Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 17, 2000 - Issue 2
1,359
Views
189
CrossRef citations to date
0
Altmetric
Original

THE TEMPORAL ORGANIZATION OF DAILY TORPOR AND HIBERNATION: CIRCADIAN AND CIRCANNUAL RHYTHMS

&
Pages 103-128 | Published online: 07 Jul 2009

REFERENCES

  • Agid R, Sable R, Ambid L, et al. Aspects of metabolic and endocrine changes in hibernation. Strategies in cold: natural torpidity and thermogenesis, L CH Wang, J W Hudson. Academic Press, New York 1978; 499–540
  • Aitschison C W. Winter energy requirements of soricine shrews. Mamm Rev. 1987; 17: 25–38
  • Arnold W, Heldmaier G, Ortmann S, et al. Ambient temperatures in hibernacula and their energetic consequences for alpine marmots (Marmota marmota). J Therm Biol. 1991; 16: 223–26
  • Aschoff J. Spontane lokomotorische Aktivität. Handb Zool. 1962; 8: 1–74
  • Aschoff J. Der Tagesgang der Körpertemperatur und der Sauerstoffaufnahme bei Sägetieren als Funktion des Körpergewichts. Z Säugetierkunde 1981; 46: 201–16
  • Aschoff J, Pohl H. Rhythmic variations in energy metabolism. Fed Proc. 1970; 29: 1541–52
  • Barnes B M. Freeze avoidance in a mammal: body temperatures below 0°C in an arctic hibernator. Science 1989; 244: 1593–95
  • Barnes B M, Kretzmann M, Licht P, et al. Reproductive development in hibernating ground squirrels. Living in the cold, H C Heller, X J Musacchia, L CH Wang. Elsevier, New York 1986; 245–58
  • Barnes B M, Omtzigt C, Daan S. Hibernators periodically arouse in order to sleep. Life in the cold, C Carey, G L Florant, B A Wunder, et al. Westview Press, Boulder, Colorado 1993; 555–58
  • Barnes B M, Ritter D. Patterns of body temperature change in hibernating arctic ground squirrels. Life in the cold, C Carey, G L Florant, B A Wunder, et al. Westview Press, Boulder, Colorado 1993; 119–30
  • Bartels W, Law B S, Geiser F. Daily torpor and energetics in a tropical mammal, the northern blossom-bat Macroglossus minimus (Megachiroptera). J Comp Physiol [B] 1998; 168: 233–39
  • Bartholomew G A. Energy metabolism. Animal physiology, M S Gordon. Macmillan, New York 1982; 46–93
  • Beard L A, Grigg G C, Augee M L. Reproduction by echidnas in a cold climate. Platypus and echidnas, M L Augee. Royal Zoological Society of New South Wales, Sydney 1992; 93–100
  • Berger R J. Cooling down to hibernate: sleep and hibernation constitute a physiological continuum of energy conservation. Neurosci Lett. 1993; 154: 213–16
  • Berger R J. Does post-torpor EEG slow wave activity in ground squirrels reflect a “sleep debt” of a thermoregulatory process. J Sleep Res. 1998; 7: 69–70
  • Berger R J, Phillips N H. Sleep and energy conservation. News Physiol Sci. 1993; 8: 276–81
  • Bittman E L. Photoperiodic influences on testicular regression in the golden hamster: termination of scotorefractoriness. Biol Reprod. 1978; 17: 871–77
  • Bonaccorso F J, McNab B K. Plasticity of energetics in blossom bats (Pteropodidae): impact on distribution. J Mamm. 1997; 78: 1073–88
  • Borbély A A. What is the function(s) of slow wave sleep. Slow wave sleep: its measurements and functional significance, M H Chase, T Roth. Brain Informations Service, University of California, Los Angeles 1990; 63–65
  • Brigham M. The significance of winter activity by the big brown bat (Eptesicus fuscus): the influence of energy reserves. Can J Zool. 1987; 65: 1240–42
  • Brigham R M. Daily torpor in a free-ranging goatsucker, the common poorwill (Phalaenoptilus nuttallii). Physiol Zool. 1992; 65: 457–72
  • Brigham R M, Körtner G, Geiser F. Use of torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Avian Therm Physiol Energetics 1998, Oulu, Finland, August 9–14, Abstracts, 10
  • Bronson F H. Mammalian reproduction: an ecological perspective. Biol Reprod. 1985; 32: 1–26
  • Broome L S, Geiser F. Hibernation in free-living mountain pygmy-possums, Burramys parvus (Marsupialia: Burramyidae). Aust J Zool. 1995; 43: 373–79
  • Brower J E, Cade T J. Bicircadian torpor in pocket mice. BioScience 1971; 21: 181–82
  • Buck C L, Barnes B M. Annual cycle of body composition and hibernation in free-living arctic ground squirrels. J Mamm. 1999; 80: 430–42
  • Bünning E. Evolution der circadianen Rhythmik und ihre Nutzung zur Tageslängenmessung. Naturwissenschaften 1986; 73: 70–77
  • Canguilhem B, Malan A, Masson-Pévet M, et al. Search for rhythmicity during hibernation in the European hamster. J Comp Physiol [B] 1994; 163: 690–98
  • Coburn D K, Geiser F. Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecologia 1998; 113: 467–73
  • Crowcroft P. The daily cycle of activity in British shrews. Proc Zool Soc London 1954; 123: 715–29
  • Daan S. Periodicity of heterothermy in the garden dormouse, Eliomys quercinus (L.). Neth J Physiol. 1973; 23: 237–65
  • Daan S, Barnes B M, Strijkstra A M. Warming up for sleep?—Ground squirrels sleep during arousals from hibernation. Neurosci Lett. 1991; 128: 265–68
  • Daan S, Beersma D GM, Borbély A A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol. 1984; 246: R161–78
  • Daan S, Pittendrigh C S. A functional analysis of circadian pacemakers in nocturnal rodents. III Heavy water and constant light: homeostasis of frequency. J Comp Physiol. 1976; 106: 267–90
  • Davis D E. The annual rhythm of fat deposition in woodchucks (Marmota monax). Physiol Zool. 1967; 40: 391–402
  • Davis D E. Hibernation and circannual rhythms of food consumption in marmots and ground squirrels. Q Rev Biol. 1976; 51: 477–514
  • Davis D E. Role of ambient temperature in emergence of woodchucks (Marmota monax) from hibernation. Am Midl Nat. 1977; 97: 224–29
  • Davis D E, Finnie E P. Entrainment of circannual rhythm in weight of woodchucks. J Mamm. 1975; 56: 199–203
  • Deboer T, Tobler I. Sleep EEG after daily torpor in the Djungarian hamster: similarity to the effects of sleep deprivation. Neurosci Lett. 1994; 166: 35–38
  • Erkert H G, Rothmund E. Differences in temperature sensitivity of the circadian system of homoiothermic and heterothermic neotropical bats. Comp Biochem Physiol. 1981; 68A: 383–90
  • Erkinaro E. Short-term rhythm of locomotor activity within the 24 h period in the Norwegian lemming, Lemmus lemmus, and water vole, Arvicola terrestris. Aquilo. 1973; 14: 46–58
  • Fisher K C. On the mechanism of periodic arousal in the hibernating ground squirrel. Ann Acad Sci Finnicae A IV 1964; 71: 141–56
  • Florant G L, Rivera M L, Lawrence A K, et al. Plasma melatonin concentration in hibernating marmots: absence of a plasma melatonin rhythm. Am J Physiol. 1984; 247: R1062–66
  • Fowler P A, Racey P A. Daily and seasonal cycles of body temperature and aspects of heterothermy in the hedgehog Erinaceus europaeus. J Comp Physiol [B] 1990; 160: 299–307
  • Francis A JP, Coleman G J. Ambient temperature cycles entrain the free-running circadian rhythms of the stripe-faced dunnart, Sminthopsis macroura. J Comp Physiol [A] 1990; 167: 357–62
  • French A R. Circannual rhythmicity and entrainment of surface activity in the hibernator, Perognathus longimembris. J Mamm. 1977a; 58: 37–43
  • French A R. Periodicity of recurrent hypothermia during hibernation in the pocket mouse Perognathus longimembris. J Comp Physiol [A] 1977b; 115: 87–100
  • French A R. Allometries of durations of torpid and euthermic intervals during mammalian hibernation: a test of the theory of metabolic control of the timing of changes in body temperature. J Comp Physiol [B] 1985; 156: 13–19
  • Galster W A, Morrison P. Cyclic changes in carbohydrate concentrations during hibernation in the arctic ground squirrel. Am J Physiol. 1970; 218: R1228–32
  • Geiser F. Thermoregulation and torpor in the Kultarr, Antechinomys laniger (Marsupialia: Dasyuridae). J Comp Physiol [B] 1986; 156: 751–57
  • Geiser F. Hibernation and daily torpor in two pygmy possum (Cercartetus spp., Marsupialia). Physiol Zool. 1987; 60: 93–102
  • Geiser F. Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition. J Comp Physiol [B] 1988; 158: 25–37
  • Geiser F. Torpor in reproductive endotherms. Adaptations to the cold: Tenth International Hibernation Symposium, F Geiser, A J Hulbert, S C Nicol. University of New England Press, ArmidaleAustralia 1996; 81–86
  • Geiser F. Evolution of daily torpor and hibernation in birds and mammals: importance and body size. Clin Exp Pharmacol Physiol. 1998; 25: 736–40
  • Geiser F, Baudinette R V. The influence of temperature and photophase on torpor in Sminthopsis macroura (Dasyuridae: Marsupialia). J Comp Physiol [B] 1985; 156: 129–34
  • Geiser F, Baudinette R V. Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol [B] 1987; 157: 335–44
  • Geiser F, Baudinette R V. Daily torpor and thermoregulation in the small dasyurid marsupials Planigale gilesi and Ningaui yvonneae. Aust J Zool. 1988; 36: 473–81
  • Geiser F, Baudinette R V. The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals. J Exp Biol. 1990; 151: 349–59
  • Geiser F, Broome L S. The effect of temperature on the pattern of torpor in a marsupial hibernator. J Comp Physiol [B] 1993; 163: 133–37
  • Geiser F, Hiebert S, Kenagy G J. Torpor bout duration during the hibernation season of two sciurid rodents: interrelations with temperature and metabolism. Physiol Zool. 1990; 63: 489–503
  • Geiser F, enagy G J. Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiol Zool. 1988; 61: 442–49
  • Geiser F, Masters P. Torpor in relation to reproduction in the Mulgara, Dasycercus cristicaudata (Dasyuridae: Marsupialia). J Therm Biol. 1994; 19: 33–40
  • Geiser F, Ruf T. Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool. 1995; 68: 935–66
  • Geiser F, Sink H S, Stahl B, et al. Differences in the physiological response to cold in wild and laboratory-bred mountain pygmy-possums Burramys parvus (Marsupialia). Aust Wildl Res. 1990; 17: 535–39
  • Godfrey G K. A field study of the activity of the mole (Talpa europaea). Ecology 1955; 36: 678–85
  • Goldman B D, Darrow J M, Duncan M J, et al. Photoperiod, reproductive hormones, and winter torpor in three hamster species. Living in the cold, H C Heller, X J Musacchia, L CH Wang. Elsevier, New York 1986; 341–50
  • Grahn D A, Miller J D, Houng V S, et al. Persistence of circadian rhythmicity in hibernating ground squirrels. Am J Physiol. 1994; 35: R1251–58
  • Grigg G C, Augee M L, Beard L A. Thermal relations of free-living echidnas during activity and hibernation in a cold climate. Platypus and echidnas, M L Augee. Royal Zoological Society NSW, Sydney 1992; 160–73
  • Guppy M, Withers P. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev. 1999; 74: 1–40
  • Harlow H J, Phillips J A, Ralph C L. The effect of pinealectomy on hibernation in two species of seasonal hibernators, Citellus lateralis and C. richardsonii. J Exp Zool. 1980; 213: 301–2
  • Harlow H J, Walters L M. The effect of pinealectomy on non-shivering thermogenesis and hibernation of the Wyoming ground squirrel Spermophilus elegans. J Therm Biol. 1983; 8: 321–26
  • Harmata W. The frequency of winter sleep interruption in two species of bats hibernating in limestone tunnels. Acta Theriol. 1987; 32: 331–32
  • Hastings J W, Sweeney B M. On the mechanism of temperature independence in a biological clock. Proc Natl Acad Sci. 1957; 43: 804–11
  • Heath H W, Lynch G R. Intraspecific differences in the use of photoperiod and temperature as environmental cues in white-footed mice Peromyscus leucopus. Physiol Zool. 1983; 56: 506–12
  • Heldmaier G, Steinlechner S. Seasonal control of energy requirement for thermoregulation in the Djungarian hamster (Phodopus sungorus), living in natural photoperiod. J Comp Physiol [B] 1981; 142: 429–37
  • Heller H C, Glotzbach S F. Thermoregulation during sleep and hibernation. Int Rev Physiol. 1977; 15: 147–88
  • Heller H C, Grahn D A, Trachsel L, et al. What is a bout of hibernation. Life in the cold, C Carey, G L Florant, B A Wunder, et al. Westview Press, Boulder, Colorado 1993; 253–64
  • Heller H C, Hammel H T. CNS control of body temperature during hibernation. Comp Biochem Physiol. 1972; 41A: 349–59
  • Heller H C, Krilowicz B L, Kilduff T S. Neural mechanisms controlling hibernation. Living in the cold II, A Malan, B Canguilhem. John Libbey Eurotext, London 1989; 447–59
  • Heller H C, Walker J M, Florant G L, et al. Sleep and hibernation: electrophysiological and thermoregulatory homologies. Strategies in the cold, L CH Wang, J W Hudson. Academic Press, New York 1978; 225–65
  • Hiebert S M. Time-dependent threshold for torpor initiation in the rufous hummingbird (Selaphorus rufus). J Comp Physiol [B] 1992; 162: 249–55
  • Hill R W. Daily torpor in Peromyscus leucopus on an adequate diet. Comp Biochem Physiol. 1975; 51A: 413–23
  • Hladik C M, Charles-Dominique P, Petter J J. Feeding strategies of five nocturnal prosimians in he dry forest of the west coast of Madagascar. Nocturnal Malagasy primates, P Charles-Dominique, H M Cooper, A Hladik. Academic Press, New York 1980; 41–73
  • Hock R J. Photoperiod as stimulus for onset of hibernation. Fed Proc. 1955; 14: C73–C74
  • Hoffmann K. The influence of photoperiod and melatonin on the testis size, body weight, and pelage colour in the Djungarian hamster (Phodopus sungorus). J Comp Physiol. 1973; 85: 267–82
  • Hoffmann K. Effect of castration on photoperiodically induced weight gain in the Djungarian hamster. Naturwissenschaften 1978; 65: 494
  • Holloway J C, Geiser F. Influence of torpor on daily energy expenditure of the dasyurid marsupial Sminthopsis crassicaudata. Comp Biochem Physiol. 1995; 112A: 59–66
  • Holloway J C, Geiser F. Reproductive status and torpor of the marsupial Sminthopsis crassicaudata: effect of photoperiod. J Therm Biol. 1996; 21: 373–80
  • Hudson J W. Torpido in mammals. Comparative physiology of thermoregulation, C Whittow. Academic Press, New York 1973; 97–165
  • Hudson J W, Scott I M. Daily torpor in the laboratory mouse, Mus musculus var albino. Physiol Zool. 1979; 52: 205–18
  • Janskýac L, Vanecek J, Hanzal V. Absence of circadian rhythmicity during hibernation. Living in the cold II, A Malan, B Canguilhem. John Libbey Eurotext, London 1989; 33–39
  • Joy J E, Mrosovsky N. Circannual cycles in golden-mantled ground squirrels: lengthening of period by low temperatures in spring phase. J Comp Physiol [A] 1983; 150: 233–38
  • Joy J E, Mrosovsky N. Synchronisation of circannual cycles: a cold spring delays the cycle of thirteen-lined ground squirrels. J Comp Physiol [A] 1985; 156: 1125–34
  • Kawamichi M, Kawamichi T. Factors affecting hibernation commencement and spring emergence in Siberian chipmunks (Eutamias sibiricus). Life in the cold, C Carey, G L Florant, B A Wunder, et al. Westview Press, Boulder, Colorado 1993; 81–89
  • Kenagy G J. Daily and seasonal uses of energy stores in torpor and hibernation. Living in the cold II, A Malan, B Canguilhem. John Libbey Eurotext, London 1989; 17–24
  • Kenagy G J. Effects of day length, temperature, and endogenous control on annual rhythms of reproduction and hibernation in chipmunks (Eutamias spp.). J Comp Physiol [A] 1980; 141: 369–78
  • Kenagy G J, Vleck D. Daily temporal organization of metabolism in small mammals: adaptation and diversity. Vertebrate circadian systems, J Aschoff, S Daan, G Groos. Springer-Verlag, Berlin 1982; 322–38
  • Kerle J A. Growth and development of Burramys parvus in captivity. Possums and gliders, A P Smith, I D Hume. Surrey Beatty and Sons with Australian Mammal Society, Sydney 1984; 409–12
  • Kilduff T S, Krilowicz B, Milsom W K, et al. Sleep and mammalian hibernation: homologous adaptations and homologous processes. Sleep 1993; 16: 372–86
  • Körtner G, Geiser F. Effect of photoperiod and ambient temperature on activity patterns and body weight cycles of mountain pygmy-possums, Burramys parvus (Marsupialia). J Zool London 1995; 235: 311–22
  • Körtner G, Geiser F. Hibernation of mountain pygmy-possums (Burramys parvus) in the Australian alps. Adaptations to the cold: Tenth International Hibernation Symposium, F Geiser, A J Hulbert, S C Nicol. University of New England Press, ArmidaleAustralia 1996; 31–38
  • Körtner G, Geiser F. Ecology of natural hibernation in the marsupial mountain pygmy-possum (Burramys parvus). Oecologia 1998a; 113: 170–78
  • Körtner G, Geiser F. Thermoregulatory behaviour and torpor in free-ranging tawny frogmouths (Podargus strigoides). Avian Therm Physiol Energetics August 9–14, 1998b; 18, Oulu, Finland, August 9–14, Abstracts, 18
  • Körtner G, Geiser F. Torpor and activity patterns in free-ranging sugar gliders Petaurus breviceps (Marsupialia). Oecologia, In press 2000
  • Körtner G, Song X, Geiser F. Rhythmicity of torpor in a marsupial hibernator, the mountain pygmy-possum (Burramys parvus), under natural and laboratory conditions. J Comp Physiol [B] 1998; 168: 631–38
  • Kulzer E, Storf R. Schlaf-Lethargie bei dem afrikanischen Langzungenflughund Megaloglossus woermanni Pagenstecher, 1885. Z Säugetierkunde 1980; 45: 23–29
  • Larkin J E, Heller H C. Temperature sensitivity of sleep homeostasis during hibernation in the golden-mantled ground squirrel. Am J Physiol. 1996; 270: R777–84
  • Lee T M, Carmichael M S, Zucker I. Circannual variations in circadian rhythms of ground squirrels. Am J Physiol. 1986; 250: R831–36
  • Lindberg R G, Hayden P. Thermoperiodic entrainment of arousal from torpor in the little pocket mouse, Perognathus longimembris. Chronobiologia 1974; 1: 356–61
  • Lovegrove B G, Heldmaier G, Knight M. Seasonal and circadian energetic patterns in an arboreal rodent, Thallamys paedulcus, and a burrow dwelling rodent, Aethomys namaquensis, from the Kalahari desert. J Therm Biol. 1991; 16: 199–209
  • Lovegrove B G, Körtner G, Geiser F. The energetic cost of arousal from torpor in the marsupial Sminthopsis macroura: benefits of summer ambient temperature cycles. J Comp Physiol [B] 1999; 169: 11–18
  • Lovegrove B G, Raman J. Torpor patterns in the pouched mouse (Saccostomus campestris; Rodentia): a model animal for unpredictable environments. J Comp Physiol [B] 1998; 168: 303–12
  • Hibernation and torpor in mammals and birds, C P Lyman, J S Willis, A Malan, et al. Academic Press, New York 1982
  • Lynch G R, Puchalski W, Margraf R R, et al. Circadian rhythmicity and photoperiodism in the Djungarian hamster. Life in the cold, C Carey, G L Florant, B A Wunder, et al. Westview Press, Boulder, Colorado 1993; 193–99
  • Lynch G R, White S E, Grundel R, et al. Effects of photoperiod, melatonin administration and thyroid block on spontaneous daily torpor and temperature regulation in the white-footed mouse, Peromyscus leucopus. J Comp Physiol [B] 1978; 125: 157–63
  • MacMillen R E. Aestivation in the cactus mouse, Peromyscus eremicus. Comp Biochem Physiol. 1965; 16: 227–48
  • Maddocks T A, Geiser F. Energetics, thermoregulation and nocturnal hypothermia in Australian silvereyes. Condor 1997; 99: 104–12
  • Malan A. Temperature regulation, enzyme kinetics, and metabolic depression in mammalian hibernation. Life in the cold, C Carey, G L Florant, B A Wunder, et al. Westview Press, Boulder, Colorado 1993; 241–52
  • Menaker M. Endogenous rhythms of body temperature in hibernating bats. Nature 1959; 184: 1251–52
  • Michener G R. Effect of climatic conditions on the annual activity and hibernation cycle of Richardson's ground squirrels and Columbian ground squirrels. Can J Zool. 1977; 55: 693–703
  • Michener G R. Sexual differences in over-winter torpor patterns of Richardson's ground squirrels in natural hibernacula. Oecologia 1992; 89: 397–406
  • Michener G R. Sexual differences in reproductive effort of Richardson's ground squirrels. J Mamm. 1998; 79: 1–19
  • Miller J D. On the nature of the circadian clock in mammals. Am J Physiol. 1993; 264: R821–32
  • Morton M L, Sherman D W. Effects of a spring snowstorm on behavior, reproduction, and survival of Belding's ground squirrels. Can J Zool. 1978; 56: 2578–90
  • Mrosovsky N. Circannual cycle in golden-mantled ground squirrels: experiments with food deprivation and effects of temperature on periodicity. J Comp Physiol. 1980; 136: 355–60
  • Mrosovsky N. Thermal effects on the periodicity, phasing, and persistence of circannual cycles. Living in the cold, H C Heller, X J Musacchia, L CH Wang. Elsevier, New York 1986; 403–10
  • Mrosovsky N. Circannual cycles in golden-mantled ground squirrels: fall and spring cold pulses. J Comp Physiol [A] 1990; 167: 683–89
  • Mrosovsky N, Boshes M, Hallonquist J D, et al. Circannual cycle of circadian cycles in a golden-mantled ground squirrel. Naturwissenschaften 1976; 63: 298–99
  • Murie J D, Harris M A. Annual variations in spring emergence and breeding in Columbian ground squirrels (Spermophilus columbianus). J Mamm. 1982; 63: 431–39
  • Nicol S, Pavlides D, Andersen N A. Nonshivering thermogenesis in marsupials: absence of thermogenic response to β3-adrenergic agonists. Comp Biochem Physiol. 1997; 117A: 399–405
  • Ortmann S, Schmid J, Ganzhorn J U, et al. Body temperature and torpor in a Malagasy small primate, the mouse lemur. Adaptations to the cold: Tenth International Hibernation Symposium, F Geiser, A J Hulbert, S C Nicol. University of New England Press, ArmidaleAustralia 1996; 55–61
  • Pengelley E T, Fisher K C. Onset and cessation of hibernation under constant temperature and light in the golden mantled ground squirrel (Citellus lateralis). Nature 1957; 180: 1371–72
  • Pengelley E T, Fisher K C. Rhythmical arousal from hibernation in the golden-mantled ground squirrel, Citellus lateralis tescorum. Can J Zool. 1961; 39: 105–20
  • Pengelley E T, Fisher K C. The effect of temperature and photoperiod on the yearly hibernation behavior of captive golden-mantled ground squirrels (Citellus lateralis tescorum). Can J Zool. 1963; 41: 1103–20
  • Pengelley E T, Kelley K H. A “circannian” rhythm in hibernating species of the genus Citellus with observations on the physiological evolution. Comp Biochem Physiol. 1966; 19: 603–17
  • Phillips J A, Harlow H J. Long-term effects of pinealectomy on the annual cycle of golden mantled ground squirrels, Spermophilus lateralis. J Comp Physiol [A] 1982; 146: 501–5
  • Pittendrigh C S, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency. J Comp Physiol. 1976a; 106: 223–52
  • Pittendrigh C S, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: pacemaker as clock. J Comp Physiol. 1976b; 106: 291–331
  • Pittendrigh C S, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J Comp Physiol. 1976c; 106: 333–55
  • Pohl H. Temperaturregulation und Tagesperiodik des Stoffwechsels bei Winterschläfern. Z vergl Physiol. 1961; 45: 109–53
  • Pohl H. Circadian rhythms in hibernation and the influence of light. Mammalian hibernation, K C Fisher, A R Dawe, C P Lyman, et al. III, Oliver and Boyd, Edinburgh 1967; 140–51
  • Pohl H. Circadian pacemaker does not arrest in deep hibernation. Evidence for desynchronisation from the light cycle. Experientia 1987; 43: 293–94
  • Pohl H. Circadian and circannual rhythmicity of hibernation in the Turkish hamster, Mesocricetus brandti. Adaptations to the cold: Tenth International Hibernation Symposium, F Geiser, A J Hulbert, S C Nicol. University of New England Press, ArmidaleAustralia 1996; 87–93
  • Puchalski W, Lynch G R. Evidence for differences in the circadian organization of hamsters exposed to short day photoperiod. J Comp Physiol [A] 1986; 159: 7–11
  • Quay W B. Seasonal cycle and physiological correlates of pinealocyte nuclear and nucleolar diameter in the bats, Myotis lucifugus and Myotis sodalis. Gen Comp Endocrinol. 1976; 29: 369–75
  • Ralph C L, Firth B T, Gern W A, et al. The pineal complex and thermoregulation. Biol Rev. 1979; 54: 41–72
  • Reinertsen R E. Nocturnal hypothermia and its energetic significance for small birds living in the arctic and subarctic regions. A review. Polar Res. 1983; 1: 269–84
  • Reiter R J. Evidence for refractoriness of the pituitary-gonadal axis to the pineal gland in golden hamsters and its possible implications in annual reproductive rhythms. Anat Rec. 1972; 173: 365–72
  • Ruby N F, Dark J, Heller H C, et al. Ablation of suprachiasmatic nucleus alters timing of hibernation in ground squirrels. Neurobiology 1996; 93: 9864–68
  • Ruby N F, Dark K, Heller H G, et al. Suprachiasmatic nucleus: role in circannual body mass and hibernation rhythms of ground squirrels. Brain Res. 1998; 782: 63–72
  • Ruby N F, Ibuka N, Barnes B M, et al. Suprachiasmatic nuclei influence torpor and circadian temperature rhythms in hamsters. Am J Physiol. 1989; 257: R210–15
  • Ruby N F, Zucker I. Daily torpor in absence of the suprachiasmatic nucleus in Siberian hamsters. Am J Physiol. 1992; 293: R353–62
  • Ruf T, Klingenspor M, Preis H, et al. Daily torpor in the Djungarian hamster (Phodopus sungorus): interaction with food intake, activity, and social behaviour. J Comp Physiol [B] 1991; 160: 609–15
  • Ruf T, Steinlechner S, Heldmaier G. Rhythmicity of body temperature and torpor in the Djungarian hamster, Phodopus sungorus. Living in the cold II, A Malan, B Canguilhem. John Libbey Eurotext, London 1989; 53–61
  • Ruf T, Stieglitz A, Steinlechner S, et al. Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). J Exp Zool. 1993; 267: 104–12
  • Rusak B. The mammalian circadian system: models and physiology. J Biol Rhythms 1989; 4: 121–34
  • Rusak B, Zucker I. Neural regulation of circadian rhythms. Physiol Rev. 1979; 59: 449–526
  • Saarela S, Hissa R. Metabolism, thermogenesis and daily rhythm of body temperature in the wood lemming, Myopus schisticolor. J Comp Physiol [B] 1993; 163: 546–55
  • Saarela S, Reiter R J. Function of melatonin in thermoregulatory processes. Life Sci. 1994; 54: 295–311
  • Schmid J. Oxygen consumption and torpor in mouse lemurs (Microcebus murinus and M. myoxinus): preliminary results of a study in western Madagascar. Adaptations to the cold: Tenth International Hibernation Symposium, F Geiser, A J Hulbert, S C Nicol. University of New England Press, ArmidaleAustralia 1996; 47–54
  • Song X, Körtner G, Geiser F. Reduction of metabolic rate and thermoregulation during daily torpor. J Comp Physiol [B] 1995; 165: 291–97
  • Song X, Körtner G, Geiser F. Interrelation between metabolic rate and body temperature during entry into daily torpor in Sminthopsis macroura. Adaptations to the cold: Tenth International Hibernation Symposium, F Geiser, A J Hulbert, S C Nicol. University of New England Press, ArmidaleAustralia 1996; 63–69
  • Song X, Körtner G, Geiser F. Thermal relation of metabolic rate reduction in a hibernating marsupial. Am J Physiol. 1997; 273: R2097–104
  • Stanton T L, Craft C M, Reiter R J. Evidence for the involvement of pineal melatonin in the control of the hibernation cycle in Spermophilus lateralis. Living in the cold, H C Heller, X J Musacchia, L CH Wang. Elsevier Science Publishing, New York 1986; 309–16
  • Steinlechner S, Heldmaier G. Role of photoperiod and melatonin in seasonal acclimatization of the Djungarian hamster Phodopus sungorus. Int J Biometeorol. 1982; 26: 329–37
  • Steinlechner S, Heldmaier G. The seasonal cycle of body weight in the Djungarian hamster: photoperiodic control and the influence of starvation and melatonin. Oecologia 1983; 60: 401–5
  • Steinlechner S, Heldmaier G, Weber C, et al. Role of photoperiod: pineal gland interaction in torpor control. Living in the cold, H C Heller, X J Musacchia, L CH Wang. Elsevier Science Publishing, New York 1986; 301–7
  • Strijkstra A M, Daan S. Ambient temperature during torpor affects NREM sleep EEG during arousal episodes in hibernating ground squirrels. Neurosci Lett. 1997a; 221: 177–80
  • Strijkstra A M, Daan S. Sleep during arousal episodes as a function of prior torpor duration in hibernating European ground squirrels. J Sleep Res 1997b; 6: 36–43
  • Strijkstra A M, Daan S. Dissimilarity of slow-wave action enhancement by torpor and sleep deprivation in a hibernator. Am J Physiol. 1998; 44: R1110–17
  • Strumwasser F. Factors in the pattern, timing and predictability of hibernation in the squirrel, Citellus beecheyi. Am J Physiol. 1959; 196: 8–14
  • Strumwasser F, Schlechte F R, Streeter J. The internal rhythms of hibernation. Mammalian hibernation, K C Fisher, A D Dawe, C P Lyman, et al. III, Oliver and Boyd, Edinburgh 1967; 110–39
  • Swade R H, Pittendrigh C S. Circadian locomotor rhythms of rodents in the arctic. Am Nat. 1967; 101: 431–66
  • Tannenbaum M G, Pivorun E B. Summer torpor in montane Peromyscus maniculatus. Am Midl Nat. 1989; 121: 194–97
  • Thomas D E. Notes on the behaviour of the mountain pygmy-possum Burramys parvus in captivity. The management of Australian mammals in captivity, D Evans. Zoological Board of Victoria, Melbourne 1982; 85–86
  • Thomas D W. Lack of evidence for a biological alarm clock in bats (Myotis spp.) hibernating under natural conditions. Can J Zool. 1993; 71: 1–3
  • Thomas D W, Geiser F. Periodic arousals in hibernating mammals: is evaporative water loss involved. Funct Ecol. 1997; 11: 585–91
  • Thomas E M, Jewett M E, Zucker M E. Torpor shortens the period of Siberian hamster circadian rhythms. Am J Physiol. 1993; 265: R951–56
  • Trachsel L, Edgar D M, Heller H C. Are ground squirrels sleep deprived during hibernation. Am J Physiol. 1991; 260: R1123–29
  • Tucker V A. Diurnal torpidity in the California pocket mouse. Science 1962; 136: 380–81
  • Twente J W, Twente J. Biological alarm clock arouses hibernating big brown bats, Eptesicus fuscus. Can J Zool. 1987; 65: 1668–74
  • Twente J W, Twente J A. Effects of core temperature upon duration of hibernation of Citellus lateralis. J Appl Physiol. 1965; 20: 411–16
  • Vitale P M, Darrow J M, Duncan M J, et al. Effects of photoperiod, pinealectomy and castration on body weight and daily torpor in Djungarian hamsters (Phodopus sungorus). J Endocrinol. 1985; 106: 367–75
  • Walhovd H. Partial arousal from hibernation in a pair of common dormice, Muscardinus avellanarius (Rodentia, Gliridae), in their natural hibernaculum. Oecologia 1976; 25: 321–30
  • Wang L CH. Energetic and field aspect of mammalian torpor: the Richardson's ground squirrel. Strategies in the cold, L CH Wang, J W Hudson. Academic Press, New York 1978; 109–45
  • Wang L CH. Ecological, physiological, and biochemical aspects of torpor in mammals and birds. Advances in comparative and environmental physiology, L CH Wang. Springer Verlag, Berlin 1989; 361–491
  • Ward J M, Armitage K B. Circannual rhythms of food consumption, body mass, and metabolism in yellow-bellied marmots. Comp Biochem Physiol. 1981; 69A: 621–26
  • Waβmer T, Wollnik F. Timing of torpor bouts during hibernation in European hamsters (Cricetus cricetus L.). J Comp Physiol [B] 1997; 167: 270–79
  • Willis J S. The mystery of the periodic arousal. Hibernation and torpor in mammals and birds, C P Lyman, J S Willis, A Malan, et al. Academic Press, New York 1982; 92–103
  • Wollnik F, Schmidt B. Seasonal and daily rhythms of body temperature in the European hamster (Cricetus cricetus) under semi-natural conditions. J Comp Physiol [B] 1995; 165: 171–82
  • Zucker I, Boshes M, Dark J. Suprachiasmatic nuclei influences circannual and circadian rhythms of ground squirrels. Am J Physiol. 1983; 244: R472–74
  • Zucker I, Morin L P. Photoperiodic influence on testicular regression, recrudescence and the induction of scotorefractoriness in male golden hamsters. Biol Reprod. 1977; 174: 493–98

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.