741
Views
65
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication of Carbon Nanotubes

&
Pages 3119-3145 | Received 30 Jun 2003, Accepted 16 Jul 2003, Published online: 25 Oct 2011

References

  • Ouyang , M. , Huang , J.-L. and Lieber , C.M. 2002 . Fundamental electronic properties and applications of single-walled carbon nanotubes . Acc. Chem. Res. , 35 : 1018 – 1025 .
  • Kasumov , A.Yu. , Deblock , R. , Kociak , M. , Reulet , B. , Bouchait , H. , Khodos , I.I. , Gorbatov , Yu.B. , Volkov , V.T. , Journet , C. and Burghard , M. 1999 . Supercurrents through single-walled carbon nanotubes . Science , 284 : 1508 – 1511 .
  • Wong , E.W. , Sheehan , P.E. and Lieber , C.M. 1997 . Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes . Science , 277 : 1971 – 1975 .
  • Saito , R. , Dresselhaus , G. and Dresselhaus , M.S. 1998 . “ Elastic properties of carbon nanotubes. Physical properties of carbon nanotubes ” . 207 – 225 . London : Imperial College Press .
  • Dai , H. 2002 . Carbon nanotubes: Synthesis, integration and properties . Acc. Chem. Res. , 35 : 1035 – 1044 .
  • Baughman , R.H. , Zakhidov , A.A. , Gao , B. and de Heer , W.A. 2002 . Carbon nanotubes – the route toward applications . Science , 297 : 787 – 792 .
  • Zhou , O. , Shimoda , H. , Gao , B. , Oh , S. , Fleming , L. and Yue , G. 2002 . Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes . Acc. Chem. Res. , 35 : 1045 – 1053 .
  • Avouris , P. 2002 . Molecular electronics with carbon nanotubes . Acc. Chem. Res. , 35 : 1026 – 1034 .
  • Journet , C. and Bernier , P. 1998 . Production of carbon nanotubes . Appl. Phys. A , 67 : 1 – 9 .
  • Rakov , E.G. 2000 . Methods for preparation of carbon nanotubes . Russ. Chem. Rev. , 69 : 35 – 52 .
  • Sinnott , S.B. and Andrews , R. 2001 . Carbon nanotubes: synthesis, properties, and applications . Crit. Rev. Sol. St. Mater. Sci. , 26 : 145 – 249 .
  • Huczko , A. 2002 . Synthesis of aligned carbon nanotubes . Appl. Phys. A , 74 : 617 – 638 .
  • Maser , W.K. , Benito , A.M. and Martínez , M.T. 2002 . Production of carbon nanotubes: the light approach . Carbon , 40 : 1685 – 1695 .
  • Iijima , S. 1991 . Helical microtubules of graphitic carbon . Nature , 354 : 56 – 58 .
  • Kratschmer , W. , Lamb , L.O. , Fostiropoulos , K. and Huffman , D.R. 1990 . Solid C60: a new form of carbon . Nature , 347 : 354 – 358 .
  • Ajayan , P.M. and Iijima , S. 1992 . Smallest carbon nanotube . Nature , 358 : 23
  • Iijima , S. and Ichihashi , T. 1993 . Single-shell carbon nanotubes of 1-nm diameter . Nature , 363 : 603 – 605 .
  • Bethund , D.S. , Kiang , C.H. , de Vries , M.S. , Gorman , G. , Savoy , R. , Vazquez , J. and Beyers , R. 1993 . Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls . Nature , 363 : 605 – 607 .
  • Ebbesen , T.W. and Ajayan , P.M. 1992 . Large-scale synthesis of carbon nanotubes . Nature , 358 : 220 – 222 .
  • Ebbesen , T.W. 1994 . Carbon nanotubes . Ann. Rev. Mater. Sci. , 24 : 235 – 264 .
  • Ajayan , P.M. , Lambert , J.M. , Bernier , P. , Barbedette , L. , Colliex , C. and Planeix , J.M. 1993 . Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis . Chem. Phys. Lett. , 215 : 509 – 517 .
  • Kiang , C.H. , Goddard , W.A. III , Beyers , R. , Salem , J.R. and Bethune , D.S. 1994 . Catalytic synthesis of single-layer carbon nanotubes with a wide range of diameters . J. Phys. Chem. , 98 : 6612 – 6618 .
  • Seraphin , S. and Zhou , D. 1994 . Single-walled carbon nanotubes produced at high yield by mixed catalysts . Appl. Phys. Lett. , 64 : 2087 – 2089 .
  • Lambert , J.M. , Ahayan , P.M. , Bernier , P. , Planiex , J.M. , Brotons , V. , Coq , B. and Castaing , J. 1994 . Improving conditions towards isolating single-shell carbon nanotubes . Chem. Phys. Lett. , 226 : 364 – 371 .
  • Kiang , C.H. , Goddard , W.A. III , Beyers , R. and Bethune , D.S. 1995 . Carbon nanotubes with single-layer walls . Carbon , 33 : 903 – 914 .
  • Lambert , J.M. , Ajayan , P.M. and Bernier , P. 1995 . Synthesis of single and multi-shell carbon nanotubes . Synth. Met. , 70 : 1475 – 1476 .
  • Journet , C. , Maser , W.K. , Bernier , P. , Loiseau , A. , Lamy de la Chapelle , M. , Lefrant , S. , Deniard , P. , Lee , R. and Fischer , J.E. 1997 . Large-scale production of single-walled carbon nanotubes by the electric-arc technique . Nature , 388 : 756 – 758 .
  • Ando , Y. , Zhao , X. , Hirahara , K. , Suenaga , K. , Bandow , S. and Iijima , S. 2000 . Mass production of single-wall carbon nanotubes by the arc plasma jet method . Chem. Phys. Lett. , 323 : 580 – 585 .
  • Wang , X.K. , Lin , X.W. , Dravid , V.P. , Ketterson , J.B. and Chang , R.P.H. 1993 . Growth and characterization of buckybundles . Appl. Phys. Lett. , 62 : 1881 – 1883 .
  • Ando , Y. and Iijima , S. 1993 . Preparation of carbon nanotubes by arc-discharge evaporation . Jpn. J. Appl. Phys. , 32 : L107 – L109 .
  • Ando , Y. 1993 . Carbon nanotubes at as-grown top surface of columnar carbon deposit . Jpn. J. Appl. Phys. , 32 : L1342 – L1345 .
  • Zhao , X. , Wang , M. , Ohkohchi , M. and Ando , Y. 1996 . Morphology of carbon nanotubes prepared by carbon arc . Jpn. J. Appl. Phys. , 35 : 4451 – 4456 .
  • Zhao , X. , Ohkohchi , M. , Wang , M. , Iijima , S. , Ichihashi , T. and Ando , Y. 1997 . Preparation of high-grade carbon nanotubes by hydrogen arc discharge . Carbon , 35 : 775 – 781 .
  • Wang , X.K. , Lin , X.W. , Dravid , V.P. , Ketterson , J.B. and Chang , R.P.H. 1995 . Carbon nanotubes synthesized in a hydrogen arc discharge . Appl. Phys. Lett. , 66 : 2430 – 2432 .
  • Yokomichi , H. , Matoba , M. , Sakima , H. , Ichiashi , M. and Sakai , F. 1998 . Synthesis of carbon nanotubes by arc discharge in CF4 gas atmosphere . Jpn. J. Appl. Phys. , 37 : 6492 – 6496 .
  • Koprinarov , N.S. , Marinov , M.V. , Pchelarov , G.V. and Konstantinova , M.A. 1998 . Fullerene macro structures . Chem. Phys. Lett. , 285 : 1 – 6 .
  • Qin , J.S. , Zhou , Y. , Wang , L.N. and Tsang , S.C. 1998 . Formation of carbon nanotubes and encapsulated nanoparticles from coals with moderate ash contents . Carbon , 36 : 465 – 467 .
  • Colbert , D.T. , Zhang , J. , McClure , S.M. , Nikolaev , P. , Chen , Z. , Hafner , J.H. , Owens , D.W. , Kotula , G. , Carter , C.B. , Weaver , H.H. , Rinzler , A.G. and Smalley , R.E. 1994 . Growth and sintering of fullerene nanotubes . Science , 266 : 1218 – 1222 .
  • Ebbesen , T.W. 1996 . Carbon Nanotubes . Phys. Today , 49 : 26 – 32 .
  • Gamaly , E.G. and Ebbesen , T.W. 1995 . Mechanism of carbon nanotube formation in the arc discharge . Phys. Rev. B , 52 : 2083 – 2089 .
  • Farhet , S. , de la Chapelle , M.L. , Loiseau , A. , Scott , C.D. , Lefrant , S. , Journet , C. and Bernier , P. 2001 . Diameter control of single-walled carbon nanotubes using argon–helium mixture gases . J. Chem. Phys. , 115 : 6752 – 6759 .
  • Tang , D.S. , Xie , S.S. , Chang , B.H. , Sun , L.F. , Liu , Z.Q. , Zou , X.P. , Li , Y.B. , Ci , L.J. , Liu , W. , Ahou , W.Y. and Wang , G. 2002 . Effect of acetylene in buffer gas on the microstructures of carbon nanotubes in arc discharge . Nanotechnology , 13 : L1 – L4 .
  • Shimotani , K. , Anazawa , K. , Watanabe , H. and Shimizu , M. 2001 . New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres . Appl. Phys. A , 73 : 451 – 454 .
  • Li , Y.F. , Qui , J.S. , Zhao , Z.B. , Wang , T.H. , Wang , Y.P. and Li , W. 2002 . Bamboo-shaped carbon tubes from coal . Chem. Phys. Lett. , 366 : 544 – 550 .
  • Doherty , S.P. , Buchholz , D.B. , Li , B.J. and Chang , R.P.H. 2003 . Solid-state synthesis of multiwalled carbon nanotubes . J. Mater. Res. , 18 : 941 – 949 .
  • Lee , S.J. , Baik , H.K. , Yoo , J. and Han , J.H. 2002 . Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique . Diam. Rel. Mater. , 11 : 914 – 917 .
  • Bae , J.C. , Yoon , Y.J. , Lee , S.J. , Song , K.M. and Baik , H.K. 2002 . Diameter control of single-walled carbon nanotubes by plasma rotating electrode process . Carbon , 40 : 2905 – 2911 .
  • Kauai , M. , Koshio , A. , Shinohera , H. , Mieno , T. , Kasuya , A. , Ando , Y. and Zhao , X. 2001 . High-yield synthesis of single-walled carbon nanotubes by gravity-free arc discharge . Appl. Phys. Lett. , 79 : 2967 – 2969 .
  • Jung , S.H. , Kim , M.R. , Jeong , S.H. , Kim , S.U. , Lee , O.J. , Lee , K.H. , Suh , J.H. and Park , C.K. 2003 . High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen . Appl. Phys. A , 76 : 285 – 286 .
  • Kroto , H.W. , Heath , J.R. , O'Brien , S.C. , Curl , R.F. and Smalley , R.E. 1985 . C60: Buckminsterfullerene . Nature , 318 : 162 – 163 .
  • Haufler , R.E. , Chai , Y. , Chibante , L.P.F. , Conceicao , J. , Jin , C. , Wang , L.-S. , Maruyama , S. and Smalley , R.E. 1991 . Carbon arc generation of C60 . Mat. Res. Soc. Symp. Proc. , 206 : 627 – 637 .
  • Guo , T. , Nikolaev , P. , Rinzler , A.G. , Tománek , D. , Colbert , D.T. and Smalley , R.E. 1995 . Self-assembly of tubular fullerenes . J. Phys. Chem. , 99 : 10694 – 10697 .
  • Guo , T. , Nikolaev , P. , Thess , A. , Colbert , D.T. and Smalley , R.E. 1995 . Catalytic growth of single-walled nanotubes by laser vaporization . Chem. Phys. Lett. , 243 : 49 – 54 .
  • Thess , A. , Lee , R. , Nikolaev , P. , Dai , H. , Petit , P. , Robert , J. , Xu , C. , Lee , Y.H. , Kim , S.G. , Rinzler , A.G. , Colbert , D.T. , Scuseria , G.E. , Tománek , D. and Fischer , J.E. 1996 . Crystalline ropes of metallic carbon nanotubes . Smalley, R.E. Science , 273 : 483 – 487 .
  • Rinzler , A.G. , Liu , J. , Dai , H. , Nikolaev , P. , Huffman , C.B. , Rodríguez-Macías , F.J. , Boul , P.J. , Lu , A.H. , Heymann , D. , Colbert , D.T. , Lee , R.S. , Fischer , J.E. , Rao , A.M. , Eklund , P.C. and Smalley , R.E. 1998 . Large-scale purification of single-wall carbon nanotubes: process, product, and characterization . Appl. Phys. A , 67 : 29 – 37 .
  • Dillon , A.C. , Parilla , P.A. , Jones , K.M. , Riker , G. and Heben , M.J. 1998 . A comparison of single-wall carbon nanotube production using continuous wave and pulsed laser vaporization . Mater. Res. Soc. Symp. Proc. , 526 : 403 – 408 .
  • Maser , W.K. , Muñoz , E. , Benito , A.M. , Martínez , M.T. , de la Fuente , G.F. , Maniette , Y. , Anglaret , E. and Sauvajol , J.-L. 1998 . Production of high-density single-walled nanotube material by a simple laser-ablation method . Chem. Phys. Lett. , 292 : 587 – 593 .
  • Kokai , F. , Takahashi , K. , Yudaska , M. , Yamada , R. , Ichihashi , T. and Iijima , S. 1999 . Growth dynamics of single-wall carbon nanotubes synthesized by CO2 laser vaporization . J. Phys. Chem. B , 103 : 4346 – 4351 .
  • Kokai , F. , Takahashi , K. , Kasuya , D. , Ichihashi , T. , Yudasaka , M. and Iijima , S. 2000 . Synthesis of single-wall carbon nanotubes by millisecond-pulsed CO2 laser vaporization at room temperature . Chem. Phys. Lett. , 332 : 449 – 454 .
  • Eklund , P.C. , Pradhan , B.K. , Kim , U.J. , Xiong , Q. , Fischer , J.E. , Friedman , A.D. , Holloway , B.C. , Jordan , K. and Smith , M.W. 2002 . Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser . Nano Lett. , 2 : 561 – 566 .
  • Kingston , C.T. , Jakubek , Z.J. , Dénommée , S. and Simard , B. Efficient single-walled carbon nanotube synthesis through laser excitation of the vaporization plasma . Submitted for publication
  • Yudasaka , M. , Yamada , R. , Sensui , N. , Wilkins , T. , Ichihashi , T. and Iijima , S. 1999 . Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd:YAG laser ablation . J. Phys. Chem. B , 103 : 6224 – 6229 .
  • Lebedkin , S. , Schweiss , P. , Renker , B. , Malik , S. , Hennrich , F. , Neumaier , M. , Stoermer , C. and Kappes , M.M. 2002 . Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization . Carbon , 40 : 417 – 423 .
  • Gorbunov , A. , Jost , O. , Pompe , W. and Graff , A. 2002 . Role of the catalyst particle size in the synthesis of single-wall carbon nanotubes . Appl. Surf. Sci. , 197–198 : 563 – 567 .
  • Cheng , G. and Guo , T. 2002 . Surface segregation in Ni/Co bimetallic nanoparticles produced in single-walled carbon nanotube synthesis . J. Phys. Chem. B , 106 : 5833 – 5839 .
  • Jost , O. , Gorbunov , A.A. , Moller , J. , Pompe , W. , Graff , A. , Friedlein , R. , Liu , X. , Golden , M.S. and Fink , J. 2001 . Impact of catalyst coarsening on the formation of single-wall carbon nanotubes . Chem. Phys. Lett. , 339 : 297 – 304 .
  • Nishide , D. , Kataura , H. , Suzuki , S. , Tsukagoshi , K. , Aoyagi , Y. and Achiba , Y. 2003 . High-yield production of single-wall carbon nanotubes in nitrogen gas . Chem. Phys. Lett. , 372 : 45 – 50 .
  • Muñoz , E. , Maser , W.K. , Benito , A.M. , Martínez , M.T. , de la Fuente , G.F. , Maniette , Y. , Righi , A. , Anglaret , E. and Sauvajol , J.L. 2000 . Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation . Carbon , 38 : 1445 – 1451 .
  • Zhang , Y. , Gu , H. and Iijima , S. 1998 . Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere . App. Phys. Lett. , 73 : 3827 – 3829 .
  • Braidy , N. , El Khakani , M.A. and Botton , G.A. 2002 . Single-wall carbon nanotubes synthesis by means of UV laser vaporization . Chem. Phys. Lett. , 354 : 88 – 92 .
  • Maser , W.K. , Muñoz , E. , Martínez , M.T. , Benito , A.M. and de la Fuente , G.F. 2001 . Study of parameters important for the growth of single wall carbon nanotubes . Opt. Mater. , 17 : 331 – 334 .
  • Dillon , A.C. , Parilla , P.A. , Alleman , J.L. , Perkins , J.D. and Heben , M.J. 2000 . Controlling single-wall nanotube diameters with variation in laser pulse power . Chem. Phys. Lett. , 316 : 13 – 18 .
  • Zhang , H. , Ding , Y. , Wu , C. , Chen , Y. , Zhu , Y. , He , Y. and Zhong , S. 2003 . The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature . Physica B , 325 : 224 – 229 .
  • Braidy , N. , El Khakani , M.A. and Botton , G.A. 2002 . Effect of laser intensity on yield and physical characteristics of single wall carbon nanotubes produced by the Nd:YAG laser vaporization method . Carbon , 40 : 2835 – 2842 .
  • Bolshakov , A.P. , Uglov , S.A. , Saveliev , A.V. , Konov , V.I. , Gorbunov , A.A. , Pompe , W. and Graff , A. 2002 . A novel CW laser-powder method of carbon single-wall nanotubes production . Diam. Rel. Mater. , 11 : 927 – 930 .
  • Muñoz , E. , Maser , W.K. , Benito , A.M. , Martínez , M.T. , de la Fuente , G.F. , Righi , A. , Anglaret , E. and Sauvajol , J.L. 2001 . The influence of the target composition in the structural characteristics of single-walled carbon nanotubes produced by laser ablation . Synth. Met. , 121 : 1193 – 1194 .
  • Zhang , M. , Yudasaka , M. and Iijima , S. 2001 . Single-wall carbon nanotubes: a high yield of tubes through laser ablation of a crude-tube target . Chem. Phys. Lett. , 336 : 196 – 200 .
  • Yudasaka , M. , Zhang , M. and Iijima , S. 2000 . Porous target enhances production of single-wall carbon nanotubes by laser ablation . Chem. Phys. Lett. , 323 : 549 – 553 .
  • Zhang , Y. and Iijima , S. 1999 . Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature . Appl. Phys. Lett. , 75 : 3087 – 3089 .
  • Bandow , S. , Asaka , S. , Saito , Y. , Rao , A.M. , Grigorian , L. , Richter , E. and Eklund , P.C. 1998 . Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes . Phys. Rev. Lett. , 80 : 3779 – 3782 .
  • Walker , P.L. Jr. , Rakszawski , J.F. and Imperial , G.R. 1969 . Carbon formation from carbon monoxide-hydrogen mixtures over iron catalyst I. Properties of carbon formed . J. Phys. Chem. , 63 : 133 – 140 .
  • Ruston , W.R. , Waezee , M. , Hennaut , J. and Waty , J. 1969 . The solid reaction products of the catalytic decomposition of carbon monoxide on iron at 550 °C . Carbon , 7 : 47 – 57 .
  • Robertson , D. 1970 . Carbon formation from methane pyrolysis over some transition metal surfaces – I. Nature and properties of the carbons formed . Carbon , 8 : 365 – 374 .
  • Baird , T. , Frayer , J.R. and Grant , B. 1971 . Structure of fibrous carbon . Nature , 233 : 329 – 330 .
  • Yacamàn , M.J. , Yoshida , M.M. , Rendon , L. and Santiesteban , J.G. 1993 . Catalytic growth of carbon microtubules with fullerene structure . Appl. Phys. Lett. , 62 : 202 – 204 .
  • Lee , C.J. , Kim , D.W. , Lee , T.J. , Choi , Y.C. , Park , Y.S. , Kim , W.S. , Lee , Y.H. , Choi , W.B. , Lee , N.S. , Kim , J.M. , Choi , Y.G. and Yu , S.C. 1999 . Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition . Appl. Phys. Lett. , 75 : 1721 – 1723 .
  • Kong , J. , Soh , H.T. , Cassel , A.M. , Quate , C.F. and Dai , H. 1998 . Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers . Nature , 395 : 878 – 881 .
  • Fan , S. , Chapline , M.G. , Franklin , N.R. , Tombler , T.W. , Cassell , A.M. and Dai , H. 1999 . Self-oriented regular arrays of carbon nanotubes and their field emission properties . Science , 283 : 512 – 514 .
  • Xu , D. , Guo , G. , Gui , L. , Tang , Y. , Shi , Z. , Jin , Z. , Gu , Z. , Liu , W. , Li , X. and Zhang , G. 1999 . Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates . Appl. Phys. Lett. , 75 : 481 – 483 .
  • Huang , S. and Mau , A.H.W. 2003 . Aligned carbon nanotubes patterned photolithographically by silver . Appl. Phys. Lett. , 82 : 796 – 798 .
  • Lee , K.-H. , Cho , J.-M. and Sigmund , W. 2003 . Control of growth orientation for carbon nanotubes . Appl. Phys. Lett. , 82 : 448 – 450 .
  • Siegal , M.P. , Overmyer , D.L. and Provencio , P.P. 2002 . Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition . Appl. Phys. Lett. , 80 : 2171 – 2173 .
  • Cheung , C.L. , Kurtz , A. , Park , H. and Lieber , C.M. 2002 . Diameter-controlled synthesis of carbon nanotubes . J. Phys. Chem. B , 106 : 2429 – 2433 .
  • Wei , B.Q. , Zhang , Z.J. , Ajayan , P.M. and Ramanath , G. 2002 . Growing pillars of densely packed carbon nanotubes on Ni-coated silica . Carbon , 40 : 47 – 51 .
  • Lee , C.J. and Park , J. 2000 . Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition . Appl. Phys. Lett. , 77 : 3397 – 3399 .
  • Nerushev , O.A. , Dittmar , S. , Morjan , R.-E. , Rohmund , F. and Campbell , E.E.B. 2003 . Particle size dependence and model for iron- catalyzed growth of carbon nanotubes by thermal chemical vapor deposition . J. Appl. Phys. , 93 : 4185 – 4190 .
  • Terrones , M. , Grobert , N. , Olivares , J. , Zhang , J.P. , Terrones , H. , Kordatos , K. , Hsu , W.K. , Hare , J.P. , Townsend , P.D. , Prassides , K. , Cheetham , A.K. , Kroto , H.W. and Walton , D.R.M. 1997 . Controlled production of aligned-nanotube bundles . Nature , 388 : 52 – 55 .
  • Grobert , N. , Terrones , M. , Trasobares , S. , Kordatos , K. , Terrones , H. , Olivarez , J. , Zhang , J.P. , Redlich , Ph. , Hsu , W.K. , Reeves , C.L. , Wallis , D.J. , Zhu , Y.Q. , Hare , J.P. , Pidduck , A.J. , Kroto , H.W. and Walton , D.R.M. 2000 . A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates . Appl. Phys. A , 70 : 175 – 183 .
  • Gao , Y. , Liu , J. , Shi , M. , Elder , S.H. and Virden , J.W. 1999 . Dense arrays of well-aligned carbon nanotubes completely filled with single crystalline titanium carbide wires on titanium substrates . Appl. Phys. Lett. , 74 : 3642 – 3644 .
  • Emmenegger , Ch. , Mauron , P. , Züttel , A. , Nützenadel , Ch. , Schneuwly , A. , Gallay , R. and Schlapbach , L. 2000 . Carbon nanotube synthesized on metallic substrates . Appl. Surf. Sci. , 162–163 : 452 – 456 .
  • Chen , X.H. , Feng , S.Q. , Ding , Y. , Peng , J.C. and Chen , Z.Z. 1999 . The formation conditions of carbon nanotubes array based on FeNi alloy island films . Thin Solid Films , 339 : 6 – 9 .
  • Emmenegger , C. , Bonard , J.-M. , Mauron , P. , Sudan , P. , Lepora , A. , Grobety , B. , Züttel , A. and Schlapbach , L. 2003 . Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism . Carbon , 41 : 539 – 547 .
  • Li , S. , Liu , H. , Li , H. , Zhai , J. , Jiang , L. and Zhu , D. 2003 . The controlled pattern growth of aligned carbon nanotubes . Synth. Met. , 135–136 : 815 – 816 .
  • Campbell , P.M. , Snow , E.S. and Novak , J.P. 2002 . Simple catalyst for the growth of small-diameter carbon nanotubes . Appl. Phys. Lett. , 81 : 4586 – 4588 .
  • Huang , Z.P. , Carnahan , D.L. , Rybczynski , J. , Giersig , M. , Sennett , M. , Wang , D.Z. , Wen , J.G. , Kempa , K. and Ren , Z.F. 2003 . Growth of large periodic arrays of carbon nanotubes . Appl. Phys. Lett. , 82 : 460 – 462 .
  • Huang , S. , Mau , A.H.W. , Turney , T.W. , White , P.A. and Dai , L. 2000 . Patterned growth of well-aligned carbon nanotubes: a soft-lithographic approach . J. Phys. Chem. B , 104 : 2193 – 2196 .
  • Ago , H. , Murata , K. , Yumura , M. , Yotani , J. and Uemura , S. 2003 . Ink-jet printing of nanoparticle catalyst for site-selective carbon nanotube growth . Appl. Phys. Lett. , 82 : 811 – 813 .
  • Mukhopadhyay , K. , Koshio , A. , Tanaka , N. and Shinohara , H. 1998 . A simple and novel way to synthesize aligned nanotube bundles at low temperature . Jpn. J. Appl. Phys. , 37 : L1257 – L1259 .
  • He , N. , Kuang , Y. , Dai , Q. , Miao , Y. , Zhang , A. , Wang , X. , Song , K. , Lu , Z. and Yuan , C. 1999 . Growth of carbon nanotubules on Fe-loading zeolites and investigation of catalytic active center . Mater. Sci. Eng. C , 8–9 : 151 – 157 .
  • Mukhopadhyay , K. and Mathur , G.N. 2002 . Bimetallic catalyst for synthesizing quasi-aligned well graphitized multiwalled carbon nanotube bundles in large scale by catalytic chemical vapor deposition method . J. Nanosci. Nanotech. , 2 : 197 – 201 .
  • Tang , Z.K. , Sun , H.D. , Wang , J. , Chen , J. and Li , G. 1998 . Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal . Appl. Phys. Lett. , 73 : 2287 – 2289 .
  • Tang , Z.K. , Zhang , L.Y. , Wang , N. , Zhang , X.X. , Wang , J.N. , Li , G.D. , Li , Z.M. , Wen , G.H. , Chan , C.T. and Sheng , P. 2003 . Ultra-small single-walled carbon nanotubes and their superconductivity properties . Synth. Met. , 133–134 : 689 – 693 .
  • Kyotani , T. , Tsai , L. and Tomita , A. 1995 . Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template . Chem. Mater. , 7 : 1427 – 1428 .
  • Che , G. , Lakshmi , B.B. , Fisher , E.R. and Martin , C.R. 1998 . Carbon nanotubule membranes for electrochemical energy storage and production . Nature , 393 : 346 – 349 .
  • Che , G. , Lakshmi , B.B. , Martin , C.R. and Fisher , E.R. 1999 . Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production . Langmuir , 15 : 750 – 758 .
  • Kyotani , T. , Tsai , L. and Tomita , A. 1996 . Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film . Chem. Mater. , 8 : 2109 – 2113 .
  • Iwasaki , T. , Motoi , T. and Den , T. 1999 . Multiwalled carbon nanotubes growth in anodic alumina nanoholes . Appl. Phys. Lett. , 75 : 2044 – 2046 .
  • Li , W.Z. , Xie , S.S. , Qian , L.X. , Chang , B.H. , Zou , B.S. , Zhou , W.Y. , Zhao , R.A. and Wang , G. 1996 . Large-scale synthesis of aligned carbon nanotubes . Science , 274 : 1701 – 1703 .
  • Huang , L. , Wind , S.J. and O'Brien , S.P. 2003 . Controlled growth of single-walled carbon nanotubes from an ordered mesoporous silica template . Nano Lett. , 3 : 299 – 303 .
  • Song , X.Y. , Cao , W. , Ayers , M.R. and Hunt , A.J. 1995 . Carbon nanostructures in silica aerogel composites . J. Mater. Res. , 10 : 251 – 254 .
  • Zheng , B. , Li , Y. and Liu , J. 2002 . CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst . Appl. Phys. A , 74 : 345 – 348 .
  • Huang , S. , Dai , L. and Mau , A.W.H. 1999 . Patterned growth and contact transfer of well-aligned carbon nanotube films . J. Phys. Chem. B , 103 : 4223 – 4228 .
  • Araki , H. , Kajii , H. and Yoshino , K. 1999 . Growth of carbon nanotubes on quartz plates by chemical vapor deposition using (Ni, Fe)-phthalocyanines . Jpn. J. Appl. Phys. , 38 : L836 – L838 .
  • Andrews , R. , Jacques , D. , Rao , A.M. , Derbyshire , F. , Qian , D. , Fan , X. , Dickey , E.C. and Chen , J. 1999 . Continuous production of aligned carbon nanotubes: a step closer to commercial realization . Chem. Phys. Lett. , 303 : 467 – 474 .
  • Satishkumar , B.C. , Govindaraj , A. and Rao , C.N.R. 1999 . Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ . Chem. Phys. Lett. , 307 : 158 – 162 .
  • Rao , C.N.R. , Sen , R. , Satishkumar , B.C. and Govindaraj , A. 1998 . Large aligned-nanotube bundles from ferrocene pyrolysis . Chem. Commun. , : 1525 – 1526 .
  • Singh , C. , Shaffer , M.S.P. and Windle , A.H. 2003 . Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method . Carbon , 41 : 359 – 368 .
  • Cheng , H.M. , Li , F. , Sun , X. , Brown , S.D.M. , Pimenta , M.A. , Marucci , A. , Dresselhaus , G. and Dresselhaus , M.S. 1998 . Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons . Chem. Phys. Lett. , 289 : 602 – 610 .
  • Yang , Q.H. , Bai , S. , Fournier , T. , Li , F. , Wang , G. , Cheng , H.M. and Bai , J.B. 2003 . Direct growth of macroscopic fibers composed of large diameter SWNTs by CVD . Chem. Phys. Lett. , 370 : 274 – 279 .
  • Ago , H. , Ohshima , S. , Uchida , K. , Komatsu , T. and Yumura , M. 2002 . Carbon nanotube synthesis using colloidal solution of metal nanoparticles . Physica B , 323 : 306 – 307 .
  • Nikolaev , P. , Bronikowski , M.J. , Bradley , R.K. , Rohmund , F. , Colbert , D.T. , Smith , K.A. and Smalley , R.E. 1999 . Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide . Chem. Phys. Lett. , 313 : 91 – 97 .
  • Bronikowski , M.J. , Willis , P.A. , Colbert , D.T. , Smith , K.A. and Smalley , R.E. 2001 . Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study . J. Vac. Sci. Tech. A , 19 : 1800 – 1805 .
  • Resasco , D.E. , Alvarez , W.E. , Pompeo , F. , Balzano , L. , Herrera , J.E. , Kitiyanan , B. and Borgna , A. 2002 . A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of Co on a solid catalyst . J. Nanopart. Res. , 4 : 131 – 136 .
  • Alvarez , W.E. , Pompeo , F. , Herrera , J.E. , Balzano , L. and Resasco , D.E. 2002 . Characterization of single-walled carbon nanotubes (SWNTs) produced by Co disproportionation on Co-Mo catalysts . Chem. Mater. , 14 : 1853 – 1858 .
  • Herrera , J.E. and Resasco , D.E. 2003 . Role of Co-W Interaction in the selective growth of single-walled carbon nanotubes from Co disproportionation . J. Phys. Chem. B , 107 : 3738 – 3746 .
  • Plönjes , E. , Palm , P. , Viswanathan , G.B. , Subramaniam , V.V. , Adamovich , I.V. , Lempert , W.R. , Fraser , H.L. and Rich , J.W. 2002 . Synthesis of single-walled carbon nanotubes in vibrationally non-equilibrium carbon monoxide . Chem. Phys. Lett. , 352 : 342 – 347 .
  • Valentini , L. , Kenny , J.M. , Lozzi , L. and Santucci , S. 2002 . Formation of carbon nanotubes by plasma enhanced chemical vapor deposition: Role of nitrogen and catalyst layer thickness . J. Appl. Phys. , 92 : 6188 – 6194 .
  • Chen , M. , Chen , C.-M. , Shi , S.-C. and Chen , C.-F. 2003 . Low-temperature synthesis multiwalled carbon nanotubes by microwave plasma chemical vapor deposition using CH4-CO2 gas mixture . Jpn. J. Appl. Phys. , 42 : 614 – 619 .
  • Chen , M. , Chen , C.-M. and Chen , C.-F. 2002 . Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature . J. Mat. Sci. , 37 : 3561 – 3567 .
  • Wong , W.K. , Li , C.P. , Au , F.C.K. , Fung , M.K. , Sun , X.H. , Lee , C.S. , Lee , S.T. and Zhu , W. 2003 . Fabrication and characterization of pure and well-aligned carbon nanotubes using methane/nitrogen-ammonia plasma . J. Phys. Chem. B , 107 : 1514 – 1517 .
  • Ren , Z.F. , Huang , Z.P. , Xu , J.W. , Wang , J.H. , Bush , P. , Siegal , M.P. and Provencio , P.N. 1998 . Synthesis of large arrays of well-aligned carbon nanotubes on glass . Science , 282 : 1105 – 1107 .
  • Laplaze , D. , Bernier , P. , Maser , W.K. , Flamant , G. , Guillard , T. and Loiseau , A. 1998 . Carbon nanotubes: the solar approach . Carbon , 36 : 685 – 688 .
  • Alvarez , L. , Guillard , T. , Sauvajol , J.L. , Flamant , G. and Laplaze , D. 2001 . Growth mechanisms and diameter evolution of single wall carbon nanotubes . Chem. Phys. Lett. , 342 : 7 – 14 .
  • Diener , M.D. , Nichelson , N. and Alford , J.M. 2000 . Synthesis of single-walled carbon nanotubes in flames . J. Phys. Chem. B , 104 : 9615 – 9620 .
  • Vander Wal , R.L. 2002 . Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment . Comb. Flame , 130 : 37 – 47 .
  • Smiljanic , O. , Stansfield , B.L. , Dodelet , J.-P. , Serventi , A. and Désilets , S. 2002 . Gas-phase synthesis of SWNT by an atmospheric pressure plasma jet . Chem. Phys. Lett. , 356 : 189 – 193 .
  • Hsu , W.K. , Hare , J.P. , Terrones , M. , Kroto , H.W. , Walton , D.R.M. and Harris , P.J.H. 1995 . Condensed-phase nanotubes . Nature , 377 : 687
  • Chen , G.Z. , Fan , X. , Luget , A. , Shaffer , M.S.P. , Fray , D.J. and Windle , A.H. 1998 . Electrolytic conversion of graphite to carbon nanotubes in fused salts . J. Electroanal. Chem. , 446 : 1 – 6 .
  • Hsu , W.K. , Terrones , M. , Hare , J.P. , Terrones , H. , Kroto , H.W. and Walton , D.R.M. 1996 . Electrolytic formation of carbon nanostructures . Chem. Phys. Lett. , 262 : 161 – 166 .
  • Kinloch , I.A. , Chen , G.Z. , Howes , J. , Boothroyd , C. , Singh , C. , Fray , D.J. and Windle , A.H. 2003 . Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl . Carbon , 41 : 1127 – 1141 .
  • Liu , J. , Shao , M. , Tang , Q. , Zhang , S. and Qian , Y. 2003 . Synthesis of carbon nanotubes and nanobelts through a medial-reduction method . J. Phys. Chem. B , 107 : 6329 – 6332 .
  • Smiljanic , O. , Dellero , T. , Serventi , A. , Lebrun , G. , Stansfield , B.L. , Dodelet , J.P. , Trudeau , M. and De´silets , S. 2001 . Growth of carbon nanotubes on Ohmically heated carbon paper . Chem. Phys. Lett. , 342 : 503 – 509 .
  • O'Loughlin , J.L. , Kiang , C.-H. , Wallace , C.H. , Reynolds , T.K. , Rao , L. and Kaner , R.B. 2001 . Rapid synthesis of carbon nanotubes by solid-state metathesis reactions . J. Phys. Chem. B , 105 : 1921 – 1924 .
  • Chen , Y. , Conway , M.J. and Fitzgerald , J.D. 2003 . Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing . Appl. Phys. A , 76 : 633 – 636 .
  • Ryzhkov , V.A. 2002 . Carbon nanotube production by a cracking of liquid hydrocarbons . Physica B , 323 : 324 – 326 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.