0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Three-Pathway Pore Model Describes Extensive Transport Data from Mammalian Microvascular Beds and Frog Microvessels

Pages 497-511 | Published online: 10 Jul 2009

REFERENCES

  • Adamson RH, Huxley VH, Curry FE. (1988). Single capillary permeability to proteins having similar size but different charge. Am J Physiol 254:H304–H312.
  • Bai C, Fukuda N, Song Y, Ma T, Matthay MA, Verk-man AS. (1999). Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. J Clin Invest 103: 555–561.
  • Carlsson 0, Nielsen S, Zakaria E, Rippe B. (1996). In vivo inhibition of transcellular water channels (aqua-porin 1) during acute peritoneal dialysis in rats. Am J Physiol 271:H2254–H2262.
  • Crone C, Frokjaer-Jensen J, Friedman JJ. (1978). The permeability of single capillaries to potassium ions. J Gen Physiol 7 1: 195–220.
  • Crone C, Levitt DG. (1984). Capillary permeability to small solutes. In: Handbook of Physiology, Sect.2: The Cardiovascular System, vol.4, Microcirculation (EM Rekin and CC Michel, Eds.) part 1. American Physiological Society, Bethesda. 411–466.
  • Curry FE. (1979). Permeability coefficients of the capillary wall to low molecular weight hydrophilic solutes measured in single perfused capillaries of frog mesentery. Microvasc Res 17:290–308.
  • Curry FE. (1984). Mechanics and thermodynamics of transcapillary exchange. Handbook of Physiology. The Cardiovascular System. Microcirculation. Sect. 2, Vol. IV. American Physiological Society, Bethesda. 309–374.
  • Curry FE, Huxley VH. (1982). Comparison of the capillary membrane properties determining fluid ex-change in single capillaries and whole organs. Int J Microcirc Clin Exp 1:381–391.
  • Curry FE, Huxley VH, Adamson RH. (1983). Perme-ability of single capillaries to intermediate-sized col-ored solutes. Am J Physiol 245:H495–H505.
  • Curry FE, Michel CC. (1980). A fiber matrix model of capillary permeability. Microvasc Res 24:163–183.
  • Fu BM, Adamson RH, Curry FE. (1998). Test of a two-pathway model for small-solute exchange across the capillary wall. Am J Physiol 274:H2062–H2073.
  • Fu BM, Weinbaum S, Tsay RY, Curry FE. (1994). A junction-orifice-fiber entrance layer model for capil-lary permeability: application to frog mesenteric cap-illaries. Trans Am Soc Mechan Eng 116:502–513.
  • Grotte G. (1956). Passage of dextran molecules across the blood-lymph barrier. Acta Chir Scand Suppl 211:1–84.
  • Haraldsson B. (1988). Diffusional transport of albu-min from interstitium to blood across small pores in the capillary walls of rat skeletal muscle. Acta Physiol Scand 133:63–71.
  • Haraldsson B, Rippe B. (1986). Restricted diffusion of CrEDTA and cyancobalamine across the exchange vessels in rat hindquarters. Acta Physiol Scand 127: 359–372.
  • Haraldsson B, Rippe B. (1991). A note on the errors of using venous congestion in intact rats for determi-nation of microvascular permeability. Acta Physiol Scand 143:233–238.
  • Huxley VH, Curry FE. (1991). Differential actions of albumin and plasma on capillary solute permeability. Am J Physiol 260:H1645–H1654.
  • Huxley VH, Rumbaut RE. (2000). The microvascu-lature as a dynamic regulator of volume and solute exchange. Clin Exp Pharmacol Physiol 27:847–854.
  • McNamee JE, Staub NC. (1979). Pore models of sheep lung microvascular barrier using new data on Protein tracers. Microvasc Res 18:229–244.
  • McNamee JE, Wolf MB. (1998). Prediction of perme-ability-surface area product data by continuous-distribution pore models. Microcirculation 5:275–280.
  • Michel CC. (1980). Filtration coefficients and os-motic reflexion coefficients of the walls of single frog mesenteric capillaries. J Physiol 309:341–355.
  • Michel CC. (1988). Capillary permeability and how it may change. J Physiol 404:1–29.
  • Michel CC, Curry FE. (1999). Microvascular perme-ability. Physiol Rev 79:703–761.
  • Paaske WP. (1977). Capillary permeability in skel-etal muscle. Acta Physiol Scand 101:1–14.
  • Pappenheimer JR. (1970). Osmotic reflection coeffi-cients in capillary membrane. In: Capillary Perme-ability (C Crone and NA Vassen, Eds.) Munksgaord. Copenhagen. 278–286.
  • Pappenheimer JR, Renkin EM, Borrero LM. (1951). Filtration, diffusion, and molecular sieving through the peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am J Physiol 167:13–46.
  • Peters T Jr. (1985). Serum albumin. In: Adv Protein Chem Academic Press. San Diego. 37:161–245.
  • Reed RK. (1988). Transcapillary albumin extravasa-tion in rat skin and skeletal muscle: effect of increased venous pressure. Acta Physiol Scand 134:375–382.
  • Renkin EM. (1984). Control of microcirculation and blood-tissue exchange. In: Handbook of Physiology, Sect. 2: The Cardiovascular System, vol. IV, Micro-circulation, part 2. American Physiological Society. Bethesda. 627–687.
  • Renkin EM. (1985). Capillary transport of macro-molecules: pores and other endothelial pathways. J App/ Physiol 58:315–325.
  • Renkin EM, Curry FE. (1978). Transport of water and solutes across capillary endothelium. In: Mem-brane Transport in Biology. (G. Giebisch, Ed.) Vol. IV Springer-Verlag. Berlin. 1–45.
  • Renkin EM, Gilmore JP. (1973). Glomerular filtra-tion. In: Handbook of Physiology. Renal Physiology. (J. Orloff and R.W. Berliner, eds.) American Physi-ological Society. Washington, DC. 185-248.
  • Rippe B, Haraldsson B. (1986). Capillary permeabil-ity in rat hindquarters as determined by estimations of capillary reflection coefficients. Acta Physiol Scand 127:289–303.
  • Rippe B, Haraldsson B. (1987). Fluid and protein fluxes across small and large pores in the microvas-culature. Acta Physiol Scand 131:411–428.
  • Rippe B, Haraldsson B. (1994). Transport of macro-molecules across microvascular walls: the two-pore theory. Physiol Rev 74:163–219.
  • Rippe B, Rosengrens B-I, Venturoli D. (2001). The peritoneal microcirculation in peritoneal dialysis. Mi-crocirculation 8:303–320.
  • Taylor AE, Granger DN. (1984). Exchange of mac-romolecules across the microcirculation. In: Hand-book of Physiology. The Cardiovascular System. Mi-crocirculation. Sect. 2, vol IV. American Physiologi-cal Society, Bethesda. 467–520.
  • Trap-Jensen J, Lassen NA. (1971). Restricted diffu-sion in skeletal muscle capillaries in man. Am J Phys-iol 220:371–376.
  • Watson PD. (1995). Permeability of cat skeletal muscle capillaries to small solutes. Am J Physiol 268:H184–H193.
  • Watson PD, Wolf MB. (1989). Filtration coefficient in cat hindlimb using protein concentration changes. Am J Physiol 250:H186–H194.
  • Watson PD, Wolf MB, Beck-Montgomery IS. (1987). Blood and isoproterenol reduce capillary permeability in cat hindlimb. Am J Physiol 252:H47–H53.
  • Weinbaum S, Tsay R, Curry FE. (1992). A three di-mensional junction-pore-matrix model for capillary permeability. Microvasc Res 44:85–111.
  • Wolf MB. (1994). Identification of microvascular transport pathways in skeletal muscle. Am J Physiol 267:H383–H399.
  • Wolf MB. (1996). Determination of the magnitude of the water-exclusive pathway in cat skeletal muscle microvasculature. Microcirculation 3:59–73.
  • Yudilevich DL, Alvarez OA. (1967). Water, sodium, and thiourea transcapillary diffusion in the dog heart. Am J Physiol 213:308–314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.