Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 20, 2003 - Issue 6
1,382
Views
260
CrossRef citations to date
0
Altmetric
Review

Circadian Rhythms, Oxidative Stress, and Antioxidative Defense Mechanisms

, &
Pages 921-962 | Published online: 07 Jul 2009

References

  • Acevedo A., Williamson J. D., Scandalios J. G. Photoregulation of the Cat2 and Cat3 catalase genes in pigmented and pigment‐deficient maize: the circadian regulation of Cat3 is superimposed on its quasi‐constitutive expression in maize leaves. Genetics 1991; 127: 601–607
  • Acuña‐Castroviejo D., Martín M., Macías M., Escames G., León J., Khaldy H., Reiter R. J. Melatonin, mitochondria, and cellular bioenergetics. J. Pineal Res. 2001; 30: 65–74
  • Acuña‐Castroviejo D., Escames G., Carazo A., León J., Khaldy H., Reiter R. J. Melatonin, mitochondrial homeostasis and mitochondrial‐related diseases. Curr. Top. Med. Chem. 2002; 2: 133–151
  • Agapito M. T., Redondo I., Plaza R., Lopez‐Burillo S., Recio J. M., Pablos M. I. Relationships between melatonin, glutathione peroxidase, glutathione reductase, and catalase. Endogenous rhythms on cerebral cortex in Gallus domesticus. Adv. Exp. Med. Biol. 1999; 460: 377–381
  • Albarrán M. T., López‐Burillo S., Pablos M. I., Reiter R. J., Agapito M. T. Endogenous rhythms of melatonin, total antioxidant status and superoxide dismutase activity in several tissues of chick and their inhibition by light. J. Pineal Res. 2001; 30: 227–233
  • Alessio H. M. Exercise‐induced oxidative stress. Med. Sci. Sports Exerc. 1993; 25: 218–224
  • Allemand R., Cohet Y., David J. Increase in the longevity of adult Drosophila melanogaster kept in permanent darkness. Exp. Gerontol. 1973; 8: 279–283
  • Andersson U., Leighton B., Young M. E., Blomstrand E., Newsholme E. A. Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide. Biochem. Biophys. Res. Commun. 1998; 249: 512–516
  • Antolín I., Hardeland R. Suppression of the Gonyaulax glow peak by paraquat and its restoration by melatonin. Biological Rhythms and Antioxidative Protection, R. Hardeland. Cuvillier, Göttingen 1997; 86–97
  • Antolín I., Obst B., Burkhardt S., Hardeland R. Antioxidative protection in a high‐melatonin organism: the dinoflagellate Gonyaulax polyedra is rescued from lethal oxidative stress by strongly elevated, but physiologically possible concentrations of melatonin. J. Pineal Res. 1997; 23: 182–190
  • Artinian L. R., Ding J. M., Gillette M. A. Carbon monoxide and nitric oxide: interacting messengers in muscarinic signaling to the brains's circadian clock. Exp. Neurol. 2001; 171: 293–300
  • Aschoff J., v. Saint Paul U., Wever R. Die Lebensdauer von Fliegen unter dem Einfluß von Zeit‐Verschiebungen. Naturwissenschaften 1971; 58: 574
  • Baeza‐Squiban A., Delcher L., Kukreti R., Joly A. C., Guennou C., Houcine O., Marano F. Responses of the rabbit tracheal epithelium in vitro to H2O2‐induced oxidative stress. Toxicol. In Vitro 2000; 14: 159–167
  • Bailey D. M., Davies B., Young I. S., Jackson M. J., Davison G. W., Isaacson R., Richardson R. S. EPR spectroscopic detection of free radical outflow from an isolated muscle bed in exercising humans. J. Appl. Physiol. 2003; 94: 1714–1718
  • Barattini P. Glutathione circadian rhythms in duodenal mucosa of fasted rats. Aviakosm. Ekol. Med. 2000; 34: 59–61
  • Barlow‐Walden L. R., Reiter R. J., Abe M., Pablos M., Menendez‐Pelaez A., Chen L.‐D., Poeggeler B. Melatonin stimulates brain glutathione peroxidase activity. Neurochem. Int. 1995; 26: 497–502
  • Barros M. P., Bechara E. J. H. Daily variations of antioxidant enzyme and luciferase activities in the luminescent click‐beetle Pyrearinus termitilluminans: cooperation against oxygen toxicity. Insect Biochem. Molec. Biol. 2001; 31: 393–400
  • Bauman P. F., Smith T. K., Bray T. M. Effect of dietary protein deficiency and L‐2‐oxothiazolidine‐4‐carboxylate on the diurnal rhythm of hepatic glutathione in the rat. J. Nutr. 1988; 118: 1049–1054
  • Baydas G., Gursu M. F., Cikim G., Canpolat S., Yasar A., Canatan H., Kelestimur H. Effects of pinealectomy on the levels and the circadian rhythm of plasma homocysteine in rats. J. Pineal Res. 2002a; 33: 151–155
  • Baydas G., Gursu M. F., Yilmaz S., Canpolat S., Yasar A., Cikim G., Canatan H. Daily rhythms of glutathione peroxidase activity, lipid peroxidation and glutathione levels in tissues of pinealectomized rats. Neurosci. Lett. 2002b; 323: 195–198
  • Beaver L. M., Gvakharia B. O., Vollintine T. S., Hege D. M., Stanewsky R., Giebultowicz J. M. Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 2002; 99: 2134–2139
  • Belanger P. M., Desgagne M., Bruguerolle B. Temporal variations in microsomal lipid peroxidation and in glutathione concentration of rat liver. Drug Metab. Dispos. 1991; 19: 241–244
  • Bettahi I., Pozo D., Osuna C., Reiter R. J., Acuña‐Castroviejo D., Guerrero J. M. Melatonin reduces nitric oxide synthase activtiy in rat hypothalamus. J. Pineal Res. 1996; 20: 205–210
  • Bettahi I., Guerrero J. M., Reiter R. J., Osuna C. Physiological concentrations of melatonin inhibit the norepinephrine‐induced activation of prostaglandin E2 and cyclic AMP production in rat hypothalamus: a mechanism involving inhibition of nitric oxide synthase. J. Pineal Res. 1998; 25: 34–40
  • Blanchard B., Pompon D., Ducrocq C. Nitrosation of melatonin by nitric oxide and peroxynitrite. J. Pineal Res. 2000; 29: 184–192
  • Bode‐Böger S. M., Böger R. H., Kielstein J. T., Löffler M., Schäffer J., Frölich J. C. Role of endogenous nitric oxide in circadian blood pressure regulation in healthy humans and in patients with hypertension or atherosclerosis. J. Investig. Med. 2000; 48: 125–132
  • Body S. C., Sasame H. A., Body M. R. High concentrations of glutathione in glandular stomach: possible implications for carcinogenesis. Science 1979; 205: 1010–1012
  • Boehning D., Snyder S. H. Circadian rhythms: carbon monoxide and clocks. Science 2002; 298: 2339–2340
  • Boldt R., Scandalios J. G. Influence of UV‐light on the expression of the Cat2 and Cat3 genes in maize. Free Radic. Biol. Med. 1997; 23: 505–514
  • Boor P. J. Cardiac glutathione: diurnal rhythm and variation in drug‐induced cardiomyopathy. Res. Commun. Chem. Pathol. Pharmacol. 1979; 24: 27–36
  • Borgonio A., Witte K., Stahrenberg R., Lemmer B. Influence of circadian time, ageing, and hypertension on the urinary excretion of nitric oxide metabolites in rats. Mech. Ageing Dev. 1999; 111: 23–37
  • Boughattas N. A., Li X. M., Filipski J., Lemaigre G., Filipski E., Bouzouita K., Belhadj O., Levi F. Modulation of cisplatin chronotoxicity related to reduced glutathione in mice. Hum. Exp. Toxicol. 1996; 15: 563–572
  • Bridges A. B., Fisher T. C., Scott N., McLaren M., Belch J. J. Circadian rhythm of white blood cell aggregation and free radical status in healthy volunteers. Free Radic. Res. Commun. 1992a; 16: 89–97
  • Bridges A. B., Scott N. A., McNeill G. P., Pringle T. H., Belch J. J. Circadian variation in white blood cell aggregation and free radical indices in men with ischaemic heart disease. Eur. Heart J. 1992b; 13: 1632–1636
  • Brigagão M. R. P. L., Colepicolo P. Oscillation in O2− release by PMN and its inhibition by human saliva. Biol. Rhythm Res. 1996; 27: 261–268
  • Brigagão M. R. P. L., Colepicolo P. Activation of neutrophils is daily inhibited by saliva. Biol. Rhythm Res. 1998; 29: 598–605
  • Brigagão M. R. P. L., Barroso A. S., Colepicolo P. Fluctuation of reactive oxygen species released by inflammatory cells. The Redox State and Circadian Rhythms, T. Vanden Driessche, J.‐L. Guisset, G. Petiau‐de Vries. Kluwer, Dordrecht–Boston–London 2000; 177–191
  • Bruckner J. V., Ramanathan R., Lee K. M., Muralidhara S. Mechanisms of circadian rhythmicity of carbon tetrachloride hepatotoxicity. J. Pharmacol. Exp. Ther. 2002; 300: 273–281
  • Bubenik G. A. Localization, physiological significance and possible clinical implication of gastrointestinal melatonin. Biol. Signals Recept. 2001; 10: 350–366
  • Bubenik G. A. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig. Dis. Sci. 2002; 47: 2336–2348
  • Bubenik G. A., Pang S. F. Melatonin levels in the gastrointestinal tissues of fish, amphibians, and a reptile. Gen. Comp. Endocrinol. 1997; 106: 415–419
  • Bubenik G. A., Niles L. P., Pang S. F., Pentney P. J. Diurnal variation and binding characteristics of melatonin in the mouse brain and gastrointestinal tissues. Comp. Biochem. Physiol. 1993; 104C: 221–224
  • Bulian D., Pierpaoli W. The pineal gland and cancer. I. Pinealectomy corrects congenital hormonal dysfunctions and prolongs life of cancer‐prone C3H/He mice. J. Neuroimmunol. 2000; 108: 131–135
  • Burkhardt S., Hardeland R. Circadian rhythm of glutathione S‐transferase activity in Gonyaulax polyedra. Biological Rhythms and Antioxidative Protection, R. Hardeland. Cuvillier, Göttingen 1997; 34–39
  • Burkhardt S., Hardeland R., Poeggeler B. Various forms of oxidative stress strongly diminish 5‐methoxylated indoleamines in Gonyaulax polyedra. Biological Rhythms and Antioxidative Protection, R. Hardeland. Cuvillier, Göttingen 1997; 98–102
  • Burkhardt S., Coto‐Montes A., Hardeland R. Diurnal rhythm of protein carbonyl in Gonyaulax polyedra. Studies on Antioxidants and Their Metabolites, R. Hardeland. Cuvillier, Göttingen 1999; 10–13
  • Burkhardt S., Poeggeler B., Tan D.‐X., Rosner C., Gruetzner T., Nitzki F., Schoenke M., Thuermann S., Reiter R. J., Hardeland R. Oxidation products formed from melatonin in various radical‐generating systems. Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites, R. Hardeland. Cuvillier, Göttingen 2001a; 9–22
  • Burkhardt S., Reiter R. J., Tan D.‐X., Hardeland R., Cabrera J., Karbownik M. DNA oxidatively damaged by chromium(III) and H2O2 is protected by melatonin, N1‐acetyl‐ N2‐formyl‐5‐methoxykynuramine, resveratrol and uric acid. Int. J. Biochem. Cell Biol. 2001b; 33: 775–783
  • Burmistrov S. O., Arutyunyan A. V., Stepanov M. G., Oparina T. I., Prokopenko V. M. Effect of chronic inhalation of toluene and dioxane on activity of free radical processes in rat ovaries and brain. Bull. Exp. Biol. Med. 2001; 132: 832–836
  • Calcutt G. Diurnal variations in rat blood glutathione levels. Naturwissenschaften 1967; 54: 120
  • Castro L. A., Robalinho R. L., Cayota A., Meneghini R., Radi R. Nitric oxide and peroxynitrite‐dependent aconitase inactivation and iron‐regulatory protein‐1 activation in mammalian fibroblasts. Arch. Biochem. Biophys. 1998; 359: 215–224
  • Chang H.‐M., Ling E.‐A., Chen C.‐F., Lue J.‐H., Wen C.‐Y., Shieh J.‐Y. Melatonin attenuates the neuronal NADPH‐d/NOS expression in the nodose gan‐ glion of acute hypoxic rats. J. Pineal Res. 2002; 32: 65–73
  • Cipolla‐Neto J., Abdalla D. S., Markus R. P., Campa A. Circadian variations of superoxide dismutase activity in the rat pineal gland. J. Neural Transm. 1993; 92: 117–123
  • Clment P., Gharib A., Cespuglio R., Sarda N. Changes in sleep‐wake cycle architecture and cortical nitric oxide release during ageing in the rat. Neuroscience 2003; 116: 863–870
  • Colepicolo P., Camarero V. C. P. C., Hastings J. W. A circadian rhythm in the activity of superoxide dismutase in the photosynthetic alga Gonyaulax polyedra. Chronobiol. Int. 1992; 9: 266–268
  • Collén J., Pedersén M. Production, scavenging, and toxicity of hydrogen peroxide in Ulva rigida. Eur. J. Phycol. 1996; 31: 265–271
  • Collén J., Davison I. R. In vivo measurement of active oxygen production in the brown alga Fucus evanescens using 2′,7′‐dichlorohydrofluorescein diacetate. J. Phycol. 1997; 33: 643–648
  • Collén J., Del Río M. J., García‐Reina G., Pedersén M. Photosynthetic H2O2 production by Ulva rigida. Planta 1995; 196: 225–239
  • Cooper C. E., Vollaard N. B., Choueiri T., Wilson M. T. Exercise, free radicals and oxidative stress. Biochem. Soc. Trans. 2002; 30: 280–285
  • Coto‐Montes A., Hardeland R. Diurnal time patterns of protein carbonyl in Drosophila melanogaster: comparison of wild‐type flies and clock mutants. Biological Rhythms and Antioxidative Protection, R. Hardeland. Cuvillier, Göttingen 1997; 119–126
  • Coto‐Montes A., Hardeland R. Diurnal rhythm of protein carbonyl as an indicator of oxidative damage in Drosophila melanogaster: influence of clock gene alleles and deficiencies in the formation of free‐radical scavengers. Biol. Rhythm Res. 1999a; 30: 383–391
  • Coto‐Montes A., Hardeland R. Diurnal rhythm of lipid peroxidation in Drosophila melanogaster. Studies on Antioxidants and Their Metabolites, R. Hardeland. Cuvillier, Göttingen 1999b; 110–113
  • Coto‐Montes A., Hardeland R. La importancia del ritmo circadiano y de la melatonina para evitar el estrés oxidativo. Implicaciones en la investigación del trabajo a turnos rotatorio. Vigilia‐Sueño 2000; 12: 133–146
  • Coto‐Montes A., Boga J. A., Tomás‐Zapico C., Rodríguez‐Colunga M. J., Martínez‐Fraga J., Tolivia‐Cadrecha D., Menéndez G., Hardeland R., Tolivia D. Physiological oxidative stress model: Syrian hamster Harderian gland–sex differences in antioxidant enzymes. Free Radic. Biol. Med. 2001a; 30: 785–792
  • Coto‐Montes A., Boga J. A., Tomás‐Zapico C., Rodríguez‐Colunga M. J., Martínez‐Fraga J., Tolivia‐Cadrecha J., Menéndez G., Hardeland R., Tolivia D. Porphyric enzymes in hamster Harderian gland, a model of damage by porphyrins and their precursors. A chronobiological study on the role of sex differences. Chem.‐Biol. Interact. 2001b; 134: 135–149
  • Coto‐Montes A., Tomás‐Zapico C., Rodríguez‐Colunga M. J., Tolivia‐Cadrecha D., Martínez‐Fraga J., Hardeland R., Tolivia D. Effects of the circadian mutation ‘tau’ on the Harderian glands of Syrian hamsters. J. Cell. Biochem. 2001c; 83: 426–434
  • Crespo E., Macias M., Pozo D., Escames G., Martin M., Vives F., Guerrero J. M., Acuña‐Castroviejo D. Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide‐induced multiple organ dysfunction syndrome in rats. FASEB J. 1999; 13: 1537–1546
  • Cugini P., Touitou Y., Bogdan A., Auzeby A., Pellegrino A. M., Fontana S., Vacca K., Siena G. D., Di Rosa R., Zannella P., Zannella A., Sepe F. A., Sepe L. Is melatonin circadian rhythm a physiological feature associated with healthy longevity? A study of long‐living subjects and their progeny. Chronobiol. Int. 2001; 18: 99–107
  • Davies M. H., Bozigian H. P., Merrick B. A., Birt D. F., Schnell R. C. Circadian variations in glutathione‐S‐transferase and glutathione peroxidase activities in the mouse. Toxicol. Lett. 1983; 19: 23–27
  • De Niris F., Lerman L. O., Condorelli M., Lerman A., Napoli C. Oxidation‐sensitive transcription factors and molecular mechanisms in the arterial wall. Antioxid. Redox Signal. 2001; 3: 1119–1130
  • Devgun M. S., Dhillon H. S. Importance of diurnal variations on clinical value and interpretation of serum urate measurements. J. Clin. Pathol. 1992; 45: 110–113
  • Díaz‐Múñoz M., Hernández‐Múñoz R., Suárez J., Chagoya de Sánchez V. Day‐night cycle of lipid peroxidation in rat cerebral cortex and their relationship to the glutathione cycle and superoxide dismutase activity. Neuroscience 1985; 16: 859–863
  • Di Mascio P., Hollnagel H. C., Sperança M., Colepicolo P. Diurnal rhythm of β‐carotene in photosynthetic alga Gonyaulax polyedra. Biol. Chem. Hoppe Seyler 1995; 376: 297–301
  • Dioum E. M., Rutter J., Tuckerman J. R., Gonzalez G., Gilles‐Gonzalez M.‐A., McKnight S. L. NPAS2: a gas‐responsive transcription factor. Science 2002; 298: 2385–2387
  • Dittrich M., Hardeland R. Temporal patterns of antioxidative enzymes in the Drosophila clock mutant per0 kept under a light‐dark regimen. Biological Rhythms and Antioxidative Protection, R. Hardeland. Cuvillier, Göttingen 1997; 131–134
  • Domínguez‐Rodríguez A., Abreu‐González P., García M. J., Sánchez J., Marrero F., de Armas‐Trujillo D. Decreased nocturnal melatonin levels during acute myocardial infarction. J. Pineal Res. 2002; 33: 248–252
  • Ducrocq C., Blanchard B., Pignatelli B., Ohshima H. Peroxynitrite, an endogenous oxidizing and nitrating agent. Cell. Mol. Life Sci. 1999; 55: 1068–1077
  • Durán‐Lizarraga M. E., Prieto‐Sagredo J., Gonsebatt M. E., Fanjul‐Moles M. L. Crayfish Procambarus clarkii shows circadian variations in different parameters of the GSH cycle. Photochem. Photobiol. 2001; 74: 350–355
  • Elbirt K. K., Bonkovsky H. L. Heme oxygenase: recent advances in understanding its regulation and role. Proc. Assoc. Am. Physicians 1999; 111: 438–447
  • Fagan T., Morse D., Hastings J. W. Circadian synthesis of a nuclear‐encoded chloroplast glyceraldehyde‐3‐phosphate dehydrogenase in the dinoflagellate Gonyaulax polyedra is translationally controlled. Biochemistry 1999; 38: 7689–7695
  • Fanjul‐Moles M. L., Durán‐Lizarraga M. E., Gonsebatt M. E., Prieto‐Sagredo J. The effect of photoperiod and light irradiance on the antioxidant circadian system of two species of crayfish from different latitudes: Procambarus clarkii and P. digueti. Photochem. Photobiol. 2003; 77: 210–218
  • Farooqui M. Y., Ahmed A. E. Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. Life Sci. 1984; 34: 2413–2418
  • Fauconneau B., Petegnief V., Sanfeliu C., Piriou A., Planas A. M. Induction of heat shock proteins (HSPs) by sodium arsenite in cultured astrocytes and reduction of hydrogen peroxide‐induced cell death. J. Neurochem. 2002; 83: 1338–1348
  • Finley J. W., Kincaid R. L. Effect of sex and time of sampling on selenium and glutathione peroxidase activity in tissues of mature rats. Biol. Trace Elem. Res. 1991; 29: 181–191
  • Foster C. E., Bianchet M. A., Talalay P., Zhao Q., Amzel L. M. Crystal structure of human quinone reductase type 2, a metalloflavoprotein. Biochemistry 1999; 38: 9881–9886
  • Foster C. E., Bianchet M. A., Talalay P., Faig M., Amzel L. M. Structures of mammalian cytosolic quinone reductases. Free Radic. Biol. Med. 2000; 29: 241–245
  • Fu L., Pelicano H., Liu J., Huang P., Lee C. The circadian gene period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002; 111: 41–50
  • Gardner P. R. Aconitase: sensitive target and measure of superoxide. Methods Enzymol. 2002; 349: 9–23
  • Genova M. L., Ventura B., Giuliano G., Bovina C., Formiggini G., Parenti Castelli G., Lenaz G. The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron‐sulfur cluster N2. FEBS Lett. 2001; 505: 364–368
  • Genova M. L., Merlo Pich M., Biondi A., Bernacchia A., Falasca A., Bovina C., Formiggini G., Parenti Castelli G., Lenaz G. Mitochondrial production of oxygen radical species and the role of coenzyme Q as an antioxidant. Exp. Biol. Med., Maywood 2003; 228: 506–513
  • Gilad E., Wong H. R., Zingarelli B., Virag L., O'Connor M., Salzman A. L., Szabo C. Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibitions of NFκB activation. FASEB J. 1998; 12: 685–693
  • Green R. M., Tingay S., Wang Z. Y., Tobin E. M. Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol. 2002; 129: 576–584
  • Halliwell B., Gutteridge J. M. C. Free Radicals in Biology and Medicine 3rd ed. Clarendon Press, Oxford 1999
  • Hanson J. B., Highkin H. R. Possible interaction between light‐dark cycles and endogenous daily rhythms on the growth of tomato plants. Plant Physiol. 1954; 29: 301–302
  • Harada S., Fujii C., Hayashi A., Ohkoshi N. An association between idiopathic Parkinson's disease and polymorphisms of phase II detoxification enzymes: glutathione S‐transferase M1 and quinone oxidoreductase 1 and 2. Biochem. Biophys. Res. Commun. 2001; 288: 887–892
  • Hardeland R. Melatonin: multiple functions in signaling and protection. Skin Cancer and UV Radiation, P. Altmeyer, K. Hoffmann, M. Stücker. Springer, Berlin–Heidelberg 1997; 186–198
  • Hardeland R., Fuhrberg B. Ubiquitous melatonin–presence and effects in unicells, plants and animals. Trends Comp. Biochem. Physiol. 1996; 2: 25–45
  • Hardeland R., Coto‐Montes A. Chronobiology of oxidative stress and anti‐oxidative defense mechanisms. Recent Research Developments in Comparative Biochemistry and Physiology, S. G. Pandalai. Transworld Research Network, Trivandrum 2000; 1: 123–137
  • Hardeland R., Poeggeler B. Chemistry and biology of melatonin oxidation. Treatise on Pineal Gland and Melatonin, C. Haldar, M. Singaravel, S. K. Maitra. Science Publishers (USA), Enfield 2002; 407–422
  • Hardeland R., Poeggeler B. Non‐vertebrate melatonin. J. Pineal Res. 2003; 34: 233–241
  • Hardeland R., Hohmann D., Rensing L. The rhythmic organization of rodent liver. A review. J. Interdiscipl. Cycle Res. 1973; 4: 89–118
  • Hardeland R., Balzer I., Poeggeler B., Fuhrberg B., Uría H., Behrmann G., Wolf R., Meyer T. J., Reiter R. J. On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photooxidation and scavenging of free radicals. J. Pineal Res. 1995; 18: 104–111
  • Hardeland R., Burkhardt S., Antolín I., Fuhrberg B., Coto‐Montes A. Melatonin and 5‐methoxytryptamine in the bioluminescent dinoflagellate Gonyaulax polyedra: restoration of the circadian glow peak after suppression of indoleamine biosynthesis or oxidative stress. Adv. Exp. Med. Biol. 1999; 460: 387–390
  • Hardeland R., Coto‐Montes A., Burkhardt S., Zsizsik B. K. Circadian rhythms and oxidative stress in non‐vertebrate organisms. The Redox State and Circadian Rhythms, T. Vanden Driessche, J.‐L. Guisset, G. Petiau‐de Vries. Kluwer, Dordrecht–Boston–London 2000; 121–140
  • Hardeland R., Poeggeler B., Niebergall R., Zelosko V. Oxidation of melatonin by carbonate radicals and chemiluminescence emitted during pyrrole ring cleavage. J. Pineal Res. 2003; 34: 17–25
  • Hardeland R., Ressmeyer A.‐R., Zelosko V., Burkhardt S., Poeggeler B. Metabolites of melatonin: formation and properties of the methoxylated kynuramines AFMK and AMK. Proc. XXI Symp. Soc. Reprod. Biol. Comp. Endocrinol., in press, 2004
  • Harisch G., Stegmann H., Scheffler K., Philippens K. M., Schole J. Flavin enzymes, mitochondrial radicals and reduced glutathione in daily rhythmic dependency. Chronobiologia 1980; 7: 181–187
  • Hendricks J. C., Lu S., Kume K., Yin J. C., Yang Z., Sehgal A. Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J. Biol. Rhythms 2003; 18: 12–25
  • Hensley K., Pye Q. N., Maidt M. L., Stewart C. A., Robinson K. A., Jaffrey F., Floyd R. A. Interaction of α‐phenyl‐N‐tert‐butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site. J. Neurochem. 1998; 71: 2549–2557
  • Hillman W. S. Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. Am. J. Bot. 1956; 43: 89–96
  • Hodogˇlugil U., Ongun Ö., Güney Z., Altan N., Zengil H. Temporal variation in hepatic superoxide dismutase activity in mice. Chronobiol. Int. 1995; 12: 152–155
  • Hollnagel H. C., Di Mascio P., Asano C. S., Okamoto O. K., Stringher C. G., Oliveira M. C., Colepicolo P. The effect of light on the biosynthesis of β‐carotene and superoxide dismutase activity in the photosynthetic alga Gonyaulax polyedra. Braz. J. Med. Biol. Res. 1996; 29: 105–110
  • Hurd M. W., Ralph M. R. The significance of circadian organization for longevity in the golden hamster. J. Biol. Rhythms 1998; 13: 430–436
  • Inoue N., Imai K., Aimoto T. Circadian variation of hepatic glutathione S‐transferase activities in the mouse. Xenobiotica 1999; 29: 43–51
  • Isaacs J. T., Binkley F. Cyclic AMP‐dependent control of the rat hepatic glutathione disulfide‐sulfhydryl ratio. Biochim. Biophys. Acta 1977; 498: 29–38
  • Jaeger R. J., Conolly R. B., Murphy S. D. Diurnal variation of hepatic glutathione concentration and its correlation with 1,1‐dichlorethylene inhalation toxicity in rats. Res. Commun. Chem. Pathol. Pharmacol. 1973; 6: 465–471
  • Jaeschke H., Wendel A. Diurnal fluctuation and pharmacological alteration of mouse organ glutathione content. Biochem. Pharmacol. 1985; 34: 1029–1033
  • Jaiswal A. K. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic. Biol. Med. 2000; 29: 254–262
  • Johnson C. H. Endogenous timekeepers in photosynthetic organisms. Annu. Rev. Physiol. 2001; 63: 695–728
  • Johnson C. H., Golden S. S. Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu. Rev. Microbiol. 1999; 53: 389–409
  • Johnson C. H., Golden S. S., Kondo T. Adaptive significance of circadian programs in cyanobacteria. Trends Microbiol. 1998; 6: 407–410
  • Kampschmidt R. F., Upchurch H. F. Daily variation of body temperature, liver catalase activity, and plasma iron concentration in normal and tumor‐bearing rats. Proc. Soc. Exp. Biol. Med. 1970; 134: 527–529
  • Kanabrocki E. L., George M., Hermida R. C., Messmore H. L., Ryan M. D., Ayala D. E., Hoppensteadt D. A., Fareed J., Bremner F. W., Third J. L., Shirazi P., Nemchausky B. A. Day‐night variations in blood levels of nitric oxide, T‐TFPI, and E‐selectin. Clin. Appl. Thromb. Hemost. 2001; 7: 339–345
  • Kanabrocki E. L., Murray D., Hermida R. C., Scott G. S., Bremner W. F., Ryan M. D., Ayala D. E., Third J. L., Shirazi P., Nemchausky B. A., Hooper D. C. Circadian variation in oxidative stress markes in healthy and type II diabetic men. Chronobiol. Int. 2002; 19: 423–439
  • Kapinya K. J., Harms U., Harms C., Blei K., Katchanov J., Dirnagl U., Hörtnagl H. Role of NAD(P)H: quinone oxidoreductase in the progression of neuronal cell death in vitro and following cerebral ischemia in vivo. J. Neurochem. 2003; 84: 1028–1039
  • Karasek M., Reiter R. J. Melatonin and aging. Neuroendocrinol. Lett. 2002; 23(1)14–16
  • Kelly F. J. Glutathione content of the small intestine: regulation and function. Br. J. Nutr. 1993; 69: 589–596
  • Kelly R. W., Amato F., Seamark R. F. N‐Acetyl‐5‐methoxy kynurenamine, a brain metabolite of melatonin, is a potent inhibitor of prostaglandin biosynthesis. Biochem. Biophys. Res. Commun. 1984; 121: 372–379
  • Kennaway D. J., Blake P., Webb H. A. A melatonin agonist and N‐acetyl‐N2‐formyl‐5‐methoxykynurenamine accelerate the reentrainment of the melatonin rhythm following a phase advance of the light‐dark cycle. Brain Res. 1989; 495: 349–354
  • Klarsfeld A., Rouyer F. Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J. Biol. Rhythms 1998; 13: 471–478
  • Kliebenstein D. J., Monde R.‐A., Last R. L. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 1998; 118: 637–650
  • Kocis J. M., Kuo W. N., Liu Y., Guruvadoo L. K., Langat J. L. Regulation of catalase. Inhibition by peroxynitrite and reactivation by reduced glutathione and glutathione S‐transferase. Front. Biosci. 2002; 7: a175–a180
  • Kotler M., Rodríguez C., Sáinz R. M., Antolín I., Menéndez‐Peláez A. Melatonin increases gene expression for antioxidant enzymes in brain cortex. J. Pineal Res. 1998; 24: 83–89
  • Kubo A., Saji H., Tanaka K., Kondo N. Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Molec. Biol. 1995; 29: 479–489
  • Kwon S. I., An C. S. Molecular cloning, characterization and expression analysis of a catalase cDNA from hot pepper (Capsicum annuum L.). Plant Sci. 2001; 160: 961–969
  • Lach H., Surowiak J., Dziubek K., Krawczyk S., Szaroma W. Cosinor analysis of diurnal changes of the reduced glutathione level in the blood, brain, liver and kidney of mice, induced by ACTH administration. Acta Biol. Hung. 1986; 37: 93–100
  • Lapenna D., De Gioia S., Mezzetti A., Porreca E., Ciofani G., Marzio L., Capani F., Di Ilio C., Cuccurullo F. Circadian variations in antioxidant defences and lipid peroxidation in the rat heart. Free Radic. Res. Commun. 1992; 17: 187–194
  • Lenaz G., Bovina C., D'Aurelio M., Fato R., Formiggini G., Genova M. L., Giuliano G., Merlo Pich M., Paolucci U., Castelli G. P., Ventura B. Role of mitochondria in oxidative stress and aging. Ann. N.Y. Acad. Sci. 2002; 959: 199–213
  • León J., Vives F., Crespo E., Camacho E., Espinosa A., Gallo M. A., Escames G., Acuña‐Castroviejo D. Modification of nitric oxide synthase activity and neuronal response in rat striatum by melatonin and kynurenine derivatives. J. Neuroendocrinol. 1998; 10: 297–302
  • Lesnikov V. A., Pierpaoli W. Pineal cross‐transplantation (old‐to‐young and vice versa) as evidence for an endogenous “aging clock”. Ann. N.Y. Acad. Sci. 1994; 719: 456–460
  • Li D. W., Spector A. Hydrogen peroxide‐induced expression of the proto‐oncogenes, c‐jun, c‐fos and c‐myc in rabbit lens epithelial cells. Mol. Cell. Biochem. 1997; 173: 59–69
  • Li J.‐C., Xu F. Influence of light‐dark shifting on the immune system, tumor growth and life span of rats, mice and fruit flies as well as on the counteraction of melatonin. Biol. Signals 1997; 6: 77–89
  • Li X. M., Metzger G., Filipski E., Boughattas N., Lemaigre G., Hecquet B., Filipski J., Levi F. Pharmacologic modulation of reduced glutathione circadian rhythms with buthionine sulfoximine: relationship with cisplatin toxicity in mice. Toxicol. Appl. Pharmacol. 1997; 143: 281–290
  • Liochev S. I., Fridovich I. Copper, zink superoxide dismutase and H2O2. Effects of bicarbonate on inactivation and oxidations of NADPH and urate, and on consumption of H2O2. J. Biol. Chem. 2002; 277: 34674–34678
  • Long D. J., II, Jaiswal A. K. NRH:quinone oxidoreductase 2 (NQO2). Chem.-Biol. Interact. 2000a; 29: 99–112
  • Long D. J., II, Jaiswal A. K. Mouse NRH:quinone oxidoreductase (NQO2): cloning of cDNA and gene- and tissue-specific expression. Gene 2000b; 252: 107–117
  • Long D. J., II, Iskander K., Gaikwad A., Arin M., Roop D.R., Knox R., Barrios R., Jaiswal A. K. Disruption of dihydronicotinamide riboside:quinone oxido‐ reductase 2 (NQO2) leads to myeloid hyperplasia of bone marrow and decreased sensitivity to menadione toxicity. J. Biol. Chem. 2002; 277: 46131–46139
  • Luo H., Guo H., Xiao J., Xue Z. Circadian variations of plasma SOD and MDA in healthy subjects. Hua Xi Yi Ke Da Xue Xue Bao 1997; 28: 401–403, [in Chinese; title translated]
  • Magnone M. C. Altered ROS metabolism in Per2 mutant mice. 54 Mosbacher Kolloquium “The Rhythm of Life: Molecular Mechanisms of Circadian Clocks”. 2003; 42, [DOI: 10.1240/sav_gbm_2003_m_00361]
  • Marheineke S., Hardeland R. Antioxidative enzymes of Drosophila melanogaster: time patterns in constant darkness. Biological Rhythms and Antioxidative Protection, R. Hardeland. Cuvillier, Göttingen 1997; 127–130
  • Martín M., Macías M., Escames G., Reiter R. J., Agapito M. T., Ortiz G. G., Acuña‐Castroviejo D. Melatonin‐induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J. Pineal Res. 2000; 28: 242–248
  • Martín M., Macías M., León J., Escames G., Khaldy H., Acuña‐Castroviejo D. Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int. J. Biochem. Cell Biol. 2002; 34: 348–357
  • Mastronardi C. A., Yu W. H., McCann S. M. Resting and circadian release of nitric oxide is controlled by leptin in male rats. Proc. Natl. Acad. Sci. USA 2002; 99: 5721–5726
  • Maurice D. V., Lightsey S. F., Hsu K. T., Rhoades J. F. Comparison of glutathione S‐transferase activity in the rat and birds: tissue distribution and rhythmicity in chicken (Gallus domesticus) liver. Comp. Biochem. Physiol. 1991; 100B: 471–474
  • McClung C. R. Regulation of catalases in Arabidopsis. Free Radic. Biol. Med. 1997; 23: 489–496
  • McClung C. R., Hsu M., Painter J. E., Gagne J. M., Karlsberg S. D., Salome P. A. Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiol. 2000; 123: 381–392
  • Merrow M., Roenneberg T. Circadian clocks: running on redox. Cell 2001; 106: 141–143
  • Messner M., Hardeland R., Rodenbeck A., Huether G. Tissue retention and subcellular distribution of continuously infused melatonin in rats under near physiological conditions. J. Pineal Res. 1998; 25: 251–259
  • Michael T. P., McClung C. R. Phase‐specific circadian clock regulatory elements in Arabidopsis. Plant Physiol. 2002; 130: 627–638
  • Mittag M. Circadian rhythms in microalgae. Int. Rev. Cytol. 2001; 206: 213–247
  • Mittag M., Li L., Hastings J. W. The mRNA level of the circadian regulated Gonyaulax luciferase remains constant over the cycle. Chronobiol. Int. 1998; 15: 93–98
  • Mori T., Johnson C. H. Circadian programming in cyanobacteria. Semin. Cell. Dev. Biol. 2001; 12: 271–278
  • Morrey K. M., McLachlan J. A., Serkin C. D., Bakouche O. Activation of human monocytes by the pineal hormone melatonin. J. Immunol. 1994; 153: 2671–2680
  • Morris J. E., Peraino C. Immunochemical studies of serine dehydratase and ornithine aminotransferase regulation in rat liver in vivo. J. Biol. Chem. 1976; 251: 2571–2578
  • Morse D., Milos P. M., Roux E., Hastings J. W. Circadian regulation of bioluminescence in Gonyaulax involves translational control. Proc. Natl. Acad. Sci. USA 1989; 86: 172–176
  • Mueller U., Hardeland R. Electrochemical destruction of melatonin. Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites, R. Hardeland. Cuvillier, Göttingen 2001; 62–65
  • Natelson B. H., Ottenweller J. E., Tapp W. N., Bergen M., Soldan S. Phototherapeutic effects in hamsters with heart disease. Physiol. Behav. 1996; 60: 463–468
  • Natelson B. H., Ottenweller J. E., Tapp W. N., Heung S., Beldowicz D. The pineal affects life span in hamsters with heart disease. Physiol. Behav. 1997; 62: 1059–1064
  • Nelson W., Halberg F. Schedule‐shifts, circadian rhythms and lifespan of freely‐feeding and meal‐fed mice. Physiol. Behav. 1986; 38: 781–788
  • Neuschwander‐Tetri B. A., Rozin T. Diurnal variability of cysteine and glutathione content in the pancreas and liver of the mouse. Comp. Biochem. Physiol. 1996; 114B: 91–95
  • Nierenberg D. W., Stukel T. Diurnal variation in plasma levels of retinol, tocopherol, and β‐carotene. Am. J. Med. Sci. 1987; 294: 187–190
  • North C., Feuers R. J., Scheving L. E., Pauly J. E., Tsai T. H., Casciano D. A. Circadian organization of thirteen liver and six brain enzymes of the mouse. Am. J. Anat. 1981; 162: 183–199
  • Nosjean O., Ferro M., Cogé F., Beauverger P., Henlin J.‐M., Lefoulon F., Fauchère J.‐L., Delagrange P., Canet E., Boutin J. A. Identification of the melatonin‐binding site MT3 as the quinone reductase 2. J. Biol. Chem. 2000; 275: 31311–31317
  • Nosjean O., Nicolas J. P., Klupsch F., Delagrange P., Canet E., Boutin J. A. Comparative parmacological studies of melatonin receptors: MT1, MT2 and MT3/QR2. Tissue distribution of MT3/QR2. Biochem. Pharmacol. 2001; 61: 1369–1379
  • Obst B., Hardeland R. The diurnal time patterns of Gonyaulax hemo‐, GSH‐ and haloperoxidase activities. Biological Rhythms and Antioxidative Protection, R. Hardeland. Cuvillier, Göttingen 1997; 28–33
  • O'Dell K. M. The effect of the inactive mutation on longevity, sex, rhythm and resistance to p‐cresol in Drosophila melanogaster. Heredity 1993; 70: 393–399
  • Okamoto O. K., Robertson D. L., Fagan T. F., Hastings J. W., Colepicolo P. Different regulatory mechanisms modulate the expression of a dinoflagellate iron‐superoxide dismutase. J. Biol. Chem. 2001; 276: 19989–19993
  • Okatani Y., Wakatsuki A., Shinohara K., Taniguchi K., Fukaya T. Melatonin protects against oxidative mitochondrial damage induced in rat placenta by ischemia and reperfusion. J. Pineal Res. 2001; 31: 173–178
  • Okatani Y., Wakatsuki A., Reiter R. J. Melatonin protects hepatic respiratory chain activity in senescence‐accelerated mice. J. Pineal Res. 2002a; 32: 143–148
  • Okatani Y., Wakatsuki A., Reiter R. J., Miyahara Y. Hepatic mitochondrial dysfunction in senescence‐accelerated mice: correction by long‐term, orally administered physiological levels of melatonin. J. Pineal Res. 2002b; 33: 127–133
  • Okatani Y., Wakatsuki A., Reiter R. J., Miyahara Y. Acutely administered melatonin restores hepatic mitochondrial physiology in old mice. Int. J. Biochem. Cell Biol. 2003; 35: 367–375
  • Oklejewicz M., Daan S. Enhanced longevity in tau mutant Syrian hamsters, Mesocricetus auratus. J. Biol. Rhythms 2002; 17: 210–216
  • O'Neill R. D. Uric acid levels and dopamine transmission in rat striatum: diurnal changes and effects of drugs. Brain Res. 1990; 507: 267–272
  • O'Neill R. D., Fillenz M. Circadian changes in extracellular ascorbate in rat cortex, accumbens, striatum and hippocampus: correlations with motor activity. Neurosci. Lett. 1985; 60: 331–336
  • O'Neill R. D., Fillenz M., Albery W. J. Circadian changes in homovanillic acid and ascorbate levels in the rat striatum using microprocessor‐controlled voltammetry. Neurosci. Lett. 1982; 34: 189–193
  • Organisciak D. T., Darrow R. M., Barsalou L., Kutty R. K., Wiggert B. Circadian‐dependent retinal light damage in rats. Invest. Ophthalmol. Vis. Sci. 2000; 41: 3694–3701
  • Ouyang Y., Andersson C. R., Kondo T., Golden S. S., Johnson C. H. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. USA 1998; 95: 8660–8664
  • Ozawa T. Genetic and functional changes in mitochondria associated with aging. Physiol. Rev. 1997; 77: 425–464
  • Pablos M. I., Agapito M. T., Gutierrez R., Recio J. M., Reiter R. J., Barlow‐Walden L., Acuña‐Castroviejo D., Menendez‐Pelaez A. Melatonin stimulates the activtiy of the detoxifying enzyme glutathione peroxidase in several tissues of chicks. J. Pineal Res. 1995a; 19: 111–115
  • Pablos M. I., Chuang J., Reiter R. J., Ortiz G. G., Daniels W. M., Sewerynek E., Melchiorri D., Poeggeler B. Time course of the melatonin‐induced increase in glutathione peroxidase activity in chick tissues. Biol. Signals 1995b; 4: 326–330
  • Pablos M. I., Reiter R. J., Ortiz G. G., Guerrero J. M., Agapito M. T., Chuang J. I., Sewerynek E. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem. Int. 1998; 32: 69–75
  • Pape C., Hardeland R. Diurnal rhythm of hydrogen peroxide release by Gonyaulax polyedra. Studies on Antioxidants and Their Metabolites, R. Hardeland. Cuvillier, Göttingen 1999a; 14–22
  • Pape C., Hardeland R. Detoxification of hydrogen peroxide in Gonyaulax polyedra: remarkable capacity for elimination of exogenous H2O2 and differences between cells kept in constant light and constant darkness. Studies on Antioxidants and Their Metabolites, R. Hardeland. Cuvillier, Göttingen 1999b; 28–34
  • Penev P. D., Kolker D. E., Zee P. C., Turek F. W. Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart diseases. Am. J. Physiol. 1998; 275: H2334–H2337
  • Pittendrigh C. S., Minis D. H. Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1972; 69: 1537–1539
  • Poeggeler B. Vergleichende Untersuchungen über Melatonin und strukturverwandte Tryptophanmetabolite. Zur Rolle von Melatonin und 5‐Methoxytryptamin bei einem Dinoflagellaten, Gonyaulax polyedra, sowie pinealen und extrapinealen 5‐methoxylierten Indolaminen bei Vertebraten. University of Göttingen. 1992, Doctoral thesis
  • Poeggeler B., Balzer I., Hardeland R., Lerchl A. Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften 1991; 78: 268–269
  • Poeggeler B., Reiter R. J., Hardeland R., Tan D.‐X., Barlow‐Walden L. R. Melatonin and structurally‐related, endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox Rep. 1996; 2: 179–184
  • Poeggeler B., Thuermann S., Dose A., Schoenke M., Burkhardt S., Hardeland R. Melatonin's unique radical scavenging properties–roles of its functional substituents as revealed by a comparison with its structural analogs. J. Pineal Res. 2002; 33: 20–30
  • Polidoros A. N., Scandalios J. G. Response of the maize catalases to light. Free Radic. Biol. Med. 1997; 23: 497–504
  • Polidoros A. N., Scandalios J. G. Circadian expression of the maize catalase Cat3 gene is highly conserved among diverse maize genotypes with structurally different promoters. Genetics 1998; 149: 405–415
  • Pozo D., Reiter R. J., Calvo J. R., Guerrero J. M. Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci. 1994; 55: PL455–PL460
  • Pozo D., Reiter R. J., Calvo J. R., Guerrero J. M. Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J. Cell. Biochem. 1997; 65: 430–442
  • Pu S., Kalra P. S., Kalra S. P. Diurnal rhythm in cyclic GMP/nitric oxide efflux in the medial preoptic area of male rats. Brain Res. 1998; 808: 310–312
  • Radha E., Halberg F. Rhythms of isolated platelet glutathione, aging, and the internal evolution of species. Prog. Clin. Biol. Res. 1987; 2227A: 173–180
  • Redinbaugh M. G., Sabre M., Scandalios J. G. Expression of the maize Cat3 catalase gene is under the influence of a circadian rhythm. Proc. Natl. Acad. Sci. USA 1990; 87: 6853–6857
  • Reiter R. J. Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol. 1998; 56: 359–384
  • Reiter R. J. Circadian aspects of the cellular redox state: melatonin actions and implications for oncogenesis. Variations in melatonin and redox state. The Redox State and Circadian Rhythms, T. Vanden Driessche, J.‐L. Guisset, G. Petiau‐de Vries. Kluwer, Dordrecht–Boston–London 2000; 141–161
  • Reiter R. J. Potential biological consequences of excessive light exposure: melatonin suppression, DNA damage, cancer and neurodegenerative diseases. Neuroendocrinol. Lett. 2002; 23(suppl. 2)9–13
  • Reiter R. J., Tan D.‐X., Burkhardt S. Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech. Ageing Dev. 2002a; 123: 1007–1019
  • Reiter R. J., Tan D.‐X., Manchester L. C., El-Sawi M. R. Melatonin reduces oxidant damage and promotes mitochondrial respiration: implications for aging. Ann. N.Y. Acad. Sci. 2002b; 959: 238–250
  • Reiter R. J., Tan D.‐X., Mayo J. C., Sainz R. M., Lopez-Burillo S. Melatonin, longevity and health in the aged: an assessment. Free Radic. Res. 2002c; 36: 1323–1329
  • Reiter R. J., Tan D.‐X., Sainz R. M., Mayo J. C., Lopez‐Burillo S. Melatonin: reducing the toxicity and increasing the efficacy of drugs. J. Pharm. Pharmacol. 2002d; 54: 1299–1321
  • Ressmeyer A.‐R., Mayo J. C., Zelosko V., Sáinz R. M., Tan D.‐X., Poeggeler B., Antolín I., Zsizsik B. K., Reiter R. J., Hardeland R. Antioxidant properties of the melatonin metabolite N1‐acetyl‐5‐methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep., in press, 2003
  • Rodríguez C., Mayo J. C., Sainz R. M. Apoptotic signals: possible implication of circadian rhythms. The Redox State and Circadian Rhythms, T. Vanden Driessche, J.‐L. Guisset, G. Petiau‐de Vries. Kluwer, Dordrecht–Boston–London 2000; 203–233
  • Rogério F., de Souza Queiroz L., Teixeira S. A., Oliveira A. L., de Nucci G., Langone F. Neuroprotective action of melatonin on neonatal rat motoneurons after sciatic nerve transection. Brain Res. 2002; 926: 33–41
  • Rosbach M., Takahashi J. S. Circadian rhythms: the cancer connection. Nature 2002; 420: 373–374
  • Rutter J. PAS domains and metabolic status signaling. Science 2002; 298: 1567–1568
  • Rutter J., Reick M., Wu L. C., McKnight S. L. Regulation of Clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001; 293: 510–514
  • Sáenz D. A., Turjanski A. G., Sacca G. B., Marti M., Doctorovich F., Keller Sarmiento M. I., Estrin D. A., Rosenstein R. E. Physiological concentrations of melatonin inhibit the nitridergic pathway in the Syrian hamster retina. J. Pineal Res. 2002; 33: 31–36
  • Samis H. V., Rubenstein B. J., Zajac L. A., Hargen S. M. Temporal organization and aging in Drosophila melanogaster. Exp. Gerontol. 1981; 16: 109–117
  • Sawada M., Enesco H. E. The effect of light, dark or altered circadian cycle on the lifespan of the rotifer Asplanchna brightwelli. Exp. Gerontol. 1984; 19: 335–343
  • Scapagnini G., D'Agata V., Calabrese V., Pascale A., Colombrita C., Alkon D., Cavallaro S. Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res. 2002; 954: 51–59
  • Schaper U., Hölig K., Weber A., Scheuch D. W. Tageszeitliche Veränderungen der Aktivität der Superoxiddismutase (EC 1.15.1.1). und der Malondialdehydkonzentration im Gehirn und Striatum der Ratte. Z. Med. Lab. Diagn. 1986; 27: 50–51
  • Schnell R. C., Bozigian H. P., Davies M. H., Merrick B. A., Johnson K. L. Circadian rhythm in acetaminophen toxicity: role of nonprotein sulfhydryls. Toxicol. Appl. Pharmacol. 1983; 71: 353–361
  • Schnell R. C., Bozigian H. P., Davies M. H., Merrick B. A., Park K. S., McMillan D. A. Factors influencing circadian rhythms in acetaminophen lethality. Pharmacology 1984; 29: 149–157
  • Schuhmacher M., Kohlhuber F., Hölzel M., Kaiser C., Burtscher H., Jarsch M., Bornkamm G. W., Laux G., Polack A., Weidle U. H., Eick D. The transcription program of a human B cell line in response to Myc. Nucleic Acids Res. 2001; 29: 397–406
  • Sharman E. H., Bondy S. C. Effects of age and dietary antioxidants on cerebral electron transport chain activity. Neurobiol. Aging 2001; 22: 629–634
  • Sheeba V., Sharma V. K., Shubba K., Chandrashekaran M. K., Joshi A. The effect of different light regimes on adult life span in Drosophila melanogaster is partly mediated through reproductive output. J. Biol. Rhythms 2000; 15: 380–392
  • Shigenaga M. K., Hagen T. M., Ames B. A. Oxidative damage and mitochondrial decay in aging. Proc. Natl Acad. Sci. USA 1994; 91: 10771–10778
  • Singh R. K., Bansal A. Studies on circadian periodicity of serum and urinary urate in healthy Indians and renal stone formers. Prog. Clin. Biol. Res. 1987; 227B: 305–313
  • Skrzypinska‐Gawrysiak M., Piotrowski J. K., Bruchajzer E. The diurnal rhythm of hepatotoxic action of chloroform. Int. J. Ocup. Med. Environ. Health 1995; 8: 115–121
  • Skrzypinska‐Gawrysiak M., Piotrowski J. K., Sporny S. Circadian variations in hepatotoxicity of carbon tetrachloride in mice. Int. J. Occup. Med. Environ. Health 2000; 13: 165–173
  • Smaaland R., Sothern R. B., Laerum O. D., Abrahamsen J. F. Rhythms in human bone marrow and blood cells. Chronobiol. Int. 2002; 19: 101–127
  • Squadrito G. L., Pryor W. A. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med. 1998; 25: 392–403
  • Starkey S. J. Melatonin and 5‐hydroxytryptamine phase‐advance the rat circadian clock by activation of nitric oxide synthesis. Neurosci. Lett. 1996; 211: 199–202
  • Storr M., Koppitz P., Sibaev A., Saur D., Kurjak M., Franck H., Schusdziarra V., Allescher H.‐D. Melatonin reduces non‐adrenergic, non‐cholinergic relaxant neurotransmission by inhibition of nitric oxide synthase activity in the gastrointestinal tract of rodents in vitro. J. Pineal Res. 2002; 33: 101–108
  • Strassburg A., Strassburg C. P., Manns M. P., Tukey R. H. Differential gene expression of NAD(P)H:quinone oxidoreductase and NRH:quinone oxidoreductase in human hepatocellular and biliary tissue. Mol. Pharmacol. 2002; 61: 320–325
  • Suplotov S. N., Barkova E. N. Diurnal and seasonal rhythms of lipid peroxides and superoxide dismutase in the erythrocytes of inhabitants of middle‐latitude regions and the extreme north. Lab. Delo. 1986, 8: 459–463, [in Russian; title translated]
  • Tan D.‐X. Interrelationships between Melatonin and Oxidative Stress: Mechanistic Studies of the Reactions of Melatonin and its Metabolites with Free Radicals. Cuvillier, Göttingen 2002
  • Tan D. X., Chen L.‐D., Poeggeler B., Manchester L. C., Reiter R. J. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr. J. 1993; 1: 57–60
  • Tan D.‐X., Manchester L. C., Burkhardt S., Sainz R. M., Mayo J. C., Kohen R., Shohami E., Huo Y.‐S., Hardeland R., Reiter R. J. N1‐acetyl‐ N2‐formyl‐5‐methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J. 2001; 15: 2294–2296
  • Tan D.‐X., Reiter R. J., Manchester L. C., Yan M. T., El‐Sawi M., Sainz R. M., Mayo J. C., Kohen R., Allegra M., Hardeland R. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2002; 2: 181–197
  • Tan D.‐X., Hardeland R., Manchester L. C., Poeggeler B., Lopez‐Burillo S., Mayo J. C., Sainz R. M., Reiter R. J. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J. Pineal Res. 2003; 34: 249–259
  • Tomás‐Zapico C., Coto‐Montes A., Martínez‐Fraga J., Rodríguez‐Colunga M. J., Hardeland R., Tolivia D. Effects of δ‐aminolevulinic acid and melatonin in the Harderian gland of female Syrian hamster. Free Radic. Biol. Med. 2002; 32: 1197–1204
  • Tsunada S., Iwakiri R., Noda T., Fujimoto K., Fuseler J., Rhoads C. A., Aw T. Y. Chronic exposure to subtoxic levels of peroxidized lipids suppresses mucosal cell turnover in rat small intestine and reversal by glutathione. Dig. Dis. Sci. 2003; 48: 210–222
  • Tunçtan B., Weigl Y., Dotan A., Peleg L., Zengil H., Ashkenazi I., Abaciogˇlu N. Circadian variation of nitric oxide synthase activity in mouse tissue. Chronobiol. Int. 2002; 19: 393–404
  • Tunón M. J., González P., López P., Salido G. M., Madrid J. A. Circadian rhythms in glutathione and glutathione‐S transferase activity of rat liver. Arch. Int. Physiol. Biochim. Biophys. 1992; 100: 83–87
  • Uludagˇ O., Tunçtan B., Güney H. Z., Uluogˇlu C., Altugˇ S., Zengil H., Abaciogˇlu N. Temporal variation in serum nitrite levels in rats and mice. Chronobiol. Int. 1999; 16: 527–532
  • Valencia E., Marin A., Hardy G. Circadian rhythmicity of whole‐blood glutathione in healthy subjects. Nutrition 2001; 17: 731–733
  • Volknandt W., Hardeland R. Circadian rhythmicity of protein synthesis in the dinoflagellate, Gonyaulax polyedra: a biochemical and radioautographic investigation. Comp. Biochem. Physiol. 1984; 77B: 493–500
  • Warskulat U., Görg B., Bidmon H. J., Müller H. W., Schliess F., Häussinger D. Ammonia‐induced heme oxygenase‐1 expression in cultured rat astrocytes and rat brain in vivo. Glia 2002; 40: 324–336
  • Weinzierl M., Mautes A. E., Lin Y., Noble L. J. Attenuated induction of heme oxygenase after intrathecal exposure to lysed blood in mice overexpressing superoxide dismutase. Neurosci. Lett. 2003; 336: 13–16
  • Went F. W. Photo‐ and thermoperiodic effects in plant growth. Cold Spr. Harb. Symp. Quant. Biol. 1960; 25: 221–230
  • White B. P., Davies M. H., Schnell R. C. Circadian variations in hepatic glutathione content, γ‐glutamylcysteine synthetase and γ‐glutamyl transferase activities in mice. Toxicol. Lett. 1987; 35: 217–223
  • Willekens H., Langebartels C., Tire C., Van Montagu M., Inze D., Van Camp W. Differential expression of catalase genes in Nicotiana plumbaginifolia. Proc. Natl. Acad. Sci. USA 1994; 91: 10450–10454
  • Witt‐Enderby P. A., Bennett J., Jarzynska M. J., Firestine S., Melan M. A. Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci. 2003; 72: 2183–2198
  • Wong P. S., Eiserich J. P., Reddy S., Lopez C. L., Cross C. E., van der Vliet A. Inactivation of glutathione S‐transferases by nitric oxide‐derived oxidants: exploring a role for tyrosine nitration. Arch. Biochem. Biophys. 2001; 394: 216–228
  • Xiao T., Choudhary S., Zhang W., Ansari N. H., Salahudeen A. Possible involvement of oxidative stress in cisplatin‐induced apoptosis in LLC‐PK1 cells. J. Toxicol. Environ. Health A 2003; 66: 469–479
  • Zhao Q., Yang X. L., Holtzclaw D., Talalay P. Unexpected genetic and structural relationships of a long‐forgotten flavoenzyme to NAD(P)H:quinone reductase (DT‐diaphorase). Proc. Natl. Acad. Sci. USA 1997; 94: 1669–1674
  • Zhong H. H., McClung C. R. The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Molec. Gen. Genet. 1996; 251: 196–203
  • Zhong H. H., Young J. C., Pease E. A., Hangarter R. P., McClung C. R. Interactions between light and the circadian clock in the regulation of CAT2 expression in Arabidopsis. Plant Physiol. 1994; 104: 889–898
  • Zhong H. H., Resnick A. S., Straume M., McClung C. R. Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock‐regulated catalase expression. Plant Cell 1997; 9: 947–955
  • Zhong H. H., Painter J. E., Salome P. A., Straume M., McClung C. R. Imbibition, but not release from stratification, sets the circadian clock in Arabidopsis seedlings. Plant Cell 1998; 10: 2005–2017
  • Zsizsik B. K., Hardeland R. The diurnal time patterns of tryptophan: 2‐oxoglutarate aminotransferase and kynurenine:2‐oxoglutarate aminotransferase activities in Gonyaulax polyedra. Biological Rhythms and Antioxidative Protection, R. Hardeland. Cuvillier, Göttingen 1997; 40–44
  • Zsizsik B. K., Hardeland R. Light‐dependent diurnal rhythmicity of kynurenic acid release by Lingulodinium polyedrum supplied with L‐kynurenine. Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites, R. Hardeland. Cuvillier, Göttingen 2001a; 187–92
  • Zsizsik B. K., Hardeland R. Formation of kynurenic acid from L‐kynurenine in light‐exposed homogenates of Lingulodinium polyedrum: effects of CCCP, paraquat and DCMU. Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites, R. Hardeland. Cuvillier, Göttingen 2001b; 193–196
  • Zsizsik B. K., Hardeland R. Formation of kynurenic and xanthurenic acids from kynurenine and 3‐hydroxykynurenine in the dinoflagellate Lingulodinium polyedrum: role of a novel, oxidative pathway. Comp. Biochem. Physiol. 2002; 133C: 383–392

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.