6
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Microvascular Structure and Function in Salt-Sensitive Hypertension

Pages 225-241 | Published online: 10 Jul 2009

REFERENCES

  • Allen SP, Liang HM, Hill MA, Prewitt RL. (1996). Elevated pressure stimulates protooncogene expres-sion in isolated mesenteric arteries. Am J Physiol 271:H1517–H1523.
  • Allen SP, Wade SS, Prewitt RL. (1997). Myogenic tone attenuates pressure-induced gene expression in isolated small arteries. Hypertension 30:203–208.
  • Amaral SL, Roman RJ, Greene AS. (2001). Renin gene transfer restores angiogenesis and vascular en-dothelial growth factor expression in Dahl S rats. Hypertension 37:386–390.
  • Andresen MC, Rudis SK, Bee DE. (1989). Aberrant baroreceptor mechanotransduction in adult Dahl rats on low-salt diet. Am J Physiol 256:H446–H454.
  • Bakker ENTP, van der Meulen ET, van den Berg BM, Everts V, Spaan JAE, VanBavel E. (2002). In-ward remodeling follows chronic vasoconstriction in isolated resistance arteries. J Vasc Res 39:12–20.
  • Baurnbach GL, Heistad DD. (1988). Cerebral circu-lation in chronic arterial hypertension. Hypertension 12:89–95.
  • Baurnbach GL, Heistad DD. (1989). Remodeling of cerebral arterioles in chronic hypertension. Hyper-tension 13:968–972.
  • Baurnbach GL, Wahrisley JG, Hart MN. (1988). Composition and mechanics of cerebral arterioles in hypertensive rats. Am J Pathol 133:464–471.
  • Baurnbach GL, Heistad DD, Siems JE. (1989). Ef-fect of sympathetic nerves on composition and dis-tensibility of cerebral arterioles in rats. J Physiol 416:123–140.
  • Beswick RA, Zhang H, Marable D, Catravas JD, Hill WD, Webb RC. (2001). Long-term antioxidant ad-ministration attenuates mineralocorticoid hyperten-sion and renal inflammatory response. Hypertension 37:781–786.
  • Boegehold MA. (1991). Effect of salt-induced hy-pertension on microvascular pressures in skeletal muscle of Dahl rats. Am J Physiol 260:H1819–H1825.
  • Boegehold MA. (1992). Reduced influence of nitric oxide on arteriolar tone in hypertensive Dahl rats. Hypertension 19:290–295.
  • Boegehold MA. (1993). Microvascular changes as-sociated with high salt intake and hypertension in Dahl rats. Int J Microcirc 12:143–156.
  • Boegehold MA. (1993). Enhanced arteriolar vaso-motion in rats with chronic salt-induced hyperten-sion. Microvasc Res 45:83–94.
  • Boegehold MA. (1993). Effect of dietary salt on ar-teriolar nitric oxide in striated muscle of normoten-sive rats. Am J Physiol 264:H1810–H1816.
  • Boegehold MA. (1995). Flow-dependent arteriolar dilation in normotensive rats fed low- or high-salt diets. Am J Physiol 269:H1407–H1414.
  • Boegehold MA, Bohlen HG. (1988). Arteriolar di-ameter and tissue oxygen tension during muscle contraction in hypertensive rats. Hypertension 12: 184–191.
  • Boegehold MA, Kotchen TA. (1990). Effect of di-etary salt on the skeletal muscle microvasculature in Dahl rats. Hypertension 15:420–426.
  • Boegehold MA, Kotchen TA. (1990). Arteriolar net-work morphology in gracilis muscle of rats with salt-induced hypertension. Microvasc Res 40:169–178.
  • Boegehold MA, Huffman LJ, Hedge GA. (1991). Pe-ripheral vascular resistance and regional blood flows in hypertensive Dahl rats. Am J Physiol 261:R934–R938.
  • Bohlen HG. (1979). Arteriolar closure mediated by hyperresponsiveness to norepinephrine in hyperten-sive rats. Am J Physiol 236:H157–H164.
  • Bohlen HG. (1980). Intestinal tissue P02 and mi-crovascular responses during glucose exposure. Am J Physiol 238: H164–H171.
  • Bohlen HG. (1989). The microcirculation in hyper-tension. J Hypertens 7 ( Suppl 4) : S117–S124.
  • Bohlen HG, Lash ym. (1994). Active and passive arteriolar regulation in spontaneously hypertensive rats. Hypertension 23:757–764.
  • Bouhnik J, Richoux JP, Huang H, Savoie F, Baus-sant T, Alhenc-Gelas F, Corvol P. (1992). Hyper-tension in Dahl salt-sensitive rats: biochemical and irnrnunohistochemical studies. Clin Sci 83:13–22.
  • Cai H, Harrison DG. (2000). Endothelial dysfunc-tion in cardiovascular diseases. The role of oxidant stress. Circ Res 87:840–844.
  • Carnpese VM. (1994). Salt sensitivity in hyperten-sion. Renal and cardiovascular implications. Hyper-tension 23:531–550.
  • Chen TIE, Prewitt RL, Dowell RF. (1981). Micro-vascular rarefaction in spontaneously hypertensive rat cremaster muscle. Am J Physiol 241:H306–H310.
  • Chen PY, Sanders PW. (1991). L-arginine abro-gates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest 88:1559–1567.
  • Chen PY, Sanders PW. (1993). Role of nitric oxide synthesis in salt-sensitive hypertension in Dahl/ Rapp rats. Hypertension 22:812–818.
  • Cowley AW Jr. (1991). Salt and hypertension-future directions. Hypertension 17\(Suppl 1):1–205–1–210.
  • Coyle P. (1988). High NaC1 predisposes Dahl rats to cerebral infarction after middle cerebral artery oc-clusion. Hypertension 12:96–101.
  • Dahl LK, Heine M, Tassinari L. (1962). Effects of chronic excess salt ingestion: evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med 115:1173–1190.
  • Dahl LK, Heine M, Tassinari L. (1962). Role of genetic factors in susceptibility to experimental hy-pertension due to chronic excess salt ingestion. Na-ture 194:480–482.
  • Deng X, Welch WJ, Wilcox CS. (1994). Renal vaso-constriction during inhibition of NO synthase: ef-fects of dietary salt. Kidney Int 46:639–646.
  • Dobrian AD, Davies MJ, Schriver SD, Lauterio TJ, Prewitt RL. (2001). Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 37: 554–560.
  • d'Uscio LV, Barton M, Shaw S, Moreau P, Luscher TF. (1997). Structure and function of small arteries in salt-induced hypertension. Effects of chronic en-dothelin-subtype-A-receptor blockade. Hyperten-sion 30:905–911.
  • d'Uscio LV, Quaschning T, Burnett JC Jr, Luscher TF. (2001). Vasopeptidase inhibition prevents en-dothelial dysfunction of resistance arteries in salt-sensitive hypertension in comparison with single ACE inhibition. Hypertension 37:28–33.
  • Ellsworth ML. (2000). The red blood cell as an oxy-gen sensor: what is the evidence? Acta Physiol Scand 168:551–559.
  • Engelson ET, Schmid-Schonbein GW, Zweifach BW . (1986 ) . The microvasculature in skeletal muscle II. arteriolar network anatomy in normoten-sive and spontaneously hypertensive rats. Microvasc Res 31:356–374.
  • Falcone JC, Granger HJ, Meininger GA. (1993). En-hanced myogenic activation in skeletal muscle arte-rioles from spontaneously hypertensive rats. Am J Physiol 265:H1847–H1855.
  • Folkow B, Hallbeck M, Lundgren Y, Weiss L. (1970). Background of increased flow resistance and vascular reactivity in spontaneously hyperten-sive rats. Acta Physiol Scand 80:93–106.
  • Fortes ZB, Costa SG, Nucci G, Nigro D, Scivoletto R, Carvalho M HC. (1990). Comparison of the reactiv-ity of micro- and macrovessels to noradrenaline and endothelin in rats with renal (2K1C) hypertension. Clin Exp Hyperten (Theory and Practice) Al2:47–61.
  • Friebel M, Klotz KF, Ley K, Gaehtgens P, Pries AR. (1995). Flow-dependent regulation of arteriolar di-ameter in rat skeletal muscle in situ: Role of endo-thelium-derived relaxing factor and prostanoids. J Physiol 483:715–726.
  • Frisbee JC, Lombard JH. (1998). Chronic elevations in salt intake and reduced renal mass hypertension compromise mechanisms of arteriolar dilation. Mi-crovasc Res 56:218–227.
  • Frisbee JC, Lombard JH. (1999). Acute elevations in salt intake and reduced renal mass hypertension compromise arteriolar dilation in rat cremaster muscle. Microvasc Res 57:273–283.
  • Frisbee JC, Lombard JH. (1999). Development and reversibility of altered skeletal muscle arteriolar structure and reactivity with high salt diet and re-duced renal mass hypertension. Microcirculation 6: 215–225.
  • Frisbee JC, Roman RJ, Krishna UM, Falck JR, Lom-bard JH. (2001). 20-HETE modulates myogenic re-sponse of skeletal muscle resistance arteries from hypertensive Dahl-SS rats. Am J Physiol 280:H1066–H1074.
  • Frisbee JC, Roman RJ, Krishna UM, Falck JR, Lom-bard JH. (2001). Altered mechanisms underlying hypoxic dilation of skeletal muscle resistance arter-ies of hypertensive versus normotensive Dahl rats. Microcirculation 8:115–127.
  • Ganguli M, Tobian L, Iwai J. (1979). Cardiac out-put and peripheral resistance in strains of rats sen-sitive and resistant to NaC1 hypertension. Hyperten-sion 1:3–7.
  • Garcia SR, Izzard AS, Heagerty AM, Bund SJ. (1997). Myogenic tone in coronary arteries from spontaneously hypertensive rats. J Vasc Res 34:109–116.
  • Gauthier-Rein KM, Rusch NJ. (1998). Distinct en-dothelial impairment in coronary microvessels from hypertensive Dahl rats. Hypertension 31\(part 2): 328–334.
  • Greene AS, Lombard JH, Cowley AW Jr, Hansen-Smith FM. (1990). Microvessel changes in hyper-tension measured by Grtffonia simplicifolia I lectin. Hypertension 15:779–783.
  • Greene AS, Yu Y, Roman RJ, Cowley AW Jr. (1990). Role of blood volume expansion in Dahl rat model of hypertension. Am J Physiol 258:H508–H514.
  • Griendling KK, Sorescu D, Ushio-Fukai M. (2000). NAD (P)H oxidase. Role in cardiovascular biology and disease. Circ Res 86:494–501.
  • Gryglewski RJ, Palmer RM, Moncada S. (1986). Su-peroxide anion is involved in the breakdown of en-dothelium-derived vascular relaxing factor. Nature 320:454–456.
  • Guyton AC. (1987). Renal function curve-a key to understanding the pathogenesis of hypertension. Hypertension 10:1–6.
  • Hansen-Smith FM, Greene AS, Cowley AW Jr, Lom-bard JH. (1990). Structural changes during micro-vascular rarefaction in chronic hypertension. Hyper-tension 15:922–928.
  • Hansen-Smith FM, Morris LW, Greene AS, Lom-bard JH. (1996). Rapid microvessel rarefaction with elevated salt intake and reduced renal mass hyper-tension in rats. Circ Res 79:324–330.
  • Harper SL, Bohlen HG. (1984). Microvascular ad-aptation in the cerebral cortex of adult spontane-ously hypertensive rats. Hypertension 6:408–419.
  • Hart MIN, Heistad DD, Brody MJ. (1980). Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hyperten-sion 2:419–423.
  • Hashimoto H, Prewitt RL, Efaw CW. (1987). Alter-ations in the microvasculature of one-kidney, one-clip hypertensive rats. Am J Physiol 253:H933–H940.
  • Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ. (1993). Small artery structure in hy-pertension. Dual processes of remodeling and growth. Hypertension 21:391–397.
  • Hernandez I, Cowley AW Jr, Lombard JH, Greene AS. (1992). Salt intake and angiotensin II alter mi-crovessel density in the cremaster muscle of normal rats. Am J Physiol 263:H664–H667.
  • Herrmann H-J, Moritz V, Kuhne CH. (1992). Struc-tural wall tissue alterations of the microvasculature in the course of spontaneous hypertension of rats. Int J Microcirc 11:1–20.
  • Hu L, Manning RD Jr. (1995). Role of nitric oxide in regulation of long-term pressure-natriuresis rela- tionship in Dahl rats. Am J Physiol 268:H2375–H2383.
  • Huang A, Koller A. (1996). Both nitric oxide and prostaglandin-mediated responses are impaired in skeletal muscle arterioles of hypertensive rats. J Hy-pertension 14:887–895.
  • Huang A, Koller A. (1997). Endothelin and prosta-glandin H2 enhance arteriolar myogenic tone in hy-pertension. Hypertension 30:1210–1215.
  • Huie RE, Padmaja S. (1993). The reaction of NO with superoxide. Free Radic Res Commun 18:195–199.
  • Intengan HD, Schiffrin EL. (1998). Mechanical properties of mesenteric resistance arteries from Dahl salt-resistant and salt-sensitive rats: role of en-dothelin-1. J Hypertens 16:1907–1912.
  • Intengan HD, Schiffrin EL. (2000). Structure and mechanical properties of resistance arteries in hy-pertension. Role of adhesion molecules and extracel-lular matrix determinants. Hypertension 36:312–318.
  • Irani K. (2000). Oxidant signaling in vascular cell growth, death and survival. A review of the roles of reactive oxygen species in smooth muscle and endo-thelial cell mitogenic and apoptotic signaling. Circ Res 87:179–183.
  • Izzard AS, Bund SJ, Heagerty AM. (1996). Myo-genic tone in mesenteric arteries from spontaneously hypertensive rats. Am J Physiol 270:H1–H6.
  • Kowaluk EA, Seth P, Fung H-L. (1992). Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle. J Pharm Exp Ther 262: 916–922.
  • Kuo L, Davis MJ, Chilian W1VI. (1995). Longitudinal gradients for endothelium-dependent and -inde-pendent vascular responses in the coronary micro-circulation. Circulation 92:518–525.
  • Kurtz TW, Morris RC Jr. (1985). Hypertension in the recently weaned Dahl salt-sensitive rat despite a diet deficient in sodium chloride. Science 230:808–810.
  • Lash ym, Bohlen HG. (1987). Perivascular and tis-sue P02 in contracting rat spinotrapezius muscle. Am J Physiol 252:H1192–H1202.
  • Lash ym, Nase GP, Bohlen HG. (1999). Acute hy-perglycemia depresses arteriolar NO formation in skeletal muscle. Am J Physiol 277:H1513–H1520.
  • Lee RMKW, Triggle CR. (1986). Morphometric study of mesenteric arteries from genetically hyper-tensive Dahl strain rats. Blood Vessels 23:199–224.
  • Lenda DM, Boegehold MA. (2002). Effect of a high salt diet on microvascular antioxidant enzymes. J Vasc Res 39:41–50.
  • Lenda DM, Boegehold MA. (2002). Effect of a high salt diet on oxidant enzyme activity in skeletal muscle microcirculation. Am J Physiol 282:H395–H402.
  • Lenda DM, Sauls BA, Boegehold MA. (2000). Reac- tive oxygen species may contribute to reduced en-dothelium-dependent dilation in rats fed high salt. Am J Physiol 279:H7–H14.
  • Linderman JR, Boegehold MA. (1996). Arteriolar network growth in rat striated muscle during juve-nile maturation. Int J Microcirc 16:232–239.
  • Liu Y, Rusch NJ, Lombard JH. (1999). Loss of en-dothelium and receptor-mediated dilation in pial ar-terioles of rats fed a short-term high salt diet. Hy-pertension 33:686–688.
  • Liu Y, Fredricks KT, Roman RJ, Lombard JH. (1997). Response of resistance arteries to reduced P02 and vasodilators during hypertension and el-evated salt intake. Am J Physiol 273:H869–H877.
  • Lombard JH, Hess ME, Stekiel WJ. (1984). Neural and local control of arterioles in SHR. Hypertension 6:530–535.
  • Lombard JH, Hinojosa-Laborde C, Cowley AW Jr. (1989). Hemodynarnics and microcirculatory alter-ations in reduced renal mass hypertension. Hyper-tension 13:128–138.
  • Matsuoka H, hoh S, Kirnoto M, Kohno K, Tamai O, Wada Y, Yasukawa H, Iwarni G, Okuda S, Imaizurni T. (1997). Asymmetrical dirnethylarginine, an en-dogenous nitric oxide synthase inhibitor, in experi-mental hypertension. Hypertension 29:242–247.
  • Mayhan WG. (1992). Role of prostaglandin H2-thromboxane A2 in responses of cerebral arterioles during chronic hypertension. Am J Physiol 262:H539–H543.
  • Meininger GA, Harris PD, Joshua IG. (1984). Dis-tributions of microvascular pressure in skeletal muscle of one-kidney, one-clip, two-kidney, one-clip, and deoxycorticosterone-salt hypertensive rats. Hypertension 6:27–34.
  • Meininger GA, Falcone JC, Hill MA. (1991). Auto-regulation and resistance-artery function. In: Bevan JA, Halpern W, Mulvany MJ, editors. The Resistance Vasculature. Totowa, NJ: Humana Press, pp. 345–371.
  • Melo LG, Pang SC, Ackermann U. (2000). Atrial natriuretic peptide: regulator of chronic arterial blood pressure. News Physiol Sci 15:143–149.
  • Miyata N, Cowley AW Jr. (1999). Renal intrarned-ullary infusion of L-arginine prevents reduction of blood flow and hypertension in Dahl salt-sensitive rats. Hypertension 33 (part II):446–450.
  • Mulvany MJ, Baurnbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schriffrin EL, Heistad DD. (1996). Vascular remodeling [letter to the editor]. Hypertension 28:505–506.
  • Munzenrnaier DH, Greene AS. (1996). Opposing ac-tions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension 27:760–765.
  • Nakamura K, Cowley AW Jr. (1989). Sequential changes of cerebrospinal fluid sodium during the development of hypertension in Dahl rats. Hyper-tension 13:243–249.
  • Nakamura T, Prewitt RL. (1991). Effect of NG-monomethyl-L-arginine on arcade arterioles of rat spinotrapezius muscles. Am J Physiol 261:H46–H52.
  • Nakamura T, Prewitt RL. (1991). Effect of NG-monomethyl-L-arginine on endothelium-dependent relaxation in arterioles of one-kidney, one clip hy-pertensive rats. Hypertension 17:875–880.
  • Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M. (1991). Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 88:10045–10048.
  • Ni Z, Oveisi F, Vaziri N. (1999). Nitric oxide syn-thase isotype expression in salt-sensitive and salt-resistant Dahl rats. Hypertension 34:552–557.
  • Nurkiewicz TR, Boegehold MA. (1998). High di-etary salt alters arteriolar myogenic responsiveness in normotensive and hypertensive rats. Am J Physiol 275:H2095–H2104.
  • Nurkiewicz TR, Boegehold MA. (1999). Limitation of arteriolar myogenic activity by local nitric oxide: segment-specific effect of dietary salt. Am J Physiol 277:H1946–H1955.
  • Nurkiewicz TR, Boegehold MA. (2000). Reinforce-ment of arteriolar myogenic activity by endogenous ANG II: susceptibility to dietary salt. Am J Physiol 279:H269–1–1278.
  • Ono Z, Prewitt RL, Stacy DL. (1989). Arteriolar changes in developing and chronic stages of two-kidney, one clip hypertension. Hypertension 14:36–43.
  • Osborn JL. (1991). Relation between sodium intake, renal function, and the regulation of arterial pres-sure. Hypertension 17:1–9–1–96.
  • Patel A, Layne S, Watts D, Kirchner KA. (1993). L-arginine administration normalizes pressure na-triuresis in hypertensive Dahl rats. Hypertension 22: 863–869.
  • Pfeffer MA, Pfeffer J, Mirsky J, Iwai J. (1984). Car-diac hypertrophy and performance of Dahl hyper-tensive rats on graded salt diets. Hypertension 6: 475–481.
  • Pohl U, de Wit C. (1999). A unique role of NO in the control of blood flow. News Physiol Sci 14:74–80.
  • Prewitt RL, Rapp JP. (1984). Rarefaction of arteri-oles in Dahl-S hypertensive rat gracilis muscle. Mi-crovasc Res 27:259 (Abstr).
  • Prewitt RL, Chen TIE, Dowell R. (1982). Develop-ment of microvascular rarefaction in the spontane-ously hypertensive rat. Am J Physiol 243:H243–H251.
  • Prewitt RL, Chen TIE, Dowell R. (1984). Microvas-cular alterations in the one-kidney, one-clip renal hypertensive rat. Am J Physiol 246:H728–H732.
  • Prewitt RL, Hashimoto H, Stacy DL. (1987). Mi-crovascular alterations in hypertension. In: McDon-agh P, editor. Microvascular Perfusion and Trans- port in Health and Disease. Basel: Karger, pp. 31–59.
  • Prewitt RL, Reilly CK, Wang DH. (1994). Pressure-flow curves reflect arteriolar responses in perfused rat hindquarters. Hypertension 23:223–228.
  • Pries AR, Heide J, Ley K, Klotz K-F, Gaehtgens P. (1995). Effect of oxygen tension on regulation of arteriolar diameter in skeletal muscle in situ. Micro-vasc Res 49:289–299.
  • Rafi JA, Boegehold MA. (1993). Microvascular re-sponses to oxygen and muscle contraction in hyper-tensive Dahl rats. Int J Microcirc 13:83–97.
  • Rapp JP. (1982). Dahl salt-susceptible and salt-resistant rats: a review. Hypertension 4:753–763.
  • Rapp JP, Dene H (1985). Development and charac-teristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension 7:340–349.
  • Roy JW, Mayrovitz FIN. (1982). Microvascular blood flow in the normotensive and spontaneously hypertensive rat. Hypertension 4:264–271.
  • Rubanyi GM, Vanhoutte PM. (1986). Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 250:H822–H827.
  • Rudd MA, Trolliet M, Hope S, Scribner AW, Daurnerie G, Toolan G, Cloutier T, Loscalzo J. (1999). Salt-induced hypertension in Dahl salt-resistant and salt-sensitive rats with NOS II inhibi-tion. Am J Physiol 277:H732–H739.
  • Saltzman D, DeLano FA, Schmid-Schonbein GW. (1992). The microvasculature in skeletal muscle VI. Adrenergic innervation of arterioles in normotensive and spontaneously hypertensive rats. Microvasc Res 44:263–273.
  • Sexton WL, Korthuis RJ, Laughlin M H. (1990) . Vascular flow capacity of hindlirnb skeletal muscles in spontaneously hypertensive rats. J Appl Physiol 69:1073–1079.
  • Shen K, DeLano FA, Zweifach BW, Schmid-S chönb ein GW. (1995). Circulating leukocyte counts, activation, and degranulation in Dahl hyper-tensive rats. Circ Res 76:276–283.
  • Sherman DL, Keaney JF Jr, Biegelson ES, Duffy SJ, Coffman JD, Vita JA. (2000). Pharmacological con-centrations of ascorbic acid are required for the ben-eficial effect on endothelial vasomotor function in hypertension. Hypertension 35:936–941.
  • Shultz PJ, Tolins JP. (1993). Adaptation to in-creased dietary salt intake in the rat. Role of endog-enous nitric oxide. J Clin Invest 91:642–650.
  • Suzuki H, Swei A, Zweifach BW, Schmid-Schonbein GW. (1995). In vivo evidence for microvascular oxi-dative stress in spontaneously hypertensive rats: hy-droethidine microfluorography. Hypertension 25: 1083–1089.
  • Suzuki H, DeLano FA, Parks DA, Jarnshidi N, Granger DN, Ishii H, Suematsu M, Zweifach BW, Schmid-Schonbein GW. (1998). Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci USA 95:4754–4759.
  • Swei A, Lacy F, DeLano FA, Schmid-Schonbein GW. (1997). Oxidative stress in the Dahl hyperten-sive rat. Hypertension 30:1628–1633.
  • Swei A, Lacy F, DeLano FA, Parks DA, Schmid-Schonbein GW. (1999). A mechanism of oxygen free radical production in the Dahl hypertensive rat. Mi-crocirculation 6:179–187.
  • Takenaka T, Forster H, De Michell A, Epstein M. (1992). Impaired myogenic responsiveness of renal microvessels in Dahl salt-sensitive rats. Circ Res 71: 471–480.
  • Takeshita A, Mark AL. (1978). Neurogenic contri-bution to hindquarter vasoconstriction during high sodium intake in Dahl strain of genetically hyper-tensive rat. Circ Res 43:1–86–1–91.
  • Tan DY, Meng S, Manning RD Jr. (1999). Role of neuronal nitric oxide synthase in Dahl salt-sensitive hypertension. Hypertension 33 (part 2):456–461.
  • Tan DY, Meng S, Cason GW, Manning RD Jr. (2000). Mechanisms of salt-sensitive hypertension: role of inducible nitric oxide synthase. Am J Physiol 279:R2297–R2303.
  • Tschudi MR, Mesaros S, Luscher TF, Malinski T. (1996). Direct in situ measurement of nitric oxide in mesenteric resistance arteries: increased decomposi-tion by superoxide in hypertension. Hypertension 27:32–35.
  • Wang DH, Prewitt RL. (1990). Captopril reduces aortic and microvascular growth in hypertensive and normotensive rats. Hypertension 15:68–77.
  • Weber DS, Lombard JH. (2000). Elevated salt in-take impairs dilation of rat skeletal muscle resis- tance arteries via ANG II suppression. Am J Physiol 278:H500–H506.
  • Weber DS, Lombard JH. (2001). Angiotensin II ATi receptors preserve vasodilator reactivity in skeletal muscle resistance arteries. Am J Physiol 280:H2196–H2202.
  • Weber DS, Frisbee JC, Lombard JH. (1999). Selec-tive potentiation of angiotensin-induced constriction of skeletal muscle resistance arteries by chronic el-evations in dietary salt intake. Microvasc Res 57: 310–319.
  • Weinberger M H. (1996). Salt sensitivity of blood pressure in humans. Hypertension 27 (part 2):481–490.
  • Widimsky J, Kuchel O, Tremblay J, Hamet P. (1991). Distinct plasma atrial natriuretic factor, re-nin and aldosterone responses to prolonged high-salt intake in hypertensive and normotensive rats. J Hy-pertens 9:241–247.
  • Wilcox CS, Deng X, Welch WJ. (1998). NO genera-tion and action during changes in salt intake: roles of nNOS and macula densa. Am J Physiol 274:R1588–R1593.
  • Ying W-Z, Xia H, Sanders PW. (2001). Nitric oxide synthase (N052) mutation in Dahl/Rapp rats de-creases enzyme stability. Circ Res 89:317–322.
  • Zalba G, Beaumont FJ, San Jose G, Fortuno A, For-limo MA, Etayo JC, and Diez J. (2000). Vascular NADH/NADPH oxidase is involved in enhanced su-peroxide production in spontaneously hypertensive rats. Hypertension 35:1055–1061.
  • Zatz R, Baylis C. (1998). Chronic nitric oxide inhi-bition model six years on. Hypertension 32:958–964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.