Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 18, 2001 - Issue 3
724
Views
92
CrossRef citations to date
0
Altmetric
Original

BIOLOGICAL TIMING AND THE CLOCK METAPHOR: OSCILLATORY AND HOURGLASS MECHANISMS

, &
Pages 329-369 | Published online: 07 Jul 2009

REFERENCES

  • Pittendrigh C. S., Bruce V. G. An Oscillator Model for Biological Clocks. Rhythmic and Synthetic Processes in Growth, D. Rudnick. Princeton University Press, Princeton, NJ 1957; 75–109
  • Bünning E. The Physiological Clock. Endogenous Diurnal Rhythms and Biological Chronometry. Springer, Berlin 1973
  • Edmunds L., Jr. Cellular and Molecular Bases of Biological Clocks. Springer Verlag, Berlin 1988
  • Dunlap J. C. Molecular Bases for Circadian Clocks. Cell 1999; 6: 271–290
  • Zordan M., Costa R., Macino G., Fukuhara C., Tosini G. Circadian Clocks: What Makes Them Tick. Chronobiol. Int. 2000; 17: 433–451
  • Sherr C. J. Cancer Cell Cycles. Science 1996; 274: 1672–1677
  • Morgan D. O. Cyclin Dependent Kinases. Engines, Clocks and Microprocessors. Annu. Rev. Cell Dev. Biol. 1997; 13: 261–291
  • Stein G. S., Baserga R., Giordano A., Denhardt D. T. The Molecular Basis of Cell Cycle and Growth Control. Wiley and Sons, New York 1999
  • Lloyd D., Rossi E. L. Ultradian Rhythms in Life Processes. Springer Verlag, Berlin 1993
  • Kippert F., Hunt P. Ultradian Clocks in Eukaryotic Microbes: From Behavioural Observation to Functional Genomics. BioEssays 2000; 22: 10–22
  • Palmer D. The Clocks Controlling the Tide-Associated Rhythms of Intertidal Animals. BioEssays 2000; 22: 32–37
  • Neumann D. Tidal and Lunar Rhythms. Handbook of Behavioral Neurobiology, J. Aschoff. Ed., Plenum Press, New York 1981; 351–380
  • Neumann D. Circadian Components of Semilunar and Lunar Timing Mechanism. J. Biol. Rhythms 1989; 4: 285–294
  • Neumann D. Physiologische Uhren von Insekten. Zur Ökophysiologie lunarperiodisch kontrollierter Fortpflanzungszeiten. Naturwiss 1995; 82: 310–320
  • Mrosovsky N. Circannual Cycles in Golden-Mantled Ground Squirrel: Fall and Spring Cold Pulses. J. Comp. Physiol. [A] 1990; 167: 683–689
  • Körtner G., Geiser F. The Temporal Organization of Daily Torpor and Hibernation: Circadian and Circannual Rhythms. Chronobiol. Int. 2000; 17: 103–128
  • Fauser B. C.J.M., Van Heusden A. M. Manipulation of Human Ovarian Function: Physiological Concepts and Clinical Consequences. Endocrine Rev. 1997; 18: 71–106
  • Chabbert-Buffet N., Djakoure C., Maitre S. C., Bouchard P. Regulation of the Human Menstrual Cycle. Front. Neuroendocrinol. 1998; 19: 151–186
  • Hirsinger E., Jouve C., Dubrulle J., Pourquie O. Somite Formation and Patterning. Int. Rev. Cytol. 2000; 198: 1–65
  • Rensing L. Oscillations and Morphogenesis; Marcel Dekker: New York 1993
  • Engelmann W., Antkowiak B. Ultradian Rhythms in Desmodium. Chronobiol. Int. 1998; 15: 293–307
  • Aschoff J., Gerkema M. On Diversity and Uniformity of Ultradian Rhythms. Ultradian Rhythms in Physiology and Behaviour, H. Schulz, P. Lavie. 1st Ed., Springer Verlag, Berlin 1985; 321–334
  • Williams B. G. The Lack of Circadian Timing in Two Intertidal Invertebrates and Its Significance in the Circatidal/Circalunidian Debate. Chronobiol. Int. 1998; 15: 205–218
  • Johnson M. H., Day M. L. Egg Timers: How Is Developmental Time Measured in the Early Vertebrate Embryo. BioEssays 2000; 22: 57–63
  • Samach A., Coupland G. Time Measurement and the Control of Flowering in Plants. BioEssays 2000; 22: 38–47
  • Jiang Y., Smithers L. Vertebrate Segmentation: The Clock Is Linked to Notch Signaling. Curr. Biol. 1998; 8: R868–R871
  • Telfer A., Poethig R. S. HASTY: A Gene that Regulates the Timing of Shoot Maturation in Arabidopsis thaliana. Development 1998; 125: 1889–1898
  • Slack F., Ruvkun G. Temporal Pattern Formation by Heterochronic Genes. Annu. Rev. Genet. 1997; 31: 611–634
  • Ambros V., Moss E. G. Heterochronic Genes and the Temporal Control of C. elegans Development. Trends Genet. 1994; 10: 123–127
  • Branicky R., Bénard C., Hekimi S. Clk-1, Mitochondria, and Physiological Rates. BioEssays 2000; 22: 48–56
  • Durand B., Raff M. A Cell-Intrinsic Timer that Operates During Oligodendrocyte Development. BioEssays 2000; 22: 64–71
  • Smith R. Alterations in Hypothalamic Pituitary Adrenal Axis During Pregnancy and the Placental Clock that Determines Length of Parturition. J. Reprod. Immunol. 1998; 39: 215–220
  • Smith R. Corticotropin-Releasing Hormone and the Feto-Placental Clock: An Australian Perspective. Am. J. Obstet. Gynecol. 1999; 180: 269–270
  • Reinhardt B. J., Slack F. J., Basson M., Pasquinelli A. E., Bettinger J. C., Rougvie A. E., Horvitz H. R., Ruvkun G. The 21-Nucleotide let-7 RNA Regulates Developmental Timing in Caenorhabditis elegans. Nature 2000; 403: 901–905
  • Pasquinelli A. E., Reinhart B. J., Slack F., Martindale M. Q., Kuroda M. J., Maller B., Hayward D. C., Ball E. E., Degnan B., Müller P., Spring J., Srinivasan J., Fishman M., Finnerty J., Corbo J., Levine M., Leahy P., Davidson E., Ruvkun G. Conservation of the Sequence and Temporal Expression of let-7 Heterochronic Regulatory RNA. Nature 2000; 408: 86–89
  • Rubin H. Cell Aging In Vivo and In Vitro. Mech. Ageing Dev. 1997; 98: 1–35
  • Melov S. Mitochondrial Oxidative Stress. Physiologic Consequences and Potential for a Role in Aging. Ann. NY Acad. Sci. USA 2000; 908: 219–225
  • Sastre J., Pallardo F. V., Garcia de la Asuncion J., Vina J. Mitochondria, Oxidative Stress and Aging. Free Radic. Res. 2000; 32(3)189–198
  • Hayflick L. The Limited In Vitro Lifetime of Human Diploid Cell Strains. Exp. Cell Res. 1965; 37: 614–636
  • Allsopp R. C., Vaziri H., Patterson C., Goldstein S., Younglai E. V., Futcher A. B., Greider C. W., Harley C. B. Telomere Length Predicts Replicative Capacity of Human Fibroblasts. Proc. Natl. Acad. Sci. USA. 1992; 89: 10114–10118
  • Counter C. M. The Roles of Telomeres and Telomerase in Cell Life Span. Mutat. Res. 1996; 366: 45–63
  • Ayala F. J. Vagaries of the Molecular Clock. Proc. Natl. Acad. Sci. USA 1997; 94: 7776–7783
  • Ayala F. J. Molecular Clock Mirages. BioEssays 1999; 21: 71–75
  • Chao L. Evolution of Sex and the Molecular Clock in RNA Viruses. Gene 1997; 205: 301–330
  • Lawson R. J.R., Poethig R. S. Shoot Development in Plants—Time for a Change. Trends Genet. 1995; 11: 263–268
  • Carlson J. E., Riley J. C. A Consideration of Some Notable Aging Theories. Exp. Geront. 1998; 33: 127–134
  • Morita Y., Tilly J. Z. Oocyte Apoptosis: Like Sand Through an Hourglass. Dev. Biol. 1999; 213: 1–17
  • Gojobori T., Moriyama E. N., Kimura M. Molecular Clock of Viral Evolution, and the Neutral Theory. Proc. Natl. Acad. Sci. USA 1990; 87: 10015–10018
  • Wittmann M. Time Perception and Temporal Processing Levels of the Brain. Chronobiol. Int. 1999; 16: 17–32
  • Ivry R. Cerebellar Timing Systems. Int. Rev. Neurobiol. 1997; 41: 555–573
  • Ivry R. B. The Representation of Temporal Information in Perception and Motocontrol. Curr. Opin. Neurobiol. 1996; 6: 851–857
  • McBain C. J., Freund T. F., Mody I. Glutamatergic Synapses onto Hippocampal Interneurons: Precision Timing Without Lasting Plasticity. Trends Neurosci. 1999; 22: 228–235
  • Borbely A. A., Achermann P. Sleep Homeostasis and Models of Sleep Regulation. J. Biol. Rhythms 1999; 14: 557–568
  • Bennington J. H., Heller H. C. Does the Function of REM Sleep Concern Non-REM Sleep or Waking. Prog. Neurobiol. 1994; 44: 433–449
  • van Someren E. J.W. Circadian Rhythms and Sleep in Human Aging. Chronobiol. Int. 2000; 17: 233–243
  • Haase S. B., Reed S. I. Evidence that a Free-Running Oscillator Drives G1 Events in the Budding Yeast Cell Cycle. Nature 1999; 401: 394–397
  • Goldman B. D. The Siberian Hamster as a Model for Study of the Mammalian Photoperiodic Mechanism. Adv. Exp. Med. Biol. 1999; 460: 155–164
  • Saunders D. S. Insect Circadian Rhythms and Photoperiodism. Invert. Neurosci. 1997; 3: 155–164
  • Thomas B., Vince-Prue D. Photoperiodism in Plants. Academic Press, London 1997
  • Ma H. Flowering Time: From Photoperiodism to Florigen. Curr. Biol. 1998; 8(19)R690–R692
  • Hauenschild C., Fischer A., Hofmann D. K. Untersuchungen am pazifischen Palolowurm Eunice viridis (Polychaeta) in Samoa. Helgoländer wiss. Meeresunters. 1968; 18: 254–295
  • Olive P. J.W. Environmental Control of Reproduction in Polychaeta; Fortschritte der Zoologie 29. G. Fischer: Stuttgart 1984; 17–38
  • Idyll C. P. Grunion, the Fish that Spawns on Land. Geographic Mag. 1969; 35: 714–723
  • Fitch J. E., Lavenberg R. J. Marine Food and Fishes of California. California Press, Berkeley 1971
  • Lalonde R., Hannequin D. The Neurobiological Basis of Time Estimation and Temporal Order. Rev. Neurosci 1999; 10: 151–173
  • Rensing L., Jaeger N. I. Temporal Order. Springer Verlag, Berlin 1985
  • Martens U. M., Chavez E. A., Poon S. S., Schmoor C., Landsdorp P. M. Accumulation of Short Telomeres in Human Fibroblasts Prior to Replicative Senescence. Exp. Cell Res. 2000; 256: 291–299
  • Webster N. Webster's New Universal Unabridged Dictionary. Dorsal and Barber, Cleveland, OH 1979
  • Webster's Second New Riverside Dictionary. Berkeley Books, New York 1984
  • Nicolis G., Prigogine I. Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order Through Fluctuations. John Wiley and Sons, New York 1977
  • Noyes R. M. Kinetics of Complex Reactions. Techniques of Chemistry, E. S. Lewis. John Wiley and Sons, New York 1974; 6, Pt. 1: 489–538
  • Scott S. K. Oscillations, Waves, and Chaos in Chemical Kinetics. Oxford University Press, Oxford 1994
  • Franck U. F. Feedback Kinetics in Physicochemical Oscillators. Ber. Bunsenges. Phys. Chem. 1980; 84: 334–341
  • Field R. J. Experimental and Mechanistic Characterization of Bromate-Ion-Driven Chemical Oscillations and Traveling Waves in Closed Systems. Oscillations and Traveling Waves in Chemical Systems, R. J. Field, M. Burger. 1st Ed., John Wiley and Sons, New York 1985; 55–92
  • Ruoff P. Special Issue on Temperature Compensation of Circadian and Ultradian Rhythms. Chronobiol. Int. 1997; 14: 445–536
  • Ruoff P., Behzadi M., Hauglid M., Vinsjevik M., Havås H. pH Homeostasis of the Circadian Sporulation Rhythm in Clock Mutants of Neurospora crassa. Chronobiol. Int. 2000; 17: 733–750
  • Sollberger A. Biological Rhythm Research. Elsevier, Amsterdam 1965
  • Rensing L. Biologische Rhythmen und Regulation, G. Fischer, Suttgart 1973
  • Hess B., Boiteux A. Oscillatory Phenomena in Biochemistry. Annu. Rev. Biochem. 1971; 40: 237–258
  • Jankovic J., Fahn S. Physiologic and Pathologic Tremors. Diagnosis, Mechanism and Management. Ann. Intern. Med. 1980; 93: 460–465
  • Mackey M. C., Milton J. G. Dynamical Diseases. Ann. NY Acad. Sci. 1988; 504: 16–32
  • Dobson A. P. The Population Biology of Parasite-Induced Changes in Host Behavior. Q. Rev. Biol. 1988; 63: 139–165
  • Sabelli H. C., Carlson-Sabelli L., Javaid J. I. The Thermodynamics of Bipolarity: A Bifurcation Model of Bipolar Illness and Bipolar Character and Its Psychotherapeutic Applications. Psychiatry. 1990; 53: 346–368
  • Gilpin M. E. Limit Cycles in Predator-Prey Communities. Science 1972; 177: 900–904
  • Lodish H., Berk A., Zipursky S. L., Matsudaira P., Baltimore D., Darnell J. Molecular Cell Biology. Freeman, New York 1999
  • Kamiya N., Allen R. D., Yoshimoto Y. Dynamic Organization of Physarum Plasmodium. Cell. Motil. Cytoskeleton 1988; 16: 107–116
  • Teplov V. A., Romanovsky Y. M., Latushkin O. A. A Continuum Model of Contraction Waves and Protoplasm Streaming in Strands of Physarum Plasmodium. Bio Systems 1991; 24: 269–289
  • Tominaga T., Allen R. D., Naitoh Y. Cyclic Changes in the Tension of the Contractile Vacuole Complex Membrane Control Its Exocytotic Cycle. J. Exp. Biol. 1998; 210: 2647–2658
  • Pulvermüller F., Birbaumer N., Lutzenberger W., Mohr B. High-Frequency Brain Activity: Its Possible Role in Attention, Perception and Language Processing. Prog. Neurobiol. 1997; 52: 427–495
  • Sauve K. Gamma Band Synchronous Oscillations: Recent Evidence Regarding Their Functional Significance. Conscious Cogn. 1999; 8: 213–224
  • Klimesch W. EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis. Brain Res. Brain Res. Rev. 1999; 29: 169–195
  • Traub R. D., Jefferys J. G., Whittington MA. Functionally Relevant and Functionally Disruptive (Epileptic) Synchronized Oscillations in Brain Slices. Adv. Neurol. 1999; 79: 709–724
  • Jaffe LF. Organization of Early Development by Calcium Patterns. BioEssays 1999; 21: 657–667
  • Goldbeter A., Dupon G., Halloy J. The Frequency Encoding of Pulsatility. Novartis Found. Symp. 2000; 227: 19–36
  • Haisenleder D. J., Yastin M., Marshall J. C. Gonadotropin Subunit and Gonadotropin-Releasing Hormone Receptor Gene Expression Are Regulated by Alterations in the Frequency of Calcium Pulsatile Signals. Endocrinology 1997; 183: 5227–5230
  • Buck J. Synchronous Rhythmic Flashing of Fireflies II. Q. Rev. Biol. 1988; 63: 265–289
  • Hardeland R. Lighting Conditions and Mating Behavior in Drosophila. Am. Naturalist 1971; 105: 198–200
  • Halberg F. Physiologic 24h Periodicity, General and Procedural Considerations with Reference to the Adrenal Cycle. Z. Vitamin-, Hormon- and Fermentforsch. 1959; 10: 225–296
  • Halberg F. Temporal Coordination of Physiologic Functions. Cold Spring Harb. Symp. Quant. Biol. 1960; 25: 289–310
  • Hastings J. W. Unicellular Clocks. Annu. Rev. Microbiol. 1959; 13: 297–312
  • Ruoff P., Rensing L. The Temperature-Compensated Goodwin Model Simulates Many Circadian Clock Properties. J. Theor. Biol. 1996; 179: 275–285
  • Price J. L. Insights into the Molecular Mechanisms of Temperature Compensation from the Drosophila period and timeless Mutants. Chronobiol. Int. 1997; 14: 455–468
  • Iwasaki H., Kondo T. The Current State and Problems of Circadian Clock Studies in Cyanobacteria. Plant Cell Physiol. 2000; 41: 1013–1020
  • Kondo T., Ishiura M. The Circadian Clock of Cyanobacteria. BioEssays 2000; 22: 10–15
  • Loros J. J. Time at the End of the Millenium: The Neurospora Clock. Curr. Opin. Microbiol. 1998; 1: 698–706
  • Edery J. Role of Posttranscriptional Regulation in Circadian Clocks: Lesson from Drosophila. Chronobiol. Int. 1999; 16: 377–414
  • Gekakis S., Stankis D., Nguyen H. B., Davis F. C., Wilsbacher L. D., King D. P., Takahashi J. S., Weitz C. J. Role of the CLOCK Protein in the Mammalian Circadian Mechanism. Science 1998; 280: 1564–1569
  • Takumi T., Matsubara C., Shigeyoshi Y., Taguchi K., Yagita K., Maebayashi Y., Sakakida Y., Okumura K., Takashima N., Okamura H. A New Mammalian Period Gene Predominantly Expressed in the Suprachiasmatic Nucleus. Genes Cells 1998; 3: 167–176
  • Zylka M., Shearman L., Weaver D., Reppert S. Three period Homologs in Mammals: Differential Light Responses in the Suprachiasmatic Circadian Clock and Oscillating Transcript Outside the Brain. Neuron. 1998; 20: 1103–1110
  • Bae K., Lee C., Sidote C., Chuang K. Y., Edery I. Cicadian Regulation of a Drosophila Homolog of the Mammalian Clock Gene: PER and TIM Function as Positive Regulators. Mol. Cell. Biol. 1998; 18: 6142–6151
  • Gauss R., Seifert R. Pacemaker Oscillations in Heart and Brain: A Key Role for Hyperpolarization-Activated Cation Channels. Chronobiol. Int. 2000; 7: 453–469
  • Johnson C. H. Forty Years of PRCs—What Have We Learned?. Chronobiol. Int. 1999; 16: 711–743
  • Myers M. P., Wager-Smith K., Rothenfluk-Hilfiker A., Young M. Light-Induced Degradation of TIMELESS and Entrainment of the Drosophila Circadian Clock. Science 1996; 271: 1736–1740
  • Thresher R. J., Vitaterna M. H., Miyamoto Y., Hsu D. S., Kazantsev A., Petit C., Selby C. P., Dawut L., Smithies O., Takahashi J. S., Sancar A. Role of the Mouse Cryptochrome Blue Light Photoreceptor in Circadian Response. Science 1998; 282: 1490–1494
  • Cashmore A. R., Jarillo J. A., Wu Y. J., Liu D. Cryptochromes: Blue Light Repectors for Plants and Animals. Science 1999; 284: 760–765
  • Eide E. J., Virshup D. M. Casein Kinase I. Another Cog in the Circadian Clockworks. Chronobiol. Int. 2001; 18(3), in press
  • Kloss B., Price J. L., Saez L., Blau J., Rothenfluh A., Wesley C. S., Young M. W. The Drosophila Clock Gene double-time Encodes a Protein Closely Related to Human Casein Kinase I Epsilon. Cell 1998; 94: 94–107
  • Cermakian N., Sassone-Corsi P. Multilevel Regulation of the Circadian Clock. Nature Rev. Mol. Cell Biol. 2000; 1: 59–67
  • Bell-Pedersen D., Shinohara M., Loros J., Dunlap J. C. Circadian Clock-Controlled Genes Isolated from Neurospora crassa Are Late Night to Early Morning Specific. Proc. Natl. Acad. Sci. USA 1996; 93: 13096–13101
  • Helfrich-Foerster C., Stengl M., Homberg U. Organization of the Circadian System in Insects. Chronobiol. Int. 1998; 15: 567–594
  • Hastings M., Maywood E. S. Circadian Clocks in the Mammalian Brain. BioEssays 2000; 22: 23–31
  • Herzog E. D., Block G. D. Keeping an Eye on Retinal Clocks. Chronobiol. Int. 1999; 16: 229–247
  • Jin X., Shearman L., Weaver D., Zylko M., DeVries G., Reppert S. A Molecular Mechanism Regulating Output from the Suprachiasmatic Circadian Clock. Cell 1999; 96: 57–68
  • Sakamoto K., Nagase T., Fukui H., Horikawa K., Okada T., Tanoka H., Sato K., Miyake Y., Ohara O., Kak K., Ishida N. Multitissue Circadian Expression of Rat Period Homolog (rPer) mRNA Is Governed by the Mammalian Circadian Clock, the Suprachiasmatic Nucleus in the Brain. J. Biol. Chem. 1998; 273: 27039–27042
  • LeSauter J., Silver R. Output Signals of the SCN. Chronobiol. Int. 1998; 15: 535–550
  • Goodwin B. C. Temporal Organization in Cells. Academic Press, London 1963
  • Goodwin B. C. Oscillatory Behavior in Enzymatic Control Processes. Advances in Enzyme Regulation, G. Weber. Pergamon, OxfordEngland 1965; 3: 25–38
  • Murray J. D. Mathematical Biology. Springer Verlag, Berlin 1983
  • Lillo C. Light Regulation of Nitrate Reductase in Green Leaves of Higher Plants. Physiol. Plant. 1994; 90: 616–620
  • Deng M. D., Moureaux T., Cherel I., Boputin J. P., Caboche M. Effects of Nitrogen Metabolites on the Regulation and Circadian Expression of Tobacco Nitrate Reductase. Plant Physiol. Biochem. 1991; 29: 239–247
  • Lillo C., Meyer C., Ruoff P. The Nitrate Reductase Circadian System. The Central Clock Dogma Contra Multiple Oscillatory Feedback Loops. Plant Physiol. 2001; 125: 1554–1557
  • Ruoff P., Mohsenzadeh S., Rensing L. Circadian Rhythms and Protein Turnover: The Influence of Temperature on the Period Lengths of Clock Mutants Simulated by the Goodwin Oscillator. Naturwissenschaften 1996; 83: 514–517
  • Liu Y., Loros J. J., Dunlap J. C. Phosphorylation of the Neurospora Clock Protein FREQUENCY Determines Its Degradation Rate and Strongly Influences the Period Length of the Circadian Clock. Proc. Natl. Acad. Sci. USA. 2000; 97: 234–239
  • Pittendrigh C. S. Circadian Oscillations in Cells and the Circadian Organization of Multicellular Systems. The Neurosciences Third Study Program, F. O. Schmitt, F. G. Worden. 1st Ed., MIT Press, Cambridge 1974; 437–457
  • Jewett M. E., Borbély A. A., Czeisler C. A. Sleep Regulations and Neurobehavioral Function in Humans. J. Biol. Rhythms 1999; 14: 429–630
  • Lakin-Thomas P. L., Coté G. G., Brody S. Circdian Rhythms in Neurospora crassa: Biochemistry and Genetics. Crit. Rev. Microbiol. 1990; 17: 365–416
  • Ruoff P., Vinsjevik M., Monnerjahn C., Rensing L. The Goodwin Oscillator: On the Importance of Degradation Reactions in the Circadian Clock. J. Biol. Rhythms 1999; 14: 469–479
  • Ruoff P., Vinsjevik M., Monnerjahn C., Rensing L. The Goodwin Model: Simulating the Effect of Light Pulses on the Circadian Sporulation Rhythm of Neurospora crassa. J. Theoret. Biol. 2001; 209: 29–42
  • Winfree A. T. The Geometry of Biological Time. Springer Verlag, Berlin 1980
  • Olde-Scheper T., Klinkenberg D., Pennartz C., van Pelt J. A Mathematical Model for the Intracellular Circadian Rhythm Generator. J. Neurosci 1999; 19: 40–47
  • Hong C. I., Tyson J. J. A Proposal for Temperature Compensation of the Circadian Rhythm in Drosophila Based on Dimerization of the PER Protein. Chronobiol. Int. 1997; 14: 521–530
  • Leloup J. C., Goldbeter A. Temperature Compensation of Circadian Rhythms: Control of the Period in a Model for Circadian Oscillations of the PER Protein in Drosophila. Chronobiol. Int. 1997; 14: 511–520
  • Gonze D., Leloup J. C., Goldbeter A. Theoretical Models for Circadian Rhythms in Neurospora and Drosophila. C. R. Acad. Sci. (Paris), Sciences de la vie. 2000; 323: 57–67
  • Tyson J. J., Hong C. I., Thron D., Novak B. A Simple Model of Circadian Rhythms Based on Dimerization and Proteolysis of PER and TIM. Biophys. J. 1999; 2411–2417
  • Ruoff P. Introducing Temperature Compensation in Any Reaction Kinetic Oscillator Model. J. Interdiscipl. Cycle Res. 1992; 23: 92–99
  • Rábai G., Hanazaki I. Temperature Compensation in the Oscillatory Hydrogen Peroxide-Thiosulfate-Sulfite Flow System. Chem. Commun. 1999; 1965–1966
  • Clarke D. J., Gimenez-Abian J. F. Checkpoints Controlling Mitosis. BioEssays 2000; 22: 351–363
  • Elledge S. Cell Cycle Checkpoints: Preventing an Identity Crisis. Science 1996; 274: 1664–1671
  • Stillman B. Cell Cycle Control of DNA Replication. Science 1996; 724: 1659–1663
  • Johnson D. G. Schneider-Broussard, R. Role of E2F in Cell Cycle Control and Cancer. Front. Biosci. 1998; 3: 447–458
  • Johnson D. G., Walker C. L. Cyclins and Cell Cycle Checkpoints. Annu. Rev. Pharmacol. Toxicol. 1999; 39: 295–312
  • Endicott J. A., Noble M. E., Tucker J. A. Cyclin-Dependent Kinases: Inhibition and Substrate Recognition. Curr. Opin. Struct. Biol. 1999; 9: 738–744
  • Novak B., Töth A., Csikász-Nagy A., Gyórffy B., Tyson J. J., Nasmyth K. Finishing the Cell Cycle. J. Theor. Biol. 1999; 199: 223–233
  • Tyson J., Garcia-Herdugo G., Sachsenmaier W. Control of Nuclear Division in Physarum polycephalum. Exp. Cell Res. 1979; 119: 87–98
  • Kühl N. M., Rensing L. Heat Shock Effects on Cell Cycle Progression. Cell Mol. Life Sci. 2000; 57: 450–463
  • Kühl N. M., Kunz J., Rensing L. Heat-Induced Arrests in Different Cell Cycle Phases of Rat C6-Glioma Cells Are Attenuated in Heat Shock-Primed Thermotolerant Cells. Cell Prolif. 2000; 33: 147–166
  • Bjarnason G. A., Jordan R. Circadian Variation of Cell Proliferation and Cell Cycle Protein Expression in Man: Clinical Implications. Prog. Cell Cycle Res. 2000; 4: 193–206
  • Puri P. L., MacLachlan T. H., Levrero M., Giordano A. The Intrinsic Cell Cycle: From Yeast to Mammals. In: The Molecular Basis of Cell Cycle and Growth Control, G. S. Stein, R. Baserga, A. Giordano, D. T. Denhardt. 1st Ed., Wiley-Liss, New York 1999; 15–79
  • Hyver C., LeGuayader H. MPF and Cyclin: Modelling of the Cell Cycle Minimum Oscillator. Biosystems 1990; 24: 85–90
  • Norel R., Agur Z. A Model for the Adjustment of the Mitotic Clock by Cyclin and MPF Levels. Science 1991; 251: 1076–1078
  • Tyson J. J. Modeling the Cell Division Cycle: cdc2 and Cyclin Interactions. Proc. Natl. Acad. Sci. USA. 1991; 88: 7328–7332
  • Novak B., Tyson J. J. Modeling the Cell Division Cycle: M-Phase Trigger, Oscillations, and Size Control. J. Theor. Biol. 1993; 165: 101–134
  • Novak B., Tyson J. J. Numerical Analysis of a Comprehensive Model of M-Phase Control in Xenopus Oocytes Extracts and Intact Embryos. J. Cell Sci. 1993; 106: 1153–1168
  • Goldbeter A. Biochemical Oscillations and Cellular Rhythms. The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge 1996
  • Gardner T. S., Dolnik M., Collins J. J. A Theory for Controlling Cell Cycle Dynamics Using a Reversibly Binding Inhibitor. Proc. Natl. Acad. Sci. USA 1998; 95: 14190–14915
  • Obeyesekere M. N., Zimmerman S. O., Tecarro E. S., Auchmuty G. A Model of Cell Cycle Behavior Dominated by Kinetics of a Pathway Stimulated by Growth Factors. Bull. Math. Biol. 1999; 61: 917–934
  • Goldbeter A. A Minimal Cascade Model for the Mitotic Oscillator Involving Cyclin and cdc2 Kinase. Proc. Natl. Acad. Sci. USA 1991; 88: 9107–9111
  • Hayflick L. The Cell Biology of Human Aging. Sci. Am. 1980; 242: 58–65
  • Cech T. R. Leben am Ende der Chromosomen: Telomere und Telomerase. Angew. Chem. 2000; 112: 34–44
  • Levy M. Z., Allsopp R. C., Futcher A. G., Greider C. W., Harley C. B. Telomere End-Replication Problem and Cell Aging. J. Mol. Biol. 1992; 225: 951–960
  • Lingner J., Cech T. R. Telomerase and Chromosome End Maintenance. Curr. Opin. Gen. Dev. 1998; 8: 226–232
  • von Zglinicki T., Pilger R., Sitte N. Accumulation of Single-Strand Breaks Is the Major Cause of Telomere Shortening in Human Fibroblasts. Free Radic. Biol. Med. 2000; 28: 64–74
  • Harley C. B. Telomere Loss: Mitotic Clock or Genetic Time Bomb. Mutat. Res. 1991; 256: 271–282
  • Ohmura H., Tahara H., Suzuki M., Ide T., Shimizu M., Yoshida M. A., Tahara E., Shay J. W., Barrett J. C., Oshimura M. Restoration of the Cellular Senescence Program and Repression of Telomerase by Human Chromosome 3. Jpn. J. Cancer Res. 1995; 86: 899–904
  • Bodnar A. G., Ouellette M., Frolkis M., Holt S. E., Chiu C. P., Morin G. B., Harley C. B., Shay J. W., Lichtsteiner S., Whright W. E. Extension of Life-Span by Introduction of Telomerase into Normal Human Cells. Science 1998; 279: 349–352
  • Yegorov Y. E., Chernov D. N., Akimov S. S., Bolsheva N. L., Krayevsky A. A., Zelenin A. V. Reverse Transcriptase Inhibitors Suppress Telomerase Function and Induce Senescence Like Processes in Cultured Mouse Fibroblasts. FEBS Lett. 2000; 389: 115–118
  • Wyllie F. S., Jones C. J., Skinner J. W., Haughton M. F., Wallis C., Wynford- Thomas D., Faragher R. G., Kipling D. Telomerase Prevents the Accelerated Cell Aging of Werner Syndrome Fibroblasts. Nature Genet. 2000; 24: 16–17
  • Kim N. W., Piatyszek M. A., Prowse K. R., Harley C. B., West M. D., Ho P. L., Coviello G. M., Wright W. E., Weinrich S. L., Shay J. W. Specific Association of Human Telomerase Activity with Immortal Cells and Cancer. Science 1994; 266: 2011–2015
  • Nakamura T. M., Morin G. B., Chapman K. B., Weinrich S. L., Andrews W. H., Lingner J., Harley C. B., Cech T. R. Telomerase Catalytic Subunit Homologs from Fission Yeast and Human. Science 1997; 277: 955–999
  • Nugent C. I., Lundblad V. The Telomerase Reverse Transcriptase: Components and Regulation. Genes Dev. 1998; 12: 1073–1085
  • MacKintosh C., Douglas P., Lillo C. Identification of a Protein that Inhibits the Phosphorylated Form of Nitrate Reductase from Spinach (Spinacia oleracea) Leaves. Plant Physiol. 1995; 107: 451–457

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.