens, K., Würfel, J., & Braun, J. (2013). Structure-sensitive elastography: On the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter, 9(24), 5672–5680. doi:10.1039/C3SM50552A
  • Sandroff, B. M., Johnson, C. L., & Motl, R. W. (2017). Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: A novel application of magnetic resonance elastography. Neuroradiology, 59(1), 61–67. doi:10.1007/S00234-016-1767-X
  • Schwab, J. F., & Lew-Williams, C. (2016). Language learning, socioeconomic status, and child-directed speech. Wiley Interdisciplinary Reviews: Cognitive Science, 7(4), 264–275. doi:10.1002/wcs.1393
  • Schwarb, H., Nail, J., & Schumacher, E. H. (2015). Working memory training improves visual short-term memory capacity. Psychological Research, 80(1), 128–148. doi:10.1007/s00426-015-0648-y
  • Schwarb, H., Johnson, C. L., McGarry, M. D. J., & Cohen, N. J. (2016). Medial temporal lobe viscoelasticity and relational memory performance. NeuroImage, 132, 534. doi:10.1016/J.NEUROIMAGE.2016.02.059
  • Schwarb, H., Johnson, C. L., Daugherty, A. M., Hillman, C. H., Kramer, A. F., Cohen, N. J., & Barbey, A. K. (2017). Aerobic fitness, hippocampal viscoelasticity, and relational memory performance. NeuroImage, 153, 179–188. doi:10.1016/J.NEUROIMAGE.2017.03.061
  • Schwarb, H., Johnson, C. L., Dulas, M. R., McGarry, M. D. J., Holtrop, J. L., Watson, P. D., Wang, J.X., Voss, J.L., Sutton, B.P & Cohen, N. J. (2019). Structural and functional MRI evidence for distinct medial temporal and prefrontal roles in context-dependent relational memory. Journal of Cognitive Neuroscience, 31(12), 1857–1872. doi:10.1162/JOCN_A_01454
  • Silvey, C., Demir-Lira, Ö. E., Goldin-Meadow, S., & Raudenbush, S. W. (2021). Effects of time-varying parent input on children’s language outcomes differ for vocabulary and syntax. Psychological Science, 32(4), 536–548. doi:10.1177/0956797620970559
  • Singh, L., Steven Reznick, J., & Xuehua, L. (2012). Infant word segmentation and childhood vocabulary development: A longitudinal analysis. Developmental Science, 15(4), 482–495. doi:10.1111/j.1467-7687.2012.01141.x
  • Song, L., Spier, E. T., & Tamis-Lemonda, C. S. (2014). Reciprocal influences between maternal language and children's language and cognitive development in low-income families. Journal of child language, 41(2), 305–326.
  • Stanovich, K. E., & Cunningham, A. E. (1993). Where does knowledge come from? Specific associations between print exposure and information acquisition. Journal of Educational Psychology, 85(2), 211–229. doi:10.1037/0022-0663.85.2.211
  • Storch, S. A., & Whitehurst, G. J. (2002). Oral language and code-related precursors to reading: Evidence from a longitudinal structural model. Developmental Psychology, 38(6), 934–947. doi:10.1037/0012-1649.38.6.934
  • Su, M., Thiebaut de Schotten, M., Zhao, J., Song, S., Zhou, W., Gong, G., McBride, C., Ramus, F. & Shu, H. (2018). Vocabulary growth rate from preschool to school age years is reflected in the connectivity of the arcuate fasciculus in 14‐year‐old children. Wiley Online Library, 21(5), 12647. doi:10.1111/desc.12647
  • Testu, J., McGarry, M. D. J., Dittmann, F., Weaver, J. B., Paulsen, K. D., Sack, I., & Van Houten, E. E. W. (2017). Viscoelastic power law parameters of in vivo human brain estimated by MR elastography. Journal of the Mechanical Behavior of Biomedical Materials, 74, 333–341. doi:10.1016/J.JMBBM.2017.06.027
  • Tomalski, P., Moore, D. G., Ribeiro, H., Axelsson, E. L., Murphy, E., Karmiloff‐Smith, A., Johnson, M.H & Kushnerenko, E. (2013). Socioeconomic status and functional brain development–associations in early infancy. Developmental Science, 16(5), 676–687. doi:10.1111/desc.12079
  • Wagner, R. K., & Meros, D. (2010). Vocabulary and reading comprehension: Direct, indirect, and reciprocal influences. Focus on Exceptional Children, 2010.
  • Wang, Y., Seidl, A., & Cristia, A. (2021). Infant speech perception and cognitive skills as predictors of later vocabulary. Infant Behavior and Development, 62. doi:10.1016/j.infbeh.2020.101524
  • Weiller, C., Isensee, C., Rijntjes, M., Huber, W., Müller, S., Bier, D., Dutschka, K, Woods, R.P., Noth, J & Diener, H. C. (1995). Recovery from wernicke’s aphasia: A positron emission tomographic study. Annals of Neurology, 37(6), 723–732. doi:10.1002/ANA.410370605
  • Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language experience strengthens processing and builds vocabulary. Psychological Science, 24(11), 2143–2152. doi:10.1177/0956797613488145
  • Wong, P., & brain, T. P.-H. (2007). Neural characteristics of successful and less successful speech and word learning in adults. Wiley Online Library, 28(10) 2007, undefined, 995–1006. 10.1002/hbm.20330.
  • Yeung, J., Jugé, L., Hatt, A., & Bilston, L. E. (2019). Paediatric brain tissue properties measured with magnetic resonance elastography. Biomechanics and Modeling in Mechanobiology, 18(5), 1497–1505. doi:10.1007/S10237-019-01157-X
  • Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57. doi:10.1109/42.906424
  • Zhang, Y. (2020). Quality matters more than quantity: Parent–child communication and adolescents’ academic performance. Frontiers in Psychology, 11, 1203. doi:10.3389/fpsyg.2020.01203