142
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Fungal ß(1,3)-D-glucan synthesis

Pages 55-66 | Published online: 09 Jul 2009

References

  • Shematek EM, Braatz JA, Cabib E. Biosynthesis of the yeast cell wall. I. Preparation and properties of 13(1,3)-glucan synthetase. J Biol Chem 1980; 255: 888–894.
  • Shematek EM, Cabib E. Biosynthesis of the yeast cell wall. II.Regulation of 131,3-glucan synthetase by ATP and GTP. J Biol Chem 1980; 255: 895–902.
  • Hay GW, Lewis BA, Smith F, Unrau AM. Periodate oxidation of borohydride-reduced polysaccharides. Methods Carbohyd Chem 1965; 5: 251.
  • Lopez-Romero E, Ruiz-Herrera J. Properties of 13-glucan synthetase from Saccharomyces cerevisiae. Antonie Van Leeu-wenhoek 1978; 44: 329–339.
  • Hrmova M, Taft C, Selitrennikoff CP. 131,3-D-glucan synthase of Neurospora crasssa: Partial purification and characterization of solubilized enzyme activity. Exper Mycol 1989; 13: 129–139.
  • Kelly R, Register E, Hsu M-J, Kurtz MB, Nielsen J. Isolation of a gene involved in 131,3-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein. J Bacteriol 1996; 178: 4381–4391.
  • Beauvais A, Drake R, Ng K, Diaquin M, Latge JP. Characterization of the 131,3-glucan synthase of Aspergillus fumigatus. J Gen Microbiol 1993; 139: 3071–3078.
  • Kurtz MB, Heath B3, Marrinan J, Dreikom S, Onishi J, Douglas C. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against 131,3-D-glucan synthase. Anti microb Agents Chem other 1994; 38: 1480–1489.
  • Ribas JC, Diaz M, Duran A, Perez P. Isolation and characterization of Schizosaccharomyces porn be mutants de-fective in cell wall 131,3-D-glucan. J Bacteriol 1991; 173: 3456–3462.
  • Orlean PA. 131,3-D-Glucan synthase from budding and fila-mentous cultures of the dimorphic fungus Candida albicans. Eur J Biochem 1982; 127:397–403.
  • Thompson JR, Douglas CM, Li W, Jue CK, Pramanik B, Yuan X, Rude TH, Toffaletti DL, Perfect JR, and Kurtz M. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function. 1999; J Bacteriol Mt: 444–453.
  • Antelo L, Cosio EG, Hertkom N, Ebel J. Partial purification of a GTP-insensitive 131,3-glucan synthase from Phytophthora sojae. FEBS Lett 1998; 433: 191–195.
  • Wang MC, Bartnicki-Garcia S. Synthesis of 131,3-glucan microfibrils by a cell-free extract from Phytophthora cinna-momi. Arch Biochem Biophys 1976; 175: 351–354.
  • Quigley DR, Selitrennikoff CP. 13-Linked disaccharides stimu-late, but do not act as a primer for, 131,3-glucan synthase activity of Neurospora crassa. Curr Microbiol 1987; 15: 181–184.
  • Paulson JC, Colley KJ. Glycosyltransferases. Structure, loca-lization, and control of cell type- specific glycosylation. J Biol Chem 1989; 264: 17615–17618.
  • Andaluz E, Guillen A, Larriba G. Preliminary evidence for a glucan acceptor in the yeast Candida albicans. Biochem J 1986; 240: 495–502.
  • Kang MS, Cabib E. Regulation of fungal cell wall growth: A guanine nucleotide-binding, proteinaceous component re-quired for activity of 131,3-D-glucan synthase. Proc Natl Acad Sci USA 1986; 83: 5808–5812.
  • Douglas CM, Marrinan JA, Li W, Kurtz MB. A Saccharomyces cerevisiae mutant with echinocandin resistant 131,3-D-glucan synthase activity. J Bacteriol 1994; 176: 5686–5696.
  • El-Sherbeini M, Clemas JA. Cloning and characterization of GNS1—a Saccharomyces cerevisiae gene involved in synthesis of 131,3-glucan in vitro. J Bacteriol 1995; 177: 3227–3234.
  • Castro C, Ribas JC, Valdivieso MH, Varona R, del Rey F, Duran A. Papulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in 131,3-D-glucan synthesis in Saccharomyces cerevisiae. J Bacteriol 1995; 177: 5732–5739.
  • Kondoh 0, Tachibana Y, Ohya Y, Arisawa M, Watanabe T. Cloning of the RHO1 gene from Candida albicans and its regulation of 13–1,3-glucan synthesis. J Bacteriol 1997; 179: 7734–7741.
  • Awald PD, Frost D, Drake RR, Selitrennikoff CP. 131,3-Glucan synthase activity of Neurospora crassa: identification of a substrate-binding protein. Biochim. Biophys Acta 1994; 1201: 312–320.
  • Frost DJ, Drake RR, Wasserman BP. 131,3-glucan synthae from Saccharomces cerevisiae: In vitro activation by 13-lactoglobulin or Brij-35, and photoaffinity labeling of enriched microsomal fractions with 5-azido-UDP-Gk and 8-azido-GTP. Curr Microbiol 1992; 24: 295–300.
  • Tang J, Parr TR. W-1 solubilization and kinetics of inhibition by cilofungin of Candida albicans 131,3-D-glucan synthase. Antimicrob Agents Chemother 1991; 35: 99–103.
  • Awald P, Zugel M, Monks C, Frost D, Selitrennikoff CP. Purification of 131,3-glucan synthase from Neurospora crassa by product entrapment. Exper Mycol 1993; 17: 130–141.
  • Kang MS, Elango N, Mattia E, Au-Young J, Robbins PW, Cabib E. Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. J Biol Chem 1984; 259: 14966–14972.
  • Beauvais A, Bruneau JM, Mol PC, Buitrago MJ, Legrand R, Latge JP. Glucan synthase complex of Aspergillus fumigatus. J Bacteriol 2001; 183: 2273–2279.
  • Inoue SB, Takewaki N, Takasuka T, Mio T, Adachi M, Fujii Y,Miyamoto C, Arisawa M, Furuichi Y, Watanabe T. Character-ization and gene cloning of 131,3-D-glucan synthase from Saccharomyces cerevisiae. Eur J Biochem 1995. 231: 845–854.
  • Mio T, Adachi-Shimizu M, Tachibana Y, Tabuchi H, Inoue SB,Yabe T, Yamada-Okabe T, Arisawa M, Watanabe T, Yamada- Okabe H. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC11FKS1 and its involvement in 131,3-glucan synthesis. J Bacteriol 1997; 179: 4096–4105.
  • Mol PC, Park HM, Mullins JT, Cabib E. A GTP-binding protein regulates the activity of 131,3-glucan synthase, an enzyme directly involved in yeast cell wall morphogenesis. 1994; J Biol Chem 269: 31267–31274.
  • Yamaguchi H, Hiratani T, Iwata K, and Yamamoto Y. Studieson the mechanism of antifungal action of aculeacin A. J Antibiot (Tokyo) 1982; 35: 210–219.
  • Mizoguchi J, Saito T, Mizuno K, Hayano K. On the mode of action of a new antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae. J Antibiot (Tokyo) 1977; 30: 308–313.
  • Baguley BC, Rommele G, Gruner J, Wehrli W. Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur J Biochem 1979; 97: 345–351.
  • Onishi J, Meinz M, Thompson J et al. Discovery of novel antifungal 131,3-D-glucan synthase inhibitors. Antimicrob Agents Chemother 2000; 44: 368–377.
  • Yamaguchi H, Hiratani T, Baba M, Osumi M. Effect of aculeacin A, a wall-active antibiotic, on synthesis of the yeast cell wall. Micro biol Immuno11985; 29: 609–623.
  • Perez P, Garcia-Acha I, Duran A. Effect of papulacandin B onthe cell wall and growth of Geotri chum lactis. J Gen Micro biol 1983; 129:245–250.
  • Sawistowska-Schroder ET, Kerridge D, Perry H. Echinocandininhibition of 131,3-glucan synthase from Candida albicans. FEBS Lett 1984; 173: 134–138.
  • Taft CS, Zugel M, Selitrennikoff CP. In vitro inhibition of stable 131,3-D-glucan synthase activity from Neurospora crassa. J Enzyme Inhib 1991; 5: 41–49.
  • Kang MS, Szaniszlo PJ, Notario V, Cabib E. The effect of papulacandin B on 01,3-D-glucan synthetases. A possible relationship between inhibition and enzyme conformation. Carbohydr Res 1986; 149:13–21.
  • Nyfeler R, Keller-Schierlein W. Metabolites of microorgan-isms. 143. Echinocandin B, a novel polypeptide-antibioticfrom Aspergillus nidulans var. echinulatus: isolation and structural components. Hely Chim Acta 1974; 57: 2459–2477.
  • Tkacz JS. Glucan biosynthesis in fungi and its inhibition. In: Sutcliffe JJ, Georgopapadakou NH eds. Emerging Targets in Antibacterial and Antifungal Chemotherapy. New York: Chap-man and Hall, 1992: 495–523.
  • Traxler P, Gruner J, Auden JA. Papulacandins, a new family ofantibiotics with antifungal activity. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E. J Antibiot (Tokyo) 1977; 30: 289–296.
  • Balkovec JM. Lipopeptide antifungal agents. Expert Opin Invest Drugs. 1994; 3: 65–82.
  • Hammond M. Chemical and structure activity studies on the echinocandin lipopeptides. In: Rippon J, Fromtling R eds. Cutaneous Antifungal Agents. New York: Marcel Dekker, 1993: 395–420.
  • Turner WW, Current W. Echinocandin antifungal agents. In: Strohl WR ed. Biotechnology of Antibiotics. New York: Marcel-Dekker, 1997: 315–334.
  • Bartizal K, Abruzzo G, Trainor C, Krupa D, Nollstadt K, Schmatz D, Schwartz R, Hammond M, Balkovec J, Vanmid-dlesworth F. In vitro antifungal activities and in vivo efficacies of 01,3-D-glucan synthesis inhibitors L-671,329, L-646,991, tetrahydroechinocandin B, and L-687,781, a papulacandin. Antimicrob Agents Chemother 1992; 36: 1648–1657.
  • Schmatz DM, Powles M, McFadden DC, Pittarelli LA, Liberator PA, Anderson JW. Treatment and prevention of Pneumocystis carinii pneumonia and further elucidation of the P. carinii life cycle with 1,3-13-glucan synthesis inhibitor L-671,329. J Protozool 1991; 38: 151S–1535.
  • Bouffard FA, Zambias RA, Dropinski JF et al. Synthesis and antifungal activity of novel cationic pneumocandin Bo deriva-tives. J Med Chem 1994; 37: 222–225.
  • Bartizal K, Gill CJ, Abruzzo GK et al. In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743,872). Antimicrob Agents Chemother 1997; 41: 2326–2332.
  • Hajdu R, Thompson R, Sundelof JG et al. Preliminary animal pharmacokinetics of the parenteral antifungal agent MK-0991 (L-743,872). Antimicrob Agents Chemother 1997; 41: 2339–2344.
  • Merck & Co. 2001. http://mirror.merck.com/product/usa/canci-das/hcp/home.html.
  • Petraitis V, Petraitiene R, Groll AH, Sein T, Schaufele RL, Lyman CA, Francesconi A, Bacher J, Piscitelli SC, Walsh TJ. Dosage-dependent antifungal efficacy of V-echinocandin (LY303366) against experimental fluconazole-resistant oro-pharyngeal and esophageal candidiasis. Antimicrob Agents Chemother 2001; 45: 471–479.
  • Tomishima M, Ohki H, Yamada A, Takasugi H, Maki K, Tawara S, Tanaka H. FK463, a novel water-soluble echino-candin lipopeptide: synthesis and antifungal activity. J Antibiot (Tokyo) 1999; 52: 674–676.
  • Fromtling RA. Progress in antifungal chemotherapy. Drug News Perspect 1999; 12: 557–569.
  • Radding JA, Heidler SA, Turner WW. Photoaffinity analog of the semisynthetic echinocandin LY303366: identification of echinocandin targets in Candida albicans. Antimicrob Agents Chemother 1998; 42: 1187–1194.
  • Parent SA, Nielsen JB, Morin N, Chrebet G, Ramadan N, Dahl AM, Hsu MJ, Bostian KA, Foor F. Calcineurin-dependent growth of an FK506- and CsA-hypersensitive mutant of Saccharomyces cerevisiae. J Gen Microbiol 1993; 139: 2973–2984.
  • Douglas CM, Foor F, Marrinan JA, Morin N, Nielsen JB, Dahl AM, Mazur P, Baginasky W, Li W, El-Sherbeini M, Clemas JA, Mandala SM, Frommer FR, Kurtz MB. The Saccharo-myces cerevisiae FKS1(ETG1) gene encodes an integral membrane protein which is a subunit of 131,3-D-glucan synthase. Proc Natl Acad Sci USA 1994; 91: 12907–12911.
  • Eng WK, Faucette L, Mclaughlin MM, Cafferkey R, Koltin Y, Morris RA, Young PR, Johnson RK, Livi GP. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporine A hypersensitivity and calci-neurin-dependent growth. Gene 1994; 151: 61–71.
  • Garrett-Engele P, Moilanen B, Cyert MS. Calcineurin, the Ca24/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar 11±-ATPase. Mol Cell Biol 1995; 15: 4103–4114.
  • Ram A, Brekelmans S, Oehlen L, Klis FM. Identification of 2 cell cycle-regulated genes affecting the 131,3-glucan content of cell walls in Saccharomyces cerevisiae. FEBS Lett 1995; 35& 165–170.
  • El-Sherbeini M, Clemas JA. Concomitant nikkomycin Z-supersensitivity of an echinocandin-resistant mutant of Sac-charomyces cerevisiae. Antimicrob Agents Chemother 1995; 39: 200–207.
  • Abe M, Nishida I, Minemura M, Qadota H, Seyama Y, Watanabe T, Ohya Y. Yeast 131,3-glucan synthase activity is inhibited by phytosphingosine localized to the endoplasmic reticulum. J Biol Chem 2001; 276: 26923–26930.
  • Mazur P, Morin N, Baginsky W, El-Sherbeini M, Clemas JA, Nielsen JB, Foor F. Differential expression and function of two homologous subunits of yeastr31,3-D-glucan synthase. Mol Cell Biol 1995; 15: 5671–5681.
  • Garcia-Rodriguez LJ, Trilla JA, Castro C, Valdivieso MH, Duran A, Roncero C. Characterization of the chitin biosynth-esis process as a compensatory mechanism in the fksl mutant of Saccharomyces cerevisiae. FEBS Lett 2000; 478: 84–88.
  • Osmond BC, Specht CA, Robbins PW. Chitin synthase III: synthetic lethal mutants and "stress related" chitin synthesis that bypasses the CSD3/CHS6 localization pathway. Proc Nail Acad Sci USA 1999; 96: 11206–11210.
  • Popolo L, Gilardelli D, Bonfante P, Vai M. Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggplA mutant of Saccharomyces cerevisiae. J Bacteriol 1997; 179:463–469.
  • Ram AF, Kapteyn JC, Montijn RC, Caro LH, Douwes JE, Baginsky W, Mazur P, van den Ende H, Klis FM. Loss of the plasma membrane-bound protein Gaslp in Saccharomyces cerevisiae results in the release of 01,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 1998; 180: 1418–1424.
  • Douglas CM, D'Ippolito JA, Shei GJ, Meinz M, Onishi J, Marrinan JA, Li W, Abruzzo GK, Flattery A, Bartizal K, Mitchell A, Kurtz MB. Identification of the FKS1 gene of Candida albicans as the essential target of 131,3-D-glucan synthase inhibitors. Antimicrob Agents Chemother 1997; 41: 2471–2479.
  • Mazur P, Baginsky W. In vitro activity of 131,3-D-Glucan synthase requires the GTP-binding protein Rhol. J Biol Chem 1996; 271: 14604–14609.
  • Delley PA, Hall MN. Cell wall stress depolarizes cell growth via hyperactivation of RH01. J Cell Biol 1999; 147: 163–174.
  • Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe, Levin DE, Ohya Y. Identification of yeast Rholp GTPase as a regulatory subunit of 01,3-glucan synthase. Science 1996; 272:279–281.
  • Kamada Y, Qadota H, Python CP, Anraku Y, Ohya Y, Levin DE. Activation of yeast protein kinase C by Rhol GTPase. J Biol Chem 1996; 271: 9193–9196.
  • Nonaka H, Tanaka K, Hirano H, Fujiwara T, Kohno H, Umikawa M, Mino A, Takai Y. A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J 1995; 14: 5931–5938.
  • Campbell JA, Davies GJ, Bulone V, Henrissat B. A classifica-tion of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 1997; 326:929–939.
  • Farkas I, Hardy TA, DePaoli-Roach AA, Roach PJ. Isolation of the GSY1 gene encoding yeast glycogen synthase and evidence for the existence of a second gene. J Biol Chem 1990; 265: 20879–20886.
  • Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 1996; 93: 12637–12642.
  • Saxena IM, Brown RM, Fevre M, Geremia RA, Henrissat B. Multidomain architecture of 13-glycosyl transferases: implica-tions for mechanism of action. J Bacteriol 1995; 177:1419–1424.
  • Stasinopoulos SJ, Fisher PR, Stone BA, Stanisich VA. Detection of two loci involved in (1,3)13-glucan (curdlan) biosynthesis by Agro bacterium sp. ATCC31749, and compara-tive sequence analysis of the putative curdlan synthase gene. Glyco biology 1999; 9: 31–41.
  • Chamock SJ, Davies GJ. Structure of the nucleotide-dipho-spho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 1999; 38: 6380–6385.
  • Gastinel LN, Cambillau C, Bourne Y. Crystal structures of the bovine 134galactosyltransferase catalytic domain and its com-plex with uridine diphosphogalactose. EMBO J 1999; 18:3546–3557.
  • Vrielink A, Ruger W, Driessen HP, Freemont PS. Crystal structure of the DNA modifying enzyme 13-glucosyltransferase in the presence and absence of the substrate uridine dipho-sphoglucose. EMBO J 1994; 13: 3413–3422.
  • Breton C, Imberty A. Structure/function studies of glycosyl-transferases. Curr Opin Struct Biol 1999; 9: 563–571.
  • Mouyna I, Monod M, Fontaine T, Henrissat B, Lechenne B, Latge JP. Identification of the catalytic residues of the first family of 131,3-glucanosyltransferases identified in fungi. Biochem J 2000; 347: 741–747.
  • Liu J, Wang H, McCollum D, Balasubramanian MK. Drclp/ Cpslp, a 131,3-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pornbe. Genetics 1999; 153: 1193–1203.
  • Kurtz MB, Abruzzo GK, Flattery AM, Marrinan JA, Li W, Milligan JA, Nollstadt K, and Douglas CM. Isolation and characterization of echinocandin resistant mutants of Candida albicans: Genetic, biochemical and virulence studies. Yeast 1995; 11: S561.
  • Dixon CK, Ma D. Characterization of ECB LY280949 resistant mutants in Saccharomyces cerevisiae. Yeast 1995; 11: S538.
  • Ma D, Dixon C. Echinocandin binding domain of 131,3-glucan synthase. 1999; European Patent Application # 98310497.7.
  • Drgonova J, Drgon T, Tanaka K, Kollar R, Chen GC, Ford RA, Chan C, Takai Y, Cabib E. Rholp, a yeast protein at the interface between cell polarization and morphogenesis. Science 1996; 272: 277–279.
  • Watanabe D, Abe M, Ohya Y. Yeast Lrglp acts as a specialized RhoGAP regulating 131,3-glucan synthesis. Yeast 2001; 18: 943–951.
  • Inoue SB, Qadota H, Arisawa M, Watanabe T, Ohya Y. Prenylation of Rholp is required for activation of yeast 131,3-glucan synthase. J Biol Chem 1999; 274: 38119–38124.
  • Kelly R, Card D, Register E, Mazur P, Kelly T, Tanaka KI, Onishi J, Williamson JM, Fan H, Satoh T, Kurtz M. Geranylgeranyltransferase I of Candida albicans: null mutants or enzyme inhibitors produce unexpected phenotypes. J Bacteriol 2000; 182: 704–713.
  • Arellano M, Duran A, Perez P. Rho 1 GTPase activates the 131,3-ri-glucan synthase and is involved in Schizosaccharomyces porn be morphogenesis. EMBO J 1996; 15: 4584–4591.
  • Tanaka K, Nambu H, Katoh Y, Kai M, Y Hidaka. Molecular cloning of homologs of RAS and RHO 1 genes from Crypto-coccus neoformans. Yeast 1999; 15: 1133–1139.
  • Chang YC, Penoyer LA. Properties of various Rhol mutant alleles of Cryptococcus neoformans. J Bacteriol 2000; 182: 4987–4991.
  • Zhao C, Jung US, Garrett-Engele P, Roe T, Cyert MS, Levin DE. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol 1998; 18: 1013–1022.
  • Stathopoulos AM, Cyert MS. Calcineurin acts through the CRZETCN1-encoded transcription factor to regulate gene expression in yeast Genes Dev 1997; 11: 3432–3444.
  • Del Poeta M, Cruz MC, Cardenas ME, Perfect JR, Heitman J. Synergistic antifungal activities of bafilomycin A(1), flucona-zole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob Agents Che-mother 2000; 44: 739–746.
  • Odom A, Muir S, Lim E, Toffaletti DL, Perfect JR, Heitman J.Calcineurin is required for virulence of Cryptococcus neofor-mans. EMBO J 1997; 16: 2576–2589.
  • Marchetti 0, Moreillon P, Glauser MP, Bille J, Sanglard D. Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob Agents Che-mother 2000; 44: 2373–2381.
  • Hong Z, Delauney AJ, Verma DP. A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell 2001; 13: 755–768.
  • Ishiguro J, Saitou A, Duran A, Ribas JC. cpsl+, a Schizo-saccharomyces pombe gene homolog of Saccharomyces cerevi-siae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. J Bacterio11997; 179:7653–7662.
  • Kottom TJ, Limper AH. Cell wall assembly by Pneumocystis carinii. Evidence for a unique gsc-1 subunit mediating 131,3-glucan deposition. J Biol Chem 2000; 275: 40628–40634.
  • Pereira M, Felipe MS, Brigido MM, Soares CM, Azevedo MO. Molecular cloning and characterization of a glucan synthase gene from the human pathogenic fungus Paracoccidioides brasiliensis. Yeast 2000; 16: 451–462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.