57
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The Peptide Can Influence Sugar Conformation in Small Asn Glycopeptides

, &
Pages 261-273 | Received 09 Oct 2003, Accepted 17 Mar 2004, Published online: 16 Aug 2006

References

  • Imperiali , B. and O'Connor , S. E. 1999 . Effect of N‐linked glycosylation on glycopeptide and glycoprotein structure . Curr. Opin. Chem. Biol. , 3 : 643 – 649 .
  • Wormald , M. R. , Petrescu , A. J. , Pao , Y. L. , Glithero , A. , Elliott , T. and Dwek , R. A. 2002 . Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X‐ray crystallography, and molecular modelling . Chem. Rev. , 102 : 371 – 386 .
  • Wyss , D. F. , Choi , J. S. , Li , J. , Knoppers , M. H. , Willis , K. J. , Arulanandam , A. R.N. , Smolyar , A. , Reinherz , E. L. and Wagner , G. 1995 . Conformation and Function of the N‐linked glycan in the adhesion domain of human CD2 . Science , 269 : 1273 – 1278 .
  • O'Connor , S. E. , Pohlmann , J. , Imperiali , B. , Saskiawan , I. and Yamamoto , K. 2001 . Probing the effect of the outer saccharide residues of N‐linked glycans on peptide conformation . J. Am. Chem. Soc. , 123 : 6187 – 6188 .
  • Coltart , D. M. , Royyuru , A. K. , Williams , L. J. , Glunz , P. W. , Sames , D. , Kuduk , S. D. , Schwarz , J. B. , Chen , X. T. , Danishefsky , S. J. and Live , D. H. 2002 . Principles of mucin architecture: structural studies on synthetic glycopeptides bearing clustered mono‐, di‐, tri‐ and hexasaccharide glycodomains . J. Am. Chem. Soc. , 124 : 9833 – 9844 .
  • Wormald , M. E. , Wooten , E. W. , Bazzo , R. , Edge , C. J. , Feinstein , A. , Rademacher , T. W. and Dwek , R. A. 1991 . The conformational effects of N‐glycosylation on the tailpiece from serum IgM . Eur. J. Biochem. , 198 : 131 – 139 .
  • Davis , J. T. , Hirani , S. , Bartlett , C. and Reid , B. R. 1994 . H‐1 NMR studies on an Asn‐linked glycopeptide—GlcNAc‐1 C2‐N2 bond is rigid in H2O . J. Biol. Chem. , 269 : 3331 – 3338 .
  • Liang , R. , Andreotti , A. H. and Kahne , D. 1995 . Sensitivity of glycopeptide conformation to carbohydrate chain‐length . J. Am. Chem. Soc. , 117 : 10395 – 10396 .
  • Live , D. H. , Kumar , R. A. , Beebe , X. and Danishefsky , S. J. 1996 . Conformational influences of glycosylation of a peptide: a possible model for the effect of glycosylation on the rate of protein folding . Proc. Natl. Acad. Sci. USA , 93 : 12759 – 12761 .
  • O'Connor , S. E. and Imperiali , B. 1997 . Conformational switching by asparagine‐linked glycosylation . J. Am. Chem. Soc. , 119 : 2295 – 2296 .
  • Imperiali , B. and Rickert , K. W. 1995 . Conformational implications of aspragine‐linked glycosylation . Proc. Natl. Acad. Sci. USA , 92 : 97 – 101 .
  • Imperiali , B. and O'Connor , S. E. 1996 . A molecular basis for glycosylation‐induced conformational switching . Chem. Biol. , 3 : 803 – 812 .
  • Huang , X. L. , Barchi , J. J. , Lung , E. D.T. , Roller , P. P. , Nara , P. L. , Muschik , J. and Garrity , R. R. 1997 . Glycosylation affects both the three‐dimensional structure and antibody binding properties of the HIV‐1(IIIB) gp120 peptide RP135 . Biochemistry , 36 : 10846 – 10856 .
  • McManus , A. M. , Otvos , L. , Hoffman , R. and Craik , D. J. 1999 . Conformational studies by NMR of the antimicrobial peptide, drosocin, and its non‐glycosylated derivative: effects of glycosylation on solution conformation . Biochemistry , 38 : 704 – 714 .
  • Huang , X. L. , Smith , M. C. , Berzofsky , J. A. and Barchi , J. J. 1996 . Structural comparison of a 15 residue peptide from the V3 loop of HIV‐1(IIIb) and an O‐glycosylated analogue . Febs. Lett. , 393 : 280 – 286 .
  • Brockbank , R. L. and Vogel , H. J. 1990 . Structure of the oligosaccharide of hen phosvitin as determined by 2‐dimensional H‐1 NMR of the intact glycoprotein . Biochemistry , 29 : 5574 – 5583 .
  • Lommerse , J. P.M. , Kroon‐Batenburg , L. M.J. , Kroon , J. , Kamerling , J. P. and Vliegenthart , J. F.G. 1995 . Conformations and internal mobility of a glycopeptide derived from bromelain using molecular dynamics simulations and NOESY analysis . J. Biomol. NMR , 6 : 79 – 94 .
  • Lu , J. Y. and van Halbeek , H. 1996 . Complete H‐1 and C‐13 resonance assignments of a 21‐amino acid glycopeptide prepared from human serum transferrin . Carbohydr. Res. , 296 : 1 – 21 .
  • Weller , C. T. , Lustbader , J. , Seshradi , K. , Brown , J. M. , Chadwick , C. A. , Kolthoff , C. E. , Ramnarain , S. , Pollack , S. , Canfield , R. and Homans , S. W. 1996 . Structural and conformational analysis of glycan moieties in situ on isotopically C‐13,N‐15‐enriched recombinant human chorionic gonadotropin . Biochemistry , 35 : 8815 – 8823 .
  • Bailey , D. , Renouf , D. V. , Large , D. G. , Warren , C. D. and Hounsell , E. F. 2000 . Conformational studies of the glycopeptide Ac‐Tyr‐[Man(5)GlcNAc‐beta‐(1 ‐→ 4)GlcNAc‐beta‐(1 ‐ → N‐delta)]‐Asn‐Leu‐Thr‐Ser‐OBz and the constituent peptide and oligosaccharide . Carbohydrate. Res. , 324 : 242 – 254 .
  • Kindahl , L. , Sandstrom , C. E. , Norberg , T. and Kenne , L. 2001 . H‐1 NMR studies of hydroxy protons of the V[beta‐Gal(1 ‐→ 3)‐alpha‐GalNAc(1 ‐→ O)THPGY glycopeptide . Carbohydrate Res. , 336 : 319 – 323 .
  • Lee , K. C. , Falcone , M. F. and Davis , J. T. 1996 . Sequence‐specific peptide‐carbohydrate interactions in an asparagine‐linked glycopeptide . J. Org. Chem. , 61 : 4198 – 4199 .
  • Hashimoto , Y. , Toma , K. , Nishikido , J. , Yamamoto , K. , Haneda , K. , Inazu , T. , Valentine , K. G. and Opella , S. J. 1999 . Effects of glycosylation on the structure and dynamics of eel calcitonin in micelles and lipid bilayers determined by nuclear magnetic resonance spectroscopy . Biochemistry , 38 : 8377 – 8384 .
  • Stella , L. , Venanzi , M. , Carafa , M. , Maccaroni , E. , Straccamore , M. E. , Zanotti , G. , Palleschi , A. and Pispisa , B. 2002 . Structural features of model glycopeptides in solution and in membrane phase: a spectroscopic and molecular mechanics investigation . Biopolymers , 64 : 44 – 56 .
  • Palian , M. M. , Boguslavsky , V. I. , O'Brien , D. F. and Polt , R. 2003 . Glycopeptide‐membrane interactions: glycosyl enkephalin analogues adopt turn conformations by NMR and CD in amphipathic media . J. Am. Chem. Soc. , 125 : 5823 – 5831 .
  • Baker , E. N. and Hubbard , R. E. 1984 . Hydrogen‐bonding in globular proteins . Prog. Biophys. Mol. Biol. , 44 : 97 – 179 .
  • Abbadi , A. , McHarfi , M. , Aubry , A. , Premilat , S. , Boussard , G. and Marraud , M. 1991 . Involvement of side functions in peptide structures—the Asx turn‐occurrence and conformational aspects . J. Am. Chem. Soc. , 113 : 2729 – 2735 .
  • Cohen‐Anisfeld , S. T. and Lansbury , P. T. 1993 . A practical, convergent method for glycopeptide synthesis. J . Am. Chem. Soc. , 115 : 10531 – 10537 .
  • Nishida , Y. , Ohrui , H. and Meguro , H. 1984 . H‐1‐NMR studies of (6R)‐deuterated and (6S)‐deuterated D‐hexoses—assignment of the preferred rotamers about C5‐C6 bond of D‐glucose and D‐galactose derivatives in solution . Tetrahedron Lett. , 25 : 1575 – 1578 .
  • Nishida , Y. , Hori , H. , Ohrui , H. and Meguro , H. 1988 . H‐1 NMR analyses of rotameric distribution of C5‐C6 bonds of D‐glucopyranoses in solution . J. Carbohydr. Chem. , 7 : 239 – 250 .
  • Bock , K. and Duus , J. Ø. 1994 . A conformational study of hydroxymethyl groups in carbohydrates investigated by H‐1 NMR spectroscopy . J. Carbohydr. Chem. , 13 : 513 – 543 .
  • Tvaroska , I. , Taravel , F. R. , Utille , J. P. and Carver , J. P. 2002 . Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides . Carbohydrate. Res. , 337 : 353 – 367 .
  • Stenutz , R. , Carmichael , I. , Widmalm , G. and Serianni , A. S. 2002 . Hydroxymethyl group conformation in saccharides: structural dependencies of (2)J(HH), (3)J(HH), and (1)J(CH) spin‐spin coupling constants . J. Org. Chem. , 67 : 949 – 958 .
  • Falcone‐Hindley , M. L. and Davis , J. T. 1998 . Stereoselective preparation of deuterium‐labeled sugars: (6R)‐(6‐H‐2(1))‐N‐acetylglucosamine derivatives . J. Org. Chem. , 63 : 5555 – 5561 .
  • Rockwell , G. D. and Grindley , T. B. 1998 . Effect of solvation on the rotation of hydroxymethyl groups in carbohydrates . J. Am. Chem. Soc. , 120 : 10953 – 10963 .
  • Percentages of gt, gg and tg rotamers were calculated by solving the following three equations simultaneously: 3JH5,H6R =9.9 pgt+0.8 pgg+4.5 ptg, 3JH5,H6S =1.5 pgt+1.3 pgg+10.8 ptg, and pgt+pgg+ptg=1, where p is the percentage of a particular rotamer. The coefficients used in the equations, standard coupling constant values, were obtained from Table 5 in Serianni's recent study of glucosyl hydroxymethylene conformation; see reference 33
  • Live , D. H. , Wang , Z. G. , Iserloh , U. and Danishefsky , S. J. 2001 . A strategy for probing the autonomy of cross‐domain stereochemical communication in glycoconjugates . Org. Lett. , 3 : 851 – 854 .
  • Barfield , M. 1995 . Ab‐Initio IGLO studies of the conformational and substituent dependencies of alpha‐effects, beta‐effects, gamma‐effects and delta‐effects in the C‐13 NMR spectra of 1‐substituted butanes . J. Am. Chem. Soc. , 117 : 2862 – 2876 .
  • deDios , A. C. and Oldfield , E. 1994 . Chemical shifts of carbonyl carbons in peptides and proteins . J. Am. Chem. Soc. , 116 : 5307 – 5314 .
  • Mazeau , K. , Taravel , F. R. and Tvaroska , I. 1996 . Angular dependence of the C‐6 chemical shift and the conformation of the hydroxymethyl group in carbohydrates . Chem. Papers , 50 : 77 – 83 .
  • Yates , E. A. , Santini , F. , De Cristofano , B. , Payre , N. , Cosentino , C. , Guerrini , M. , Naggi , A. , Torri , G. and Hricovini , M. 2000 . Effect of substitution pattern on H‐1, C‐13 NMR chemical shifts and (1)J(CH) coupling constants in heparin derivatives . Carbohydr. Res. , 329 : 239 – 247 .
  • Batta , G. and Gervay , J. 1995 . Solution‐phase C‐13 and H‐1 chemical‐shift anisotropy of sialic acid and its homopolymer (colominic acid) from cross‐correlated NMR . J. Am. Chem. Soc. , 117 : 368 – 374 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.