Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 18, 2001 - Issue 4
43
Views
4
CrossRef citations to date
0
Altmetric
Original

EFFECT OF SHORT LIGHT-DARK CYCLES ON YOUNG AND ADULT TGR(mREN2)27 RATS

, , , &
Pages 641-656 | Received 27 Dec 2000, Accepted 21 Mar 2001, Published online: 07 Jul 2009

REFERENCES

  • Moore R. Y. Chemical neuroanatomy of the mammalian circadian system. Physiology and Pharmacology of Biological Rhythms, Handbook of Experimental Pharmacology, P. Redfern, B. Lemmer. Springer, Berlin 1997; 125: 79–93
  • Welsh D. K., Logothetis D. E., Meister M., Reppert S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995; 14: 697–706
  • Pittendrigh C. S., Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J. Comp. Physiol. A 1976; 106: 333–355
  • Boulos L., Terman M. Splitting of circadian rhythms in the rat. J. Comp. Physiol. 1979; 134: 75–83
  • Ellis G. B., McKlveen R. E., Turek F. W. Dark pulses affect the circadian rhythm of activity in hamsters kept in constant light. Am. J. Physiol. 1982; 242: R44–R50
  • Gwinner E. Testosterone induces “splitting” of circadian locomotor activity in birds. Science 1974; 185: 72–74
  • Hoffman K. Splitting of the circadian rhythm as a function of light intensity. In Biochronometry, M. Menaker. National Academy of Science, Washington, DC 1971; 134–151
  • Pittendrigh C. S. Circadian rhythms and the circadian organization of living systems Cold Spring Harbor Symp. Quant. Biol. 1960; 25: 155–184
  • Puchalski W., Lynch G. R. Characterization of circadian function in Djungarian hamsters insensitive to short day photoperiod. J. Comp. Physiol. A 1988; 162: 309–316
  • Underwood H. Circadian organization in lizards: the role of the pineal organ. Science 1977; 195: 587–589
  • Honma S., Honma K. Light-induced uncoupling of multioscillatory circadian system in a diurnal rodent, Asian chipmunk. Am. J. Physiol. 1999; 276: R1390–R1396
  • Mrosovsky N., Janik D. Behavioral decoupling of circadian rhythms. J. Biol. Rhythms 1993; 8: 57–65
  • Vilaplana J., Cambras T., Campuzano A., Díez-Noguera A. Simultaneous manifestation of free-running and entrained rhythms in the rat motor activity explained by a multioscillatory system. Chronobiol. Int. 1997; 14: 9–18
  • Campuzano A., Vilaplana J., Cambras T., Díez-Noguera A. Dissociation of the rat motor activity rhythm under T cycles shorter than 24 hours. Physiol. Behav. 1998; 63: 171–176
  • Madrid J. A., Lax P., Vilaplana J., Cambras T., Díez-Noguera A. Presence of two differentiated circadian components in the eating and motor behaviour in young rats. J. Interdisc. Cycle Res. 1992; 23: 213–214
  • Madrid J. A., Sánchez-Vázquez F. J., Lax P., Matas P., Cuenca E. M., Zamora S. Feeding behavior and entrainment limits in the circadian system of the rat. Am. J. Physiol. 1998; 275: R372–R383
  • Mullins J. J., Peters J., Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 renin gene. Nature 1990; 344: 541–544
  • Hoffman S., Paul M., Urata H., Wagner J., Ganten D. Transgenic rats and experimental hypertension. In Hypertension, J. H. Laragh, B. M. Brenner. Raven Press, New York 1995; 1301–1308
  • Witte K., Lemmer B. Development of inverse circadian blood pressure pattern in transgenic hypertensive TGR(mREN2)27 rats. Chronobiol. Int. 1999; 16: 293–303
  • Lemmer B., Mattes A., Böhm M., Ganten D. Circadian blood pressure variation in transgenic hypertensive rats. Hypertension 1993; 22: 97–101
  • Lemmer B., Hauptfleisch S., Witte K. Loss of 24h rhythm and light-induced c-fos mRNA expression in the suprachiasmatic nucleus of the transgenic hypertensive TGR(mREN2)27 rat and effects on cardiovascular rhythms. Brain Res. 2000; 883: 250–257
  • Van Dongen H. P.A., Olofsen E., Van Hartevelt J. H., Kruyt E. W. A procedure of multiple period searching in unequally spaced time-series with the Lomb-Scargle method. Biol. Rhythm Res. 1999; 30: 149–177
  • Ruf T. The Lomb-Scargle periodogram in biological rhythm research: analysis on incomplete and unequally spaced time-series. Biol. Rhythm Res. 1999; 30: 178–201
  • Cambras T., Díez-Noguera A. Changes in motor activity during the development of the circadian rhythm in the rat. J. Interdisc. Cycle Res. 1988; 19: 65–74
  • Rosenwasser A. M., Adler N. T. Structure and function in circadian timing systems: evidence for multiple coupled circadian oscillators. Neurosci. Biobehav. Rev. 1986; 10: 431–448
  • Díez-Noguera A. A functional model of the circadian system based on the degree of intercommunication in a complex system. Am. J. Physiol. 1994; 267: R1118–R1135
  • Miller J. D. The SCN is comprised of a population of coupled oscillators. Chronobiol. Int. 1998; 15: 489–511
  • Honma S., Shirakawa T., Katsuno Y., Namihira M., Honma K. Circadian periods of single suprachiasmatic neurons in rats. Neurosci. Lett. 1998; 250: 157–160
  • Bos N. P.A., Mirmiran M. Circadian rhythms in spontaneous neuronal discharges of the cultured suprachiasmatic nucleus. Brain Res. 1990; 511: 158–162
  • Liu C., Weaver D. R., Strogatz S. H., Reppert S. M. Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 1997; 91: 855–860
  • Herzog E. D., Takahashi J. S., Block G. D. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nature Neurosci. 1998; 1: 708–713
  • Shirakawa T., Honma S., Katsuno Y., Oguchi H., Honma K. I. Synchronization of circadian firing rhythms in cultured rat suprachiasmatic neurons. Eur. J. Neurosci. 2000; 12: 2833–2838
  • Mirmiran M., Koster-Van Hoffen G. C., Bos N. P. Circadian rhythm generation in the cultured suprachiasmatic nucleus. Brain Res. Bull. 1995; 38: 275–283
  • Zlomanczuk P., Margraf R. R., Lynch G. R. In vitro electrical activity in the suprachiasmatic nucleus following splitting and masking of wheel-running behavior. Brain Res. 1991; 559: 94–99
  • Whitworth C. E., Stewart F., Cumming A. D., Morton J. J., Burns N. J., Williams B. C., Mullins J. J. Spontaneous development of malignant phase hypertension in transgenic Ren-2 rats. Kidney Int. 1994; 46: 1528–1532
  • McDougall S. J., Paull J. R.A., Widdop R. E., Lawrence A. J. Restraint stress. Differential cardiovascular responses in Wistar-Kyoto and spontaneously hypertensive rats. Hypertension 2000; 35: 126–129
  • Ottenweller J. E., Servatius R. J., Tapp W. N., Drastal S. D., Bergen M. T., Natelson B. H. A chronic stress state in rats: effects of repeated stress on basal corticosterone and behavior. Physiol. Behav. 1992; 51: 689–698
  • Li S. G., Lawler J. E., Randall D. C., Brown D. R. Sympathetic nervous activity and arterial pressure responses during rest and acute behavioral stress in SHR versus WKY rats. J. Auton. Nerv. Syst. 1997; 62: 147–154
  • Campuzano A., Vilaplana J., Cambras T., Díez-Noguera A. The role of wheel running in the coupling of two simultaneous circadian rhythms of motor activity in the rat. Biol. Rhythm Res. 1999; 30: 497–507
  • Bachmann S., Peters J., Engler E., Ganten D., Mullins J. Transgenic rats carrying the mouse renin gene: morphological characterization of a low renin hypertension model. Kidney Int. 1992; 41: 24–36
  • Yamaguchi T., Tokita Y., Franco-Saenz R., Mulrow P. J., Peters J., Ganten D. Zonal distribution and regulation of adrenal renin in a transgenic model of hypertension in the rat. Endocrinology 1992; 131: 1955–1962
  • Peters J., Münster K., Bader M., Hackenthal E., Mullins J. J., Ganten D. Increased adrenal renin in transgenic hypertensive rats, TGR(mRen2)27, and its regulation by camp, angiotensin II, and calcium. J. Clin Invest. 1993; 91: 742–747
  • Véniant M., Whithworth C. E., Ménard J., Sharp M. G.F., Gonzales M. F., Bruneval P., Mullins J. J. Development studies demonstrate age-dependent elevation of renin activity in TGR(mRen2)27 rats. Am. J. Hypertens. 1995; 8: 1167–1176
  • Lemmer B., Witte K., Schänzer A., Findeisen A. Circadian rhythms in the reninangiotensin system and adrenal steroids may contribute to the inverse blood pressure rhythm in hypertensive TGR(mREN-2)27 rats. Chronobiol. Int. 2000; 17: 645–658
  • Eilam R., Malach R., Segal M. Selective elimination of hypothalamic neurons by grafted hypertension-inducing neural tissue. J. Neurosci. 1994; 14: 4891–4902
  • Peters R. V., Zoeller R. T., Hemmessey A. C., Stopa E. G., Anderson G., Albers H. E. The control of circadian rhythms and the levels of vasointestinal peptide mRNA in the suprachiasmatic nucleus are altered in spontaneously hypertensive rats. Brain Res. 1994; 639: 217–227
  • Buijs R. M., Hermes M. L.H.J., Kalsbeek A. Suprachiasmatic nucleus–paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system. Prog. Brain Res. 1998; 119: 365–382
  • Guzzetti S., Dassi S., Pecis M., Casati R., Masu A. M., Longoni P., Tinelli M., Cerutti S., Pagani M., Malliani A. Altered pattern of circadian neuronal control of heart period in mild hypertension. J. Hypertens. 1991; 9: 831–838
  • Zhao Y., Bader M., Kreutz R. Ontogenic regulation of mouse Ren-2d renin gene in transgenic hypertensive rats, TGR(mREN2)27. Am. J. Physiol. 1993; 265: E699–E707

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.