Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 22, 2005 - Issue 2
383
Views
69
CrossRef citations to date
0
Altmetric
Review

Ontogenetic Development of the Mammalian Circadian System

Pages 179-205 | Published online: 07 Jul 2009

References

  • Abe H., Honma S., Namihira M., Masubuchi S., Honma K. Behavioural rhythm splitting in the CS mouse is related to clock gene expression outside the suprachiasmatic nucleus. Eur. J. Neurosci. 2001a; 14: 1121–1128
  • Abe H., Honma S., Namihira M., Masubuchi S., Ikeda M., Ebihara S., Honma K. Clock gene expressions in the suprachiasmatic nucleus and other areas of the brain during rhythm splitting in CS mice. Mol. Brain Res. 2001b; 87: 92–99
  • Abrin E. N. Diurnal rhythm of mitosis in several organs of ten week old human fetuses. [Russian]. Biulleten Eksperimentalnoi Biologii i Meditsiny 1969; 67: 100–102
  • Ader R., Grota L. J. Rhythmicity in the maternal behaviour of Rattus norvegicus. Anim. Behav. 1970; 18: 144–150
  • Alberts J. R., Brunjes P. C. Ontogeny of thermal and olfactory determinants of huddling in the rat. J. Comp. Physiol. Psychol. 1978; 92: 897–906
  • Albrecht U. The mammalian circadian clock: a network of gene expression. Front. Biosci. 2004; 9: 48–55
  • Albrecht U., Zheng B., Larkin D., Sun Z. S., Lee C. C. MPer1 and Mper2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms 2001; 16: 100–104
  • Arduini D., Rizzo G., Parlati E., Giorlandino C., Valensise H., Dell'Acqua S., Romanini C. Modifications of ultradian and circadian rhythms of fetal heart rate after fetal‐maternal adrenal gland suppression: a double blind study. Prenatal Diag. 1986; 6: 409–417
  • Balsalobre A. Clock genes in mammalian peripheral tissues. Cell Tissue Res. 2002; 309: 193–199
  • Balsalobre A., Damiola F., Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998; 93: 929–937
  • Bartness T. J., Song C. K., Demas G. E. SCN efferents to peripheral tissues: implications for biological rhythms. J. Biol. Rhythms. 2001; 16: 196–204
  • Bender M., Drago J., Rivkees S. A. D1 receptors mediate dopamine action in the fetal suprachiasmatic nuclei: studies of mice with targeted deletion of the D1 dopamine receptor gene. Mol. Brain Res. 1997; 49: 271–277
  • Bendova Z., Sumova A., Illnerova H. Development of circadian rhythmicity and photoperiodic response in subdivisions of the rat suprachiasmatic nucleus. Develop. Brain Res. 2004; 148: 105–112
  • Berson D. M., Dunn F. A., Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070–1073
  • Best J. D., Maywood E. S., Smith K. L., Hastings M. H. Rapid resetting of the mammalian circadian clock. J. Neurosci. 1999; 19: 828–835
  • Brandon D. H., Holditch‐Davis D., Belyea M. Preterm infants born at less than 31 weeks' gestation have improved growth in cycled light compared with continuous near darkness. J. Pediatr. 2002; 140: 192–199
  • Bronstein D. M., Haak K. A., Torres G., Lytle L. D. Light‐induced changes in pineal gland N‐acetyltransferase activity: Developmental aspects. Neuroendocrinol. 1990; 51: 139–146
  • Brown R. L., Robinson P. R. Melanopsin‐shedding light on the elusive circadian photopigment. Chronobiol. Int. 2004; 20: 189–204
  • Brown S. A., Zumbrunn G., Fleury‐Olela F., Preitner N., Schibler U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 2002; 12: 1574–1583
  • Cambras T., Canal M. M., Torres A., Vilaplana J., Diez‐Noguera A. Manifestation of circadian rhythm under constant light depends on lighting conditions during lactation. Am. J. Physiol. 1997; 272: R1039–R1046
  • Canal‐Corretger M. M., Cambras T., Vilaplana J., Diez‐Noguera A. Bright light during lactation alters the functioning of the circadian system of adult rats. Am. J. Physiol. 2000; 278: R201–R208
  • Canal‐Corretger M. M., Vilaplana J., Cambras T., Diez‐Noguera A. Functioning of the rat circadian system is modified by light applied in critical postnatal days. Am. J. Physiol. 2001; 280: R1023–R1030
  • Canal‐Corretger M. M., Cambras T., Diez‐Noguera A. Effect of light during lactation on the phasic and tonic responses of the rat pacemaker. Chronobiol. Int. 2003; 20: 21–35
  • Cheng M. Y., Bullock C. M., Li C., Lee A. G., Bermak J. C., Belluzzi J., Weaver D. R., Leslie F. M., Zhou Q. Y. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 2002; 417: 405–410
  • Colwell C. S., Foster R. G. Photic regulation of fos‐like immunoreactivity in the suprachiasmatic nucleus of the mouse. J. Comp. Neurol. 1992; 324: 135–142
  • Crossland W. J., Uchwat C. J. Neurogenesis in the central visual pathways of the golden hamster. Brain Res. 1982; 281: 99–103
  • Damiola F., Le Minh N., Preitner N., Kornmann B., Fleury‐Olela F., Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Develop. 2000; 14: 2950–2961
  • Davis F. C. Ontogeny of circadian rhythms. Biological rhythms, J. Aschoff. Plenum Press, New York 1981; 257–274
  • Davis F. C., Gorski R. A. Development of hamster circadian rhythms: role of the maternal suprachiasmatic nucleus. J. Comp. Physiol. A. 1988; 162: 601–610
  • Davis F. C., Mannion J. Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. Am. J. Physiol. 1988; 255: R439–R448
  • de Vries J. I., Visser G. H., Mulder E. J., Prechtl H. F. Diurnal and other variations in fetal movement and heart rate patterns at 20–22 weeks. Early Human Develop. 1987; 15: 333–348
  • Deguchi T. Ontogenesis of a biological clock for serotonin: acetyl coenzyme A N‐acetyltransferase in pineal gland of rat. Proc. Natl. Acad. Sci. USA 1975; 72: 2814–2818
  • Dent G. W., Okimoto D. K., Smith M. A., Levine S. Stress‐induced alterations in corticotropin‐releasing hormone and vasopressin gene expression in the paraventricular nucleus during ontogeny. Neuroendocrinol. 2000a; 71: 333–342
  • Dent G. W., Smith M. A., Levine S. Rapid induction of corticotropin‐releasing hormone gene transcription in the paraventricular nucleus of the developing rat. Endocrinol. 2000b; 141: 1593–1598
  • Dudley C. A., Erbel‐Sieler C., Estill S. J., Reick M., Franken P., Pitts S., McKnight S. L. Altered patterns of sleep and behavioral adaptability in NPAS2‐deficient mice. Science 2003; 301: 379–383
  • Duffield G. E., Ebling F. J. Maternal entrainment of the developing circadian system in the Siberian hamster (Phodopus sungorus). J. Biol. Rhythms 1998; 13: 315–329
  • Duffield G. E., Dickerson J. M., Alexander I. H., Ebling F. J. Ontogeny of a photic response in the suprachiasmatic nucleus in the siberian hamster (Phodopus sungorus). Eur. J. Neurosci. 1995; 7: 1089–1096
  • Duncan M. J., Davis F. C. Developmental appearance and age related changes in specific 2‐[125I]iodomelatonin binding sites in the suprachiasmatic nuclei of female Syrian hamsters. Develop. Brain Res. 1993; 73: 205–212
  • Duncan M. J., Banister M. J., Reppert S. M. Developmental appearance of light‐dark entrainment in the rat. Brain Res. 1986; 369: 326–330
  • Ferber S. G., Laudon M., Kuint J., Weller A., Zisapel N. Massage therapy by mothers enhances the adjustment of circadian rhythms to the nocturnal period in full‐term infants. J. Develop. Behav. Pediatr. 2002; 23: 410–415
  • Ferguson S. A., Rowe S. A., Krupa M., Kennaway D. J. Prenatal exposure to the dopamine agonist SKF‐38393 disrupts the timing of the initial response of the suprachiasmatic nucleus to light. Brain Res. 2000; 858: 284–289
  • Field M. D., Maywood E. S., O'Brien J. A., Weaver D. R., Reppert S. M., Hastings M. H. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron. 2000; 25: 437–447
  • Freedman M. S., Lucas R. J., Soni B., von Schantz M., Munoz M., David‐Gray Z., Foster R. Regulation of mammalian circadian behavior by non‐rod, non‐cone, ocular photoreceptors. Science 1999; 284: 502–504
  • Fuchs J. L., Moore R. Y. Development of circadian rhythmicity and light responsiveness in the rat suprachiasmatic nucleus: a study using the 2‐deoxy[1‐14C]glucose method. Proc. Natl. Acad. Sci. USA 1980; 77: 1204–1208
  • Ginty D. D., Kornhauser J. M., Thompson M. A., Bading H., Mayo K. E., Takahashi J. S., Greenberg M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 1993; 260: 238–241
  • Grosse J., Davis F. C. Melatonin entrains the restored circadian activity rhythms of syrian hamsters bearing fetal suprachiasmatic nucleus grafts. J. Neurosci. 1998; 18: 8032–8037
  • Grosse J., Davis F. C. Transient entrainment of a circadian pacemaker during development by dopaminergic activation in syrian hamsters. Brain Res. Bull. 1999; 48: 185–194
  • Grosse J., Velickovic A., Davis F. C. Entrainment of Syrian hamster circadian activity rhythms by neonatal melatonin injections. Am. J. Physiol. 1996; 270: R533–R540
  • Gubin G. D., Weinert D. Biorhythms and Age. [Russian]. Uspekhi Fiziologicheskikh Nauk. 1991; 22: 77–96
  • Hara R., Wan K., Wakamatsu H., Aida R., Moriya T., Akiyama M., Shibata S. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 2001; 6: 269–278
  • Hastings M. H., Ebling F. J., Grosse J., Herbert J., Maywood E. S., Mikkelsen J. D., Sumova A. Immediate‐early genes and the neural bases of photic and non‐photic entrainment. Ciba Foundation Symposium 1995; 183: 175–189
  • Hastings M. H., Duffield G. E., Smith E. J., Maywood E. S., Ebling F. J. Entrainment of the circadian system of mammals by nonphotic cues. Chronobiol. Int. 1998; 15: 425–445
  • Hellbruegge T. The development of circadian rhythms in infants. Cold Spring Harbor Symp. Quan. Biol. 1960; 25: 311–323
  • Hellbruegge T., Lange J. E., Stehr K., Rutenfranz J. Circadian periodicity of physiological functions in different stages of infancy and childhood. Ann. New York Acad. Sci. 1964; 117: 361–373
  • Hiroshige T., Honma K., Watanabe K. Prenatal onset and maternal modifications of the circadian rhythm of plasma corticosterone in blind infantile rats. J. Physiol. 1982; 325: 521–532
  • Honma S., Honma K. I., Shirakawa T., Hiroshige T. Effects of elimination of maternal circadian rhythms during pregnancy on the postnatal development of circadian corticosterone rhythm in blinded infantile rats. Endocrinol. 1984a; 114: 44–50
  • Honma S., Honma K. I., Shirakawa T., Hiroshige T. Maternal phase setting of fetal circadian oscillation underlying the plasma corticosterone rhythm in rats. Endocrinol. 1984b; 114: 1791–1796
  • Honma K., Honma S., Shirakawa T., Hiroshige T. Phase setting of circadian locomotor rhythm of infant rats. Am. J. Physiol. 1987; 252: R256–R261
  • Kalsbeek A., Buijs R. M. Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res. 2002; 309: 109–118
  • Kaufman C. M., Menaker M. Ontogeny of light‐induced fos‐like immunoreactivity in the hamster suprachiasmatic nucleus. Brain Res. 1994; 633: 162–166
  • Kennaway D. J. Programming of the fetal suprachiasmatic nucleus and subsequent adult rhythmicity. Trends Endocrinol. Metabol. 2002; 13: 398–402
  • King D. P., Zhao Y., Sangoram A. M., Wilsbacher L. D., Tanaka M., Antoch M. P., Steeves T. D., Vitaterna M. H., Kornhauser J. M., Lowrey P. L., Turek F. W., Takahashi J. S. Positional cloning of the mouse circadian clock gene. Cell 1997; 89: 641–653
  • Kornhauser J. M., Nelson D. E., Mayo K. E., Takahashi J. S. Photic and circadian regulation of C‐fos gene expression in the hamster suprachiasmatic nucleus. Neuron 1990; 5: 127–134
  • Kramer A., Yang F. C., Snodgrass P., Li X., Scammell T. E., Davis F. C., Weitz C. J. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signalling. Novartis Foundation Symposium 2003; 253: 250–262
  • Kriegsfeld L. J., Korets R., Silver R. Expression of the circadian clock gene period 1 in neuroendocrine cells: an investigation using mice with a per1::GFP transgene. Eur. J. Neurosci. 2003; 17: 212–220
  • Leake R. D., Stegner H., Ross M. G., Ervin M. G., Oddie T. H., Fisher D. A. Diurnal variations in plasma arginine vasotocin (AVT) concentrations in the ovine fetus. Life Sci. 1986; 38: 1485–1490
  • Leard L. E., Macdonald E. S., Heller H. C., Kilduff T. S. Ontogeny of photic‐induced C‐fos MRNA expression in rat suprachiasmatic nuclei. Neuroreport. 1994; 5: 2683–2687
  • Leon M. Dietary control of maternal pheromone in the lactating rat. Physiol. Behav. 1975; 14: 311–319
  • LeSauter J., Silver R. Output signals of the SCN. Chronobiol. Int. 1998; 15: 535–550
  • Levin R., Levine S. Development of circadian periodicity in base and stress levels of corticosterone. Am. J. Physiol. 1975; 229: 1397–1399
  • Levin R., Stern J. M. Maternal influences on ontogeny of suckling and feeding rhythms in the rat. J. Comp. Physiol. Psychol. 1975; 89: 711–721
  • Malorni W., Oliverio A. Imprinting to light‐dark cycles or rearing in constant light affect circadian locomotor rhythm of mice. Neurosci. Lett. 1978; 9: 93–96
  • Maywood E. S., Mrosovsky N., Field M. D., Hastings M. H. Rapid down‐regulation of mammalian period genes during behavioral resetting of the circadian clock. Proc. Natl. Acad. Sci. USA. 1999; 96: 15211–15216
  • McMillen I. C., Nowak R. Maternal pinealectomy abolishes the diurnal rhythm in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation. J. Endocrinol. 1989a; 120: 459–464
  • McMillen I. C., Nowak R. The pre‐ and postnatal development of hormonal circadian rhythms. Baillieres Clin. Endocrinol. Metabol. 1989b; 3: 707–721
  • McMillen I. C., Thorburn G. D., Walker D. W. Diurnal variations in plasma concentrations of cortisol, prolactin, growth hormone and glucose in the fetal sheep and pregnant ewe during late gestation. J. Endocrinol. 1987; 114: 65–72
  • Meaney M. J. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Ann. Rev. Neurosci. 2001; 24: 1161–1192
  • Menaker M. Circadian rhythms. Circadian photoreception. Science 2003; 299: 213–214
  • Mirmiran M., Swaab D. F., Kok J. H., Hofman M. A., Witting W., Van Gool W. A. Circadian rhythms and the suprachiasmatic nucleus in perinatal development, aging and alzheimer's disease. Progr. Brain Res. 1992; 93: 151–162
  • Moore R. Y. Development of the suprachiasmatic nucleus. Suprachiasmatic Nucleus: The Mind's Clock, D. C. Klein, R. Y. Moore, S. M. Reppert. Oxford Univ. Press, New York 1991; 391–404
  • Moore R. Y., Silver R. Suprachiasmatic nucleus organization. Chronobiol. Int. 1998; 15: 475–487
  • Moore R. Y., Speh J. C., Leak R. K. Suprachiasmatic nucleus organization. Cell Tissue Res. 2002; 309: 89–98
  • Morin L. P. The circadian visual system. Brain Res.‐Brain Res. Rev. 1994; 19: 102–127
  • Mrosovsky N. Beyond the suprachiasmatic nucleus. Chronobiol. Int. 2003; 20: 1–8
  • Mrosovsky N., Edelstein K., Hastings M. H., Maywood E. S. Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): implications for nonphotic phase shifting. J. Biol. Rhythms 2001; 16: 471–478
  • Munoz L. M., Huerta J. J., Cernuda‐Cernuda R., Garcia‐Fernandez J. M. Ontogeny of a photic response in the retina and suprachiasmatic nucleus in the mouse. Develop. Brain Res. 2000; 120: 1–6
  • Nuesslein B., Schmidt I. Development of circadian cycle of core temperature in juvenile rats. Am. J. Physiol. 1990; 259: R270–R276
  • Obrietan K., Impey S., Storm D. R. Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nature Neurosci. 1998; 1: 693–700
  • Obrietan K., Impey S., Smith D., Athos J., Storm D. R. Circadian regulation of camp response element‐mediated gene expression in the suprachiasmatic nuclei. J. Biol. Chem. 1999; 274: 17748–17756
  • Ohta H., Honma S., Abe H., Honma K. Effects of nursing mothers on RPer1 and RPer2 circadian expressions in the neonatal rat suprachiasmatic nuclei vary with developmental stage. Eur. J. Neurosci. 2002; 15: 1953–1960
  • Ohta H., Honma S., Abe H., Honma K. Periodic absence of nursing mothers phase‐shifts circadian rhythms of clock genes in the suprachiasmatic nucleus of rat pups. Eur. J. Neurosci. 2003; 17: 1628–1634
  • Patrick J., Campbell K., Carmichael L., Natale R., Richardson B. Patterns of human fetal breathing during the last 10 weeks of pregnancy. Obst. Gynecol. 1980; 56: 24–30
  • Peirano P., Algarin C., Uauy R. Sleep‐wake states and their regulatory mechanisms throughout early human development. J. Pediatr. 2003; 143: S70–S79
  • Petren T., Sollberger A. Developmental rhythms. The Cellular Aspects of Biorhythms, H. V. Mayersbach, Berlin 1967; 49–60
  • Porter R. H., Doane H. M. Maternal pheromone in the spiny mouse (Acomys cahirinus). Physiol. Behav. 1976; 16: 75–78
  • Rea M. A. Photic entrainment of circadian rhythms in rodents. Chronobiol. Int. 1998; 15: 395–423
  • Redman R. S., Sweney L. R. Changes in diet and patterns of feeding activity of developing rats. J. Nutrition 1976; 106: 615–626
  • Rensing L. Circadian rhythms in the course of ontogeny. Circadian Clocks, J. Aschoff. North‐Holland Publishing Company, Amsterdam 1965; 399–405
  • Reppert S. M., Schwartz W. J. Maternal coordination of the fetal biological clock in utero. Science 1983; 220: 969–971
  • Reppert S. M., Schwartz W. J. Functional activity of the suprachiasmatic nuclei in the fetal primate. Neurosci. Let. 1984a; 46: 145–149
  • Reppert S. M., Schwartz W. J. The suprachiasmatic nuclei of the fetal rat: characterization of a functional circadian clock using 14C‐labeled deoxyglucose. J. Neurosci. 1984b; 4: 1677–1682
  • Reppert S. M., Schwartz W. J. Maternal endocrine extirpations do not abolish maternal coordination of the fetal circadian clock. Endocrinol. 1986a; 119: 1763–1767
  • Reppert S. M., Schwartz W. J. Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system. J. Neurosci. 1986b; 6: 2724–2729
  • Reppert S. M., Uhl G. R. Vasopressin messenger ribonucleic acid in supraoptic and suprachiasmatic nuclei: appearance and circadian regulation during development. Endocrinol. 1987; 120: 2483–2487
  • Reppert S. M., Weaver D. R. Coordination of circadian timing in mammals. Nature 2002; 418: 935–941
  • Reppert S. M., Chez R. A., Anderson A., Klein D. C. Maternal‐fetal transfer of melatonin in the non‐human primate. Pediatr. Res. 1979; 13: 788–791
  • Reppert S. M., Coleman R. J., Heath H. W., Swedlow J. R. Pineal N‐acetyltransferase activity in 10‐day‐old rats: a paradigm for studying the developing circadian system. Endocrinol. 1984; 115: 918–925
  • Reppert S. M., Weaver D. R., Rivkees S. A., Stopa E. G. Putative melatonin receptors in a human biological clock. Science 1988; 242: 78–81
  • Rivkees S. A. Developing circadian rhythmicity in infants. Pediatr. 2003; 112: 373–381
  • Rivkees S. A. Emergence and influences of circadian rhythmicity in infants. Clin. Perinatol. 2004; 31: 217–228
  • Rivkees S. A., Lachowicz J. E. Functional D1 and D5 dopamine receptors are expressed in the suprachiasmatic, supraoptic, and paraventricular nuclei of primates. Synapse 1997; 26: 1–10
  • Rollag M. D., Berson D. M., Provencio I. Melanopsin, ganglion‐cell photoreceptors, and mammalian photoentrainment. J. Biol. Rhythms 2003; 18: 227–234
  • Rusak B., Robertson H. A., Wisden W., Hunt S. P. Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 1990; 248: 1237–1240
  • Rutter J., Reick M., McKnight S. L. Metabolism and the control of circadian rhythms. Ann. Rev. Biochem. 2002; 71: 307–331
  • Sakamoto K., Ishida N. Light‐induced phase‐shifts in the circadian expression rhythm of mammalian period genes in the mouse heart. Eur. J. Neurosci. 2000; 12: 4003–4006
  • Sakamoto K., Nagase T., Fukui H., Horikawa K., Okada T., Tanaka H., Sato K., Miyake Y., Ohara O., Kako K., Ishida N. Multitissue circadian expression of rat period homolog (RPer2) MRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J. Biol. Chem. 1998; 273: 27039–27042
  • Sakamoto K., Oishi K., Nagase T., Miyazaki K., Ishida N. Circadian expression of clock genes during ontogeny in the rat heart. Neuroreport. 2002; 13: 1239–1242
  • Schibler U., Sassone‐Corsi P. A Web of circadian pacemakers. Cell 2002; 111: 919–922
  • Schimmel M., Waterhouse J., Marques M. D., Weinert D. Circadian and Ultradian rhythmicities in very premature neonates maintained in incubators. Biol. Rhythm Res. 2002; 33: 83–111
  • Seron‐Ferre M., Torres C., Parraguez V. H., Vergara M., Valladares L., Forcelledo M. L., Constandil L., Valenzuela G. J. Perinatal neuroendocrine regulation. Development of the circadian time‐keeping system. Mol. Cell. Endocrinol. 2002; 186: 169–173
  • Shibata S., Moore R. Y. Development of neuronal activity in the rat suprachiasmatic nucleus. Brain Res. 1987; 431: 311–315
  • Shibata S., Moore R. Y. Development of a fetal circadian rhythm after disruption of the maternal circadian system. Brain Res. 1988; 469: 313–317
  • Shigeyoshi Y., Taguchi K., Yamamoto S., Takekida S., Yan L., Tei H., Moriya T., Shibata S., Loros J. J., Dunlap J. C., Okamura H. Light‐induced resetting of a mammalian circadian clock is associated with rapid induction of the MPer1 transcript. Cell 1997; 91: 1043–1053
  • Shimoda K., Hanada K., Yamada N., Takahashi K., Takahashi S. Periodic exposure to mother is potent zeitgeber of rat pups' rhythm. Physiol. Behav. 1986; 36: 723–730
  • Shimomura H., Moriya T., Sudo M., Wakamatsu H., Akiyama M., Miyake Y., Shibata S. Differential daily expression of per1 and Per2 MRNA in the suprachiasmatic nucleus of fetal and early postnatal mice. Eur. J. Neurosci. 2001; 13: 687–693
  • Silver R., LeSauter J., Tresco P. A., Lehman M. N. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 1996; 382: 810–813
  • Sitka U., Nagel F., Rumler W., Weinert D. The development of circadian periodicity of body temperature in newborns. [German]. Dt. Gesundh. wesen. 1984; 39: 1334–1339
  • Sitka U., Weinert D., Halberg F., Schuh J., Rumler W. Development of cardiovascular and temperature rhythms in neonates. Chronobiology & Chronomedicine. Basic Research and Applications, C. Gutenbrunner, G. Hildebrandt, R. Moog. Peter lang, Frankfurt am Main 1993; 70–76
  • Sitka U., Weinert D., Berle K., Rumler W., Schuh J. Investigations of the rhythmic function of heart rate, blood pressure and temperature in neonates. Eur. J. Pediatr. 1994; 153: 117–122
  • Sladek M., Sumova A., Kovacikova Z., Bendova Z., Laurinova K., Illnerova H. Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA. 2004; 101: 6231–6236
  • Smith G. K., Anderson V. Effects of maternal isolation on the development of activity rhythms in infant rats. Physiol. Behav. 1984; 33: 751–756
  • Speh J. C., Moore R. Y. Retinohypothalamic tract development in the hamster and rat. Develop. Brain Res. 1993; 76: 171–181
  • Spiers D. E. Nocturnal shifts in thermal and metabolic responses of the immature rat. J. Appl. Physiol. 1988; 64: 2119–2124
  • Stokkan K. A., Yamazaki S., Tei H., Sakaki Y., Menaker M. Entrainment of the circadian clock in the liver by feeding. Science 2001; 291: 490–493
  • Sugishita M., Takashima M., Takeuchi Y., Kato Y., Yamauchi T., Takahashi K. Periodic mother deprivation during the light period reversed the phase of serotonin N‐acetyltransferase activity rhythm of the pineal gland in rat pups. Pharmacol. Biochem. Behav. 1993; 46: 609–615
  • Takahashi K., Deguchi T. Entrainment of the circadian rhythms of blinded infant rats by nursing mothers. Physiol. Behav. 1983; 31: 373–378
  • Thiels E., Alberts J. R., Cramer C. P. Weaning in rats: II. Pup behavior patterns. Develop. Psychobiol. 1990; 23: 495–510
  • Thomas L., Drew J. E., Abramovich D. R., Williams L. M. The role of melatonin in the human fetus. Intl. J. Mol. Med. 1998; 1: 539–543
  • Vanecek J., Illnerova H. Effect of short and long photoperiods on pineal N‐acetyltransferase rhythm and on growth of testes and brown adipose tissue in developing rats. Neuroendocrinol. 1985; 41: 186–191
  • Visser G. H., Goodman J. D., Levine D. H., Dawes G. S. Diurnal and other cyclic variations in human fetal heart rate near term. Am. J. Obst. Gynecol. 1982; 142: 535–544
  • Viswanathan N. Maternal entrainment in the circadian activity rhythm of laboratory mouse (C57BL/6J). Physiol. Behav. 1999; 68: 157–162
  • Viswanathan N., Chandrashekaran M. K. Cycles of presence and absence of mother mouse entrain the circadian clock of pups. Nature 1985; 317: 530–531
  • Viswanathan N., Davis F. C. Single prenatal injections of melatonin or the D1‐dopamine receptor agonist SKF 38393 to pregnant hamsters sets the offsprings' circadian rhythms to phases 180 degrees apart. J. Comp. Physiol. A. 1997; 180: 339–346
  • Viswanathan N., Weaver D. R., Reppert S. M., Davis F. C. Entrainment of the fetal hamster circadian pacemaker by prenatal injections of the dopamine agonist SKF 38393. J. Neurosci. 1994; 14: 5393–5398
  • Wakamatsu H., Yoshinobu Y., Aida R., Moriya T., Akiyama M., Shibata S. Restricted‐feeding‐induced anticipatory activity rhythm is associated with a phase‐shift of the expression of MPer1 and MPer2 MRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci. 2001; 13: 1190–1196
  • Walker P. R., Bonney R. J., Potter V. R. Diurnal rhythms of hepatic carbohydrate metabolism during development of the rat. Biochem. J. 1974; 140: 523–529
  • Waterhouse J., Weinert D., Nevill A., Atkinson G., Reilly T. Some factors influencing the sensitivity of body temperature to activity in neonates. Chronobiol. Int. 2000; 17: 679–692
  • Weaver D. R. The suprachiasmatic nucleus: a 25‐year retrospective. J. Biol. Rhythms 1998; 13: 100–112
  • Weaver D. R., Reppert S. M. Direct in utero perception of light by the mammalian fetus. Develop. Brain Res. 1989a; 47: 151–155
  • Weaver D. R., Reppert S. M. Periodic feeding of SCN‐lesioned pregnant rats entrains the fetal biological clock. Develop. Brain Res. 1989b; 46: 291–296
  • Weaver D. R., Reppert S. M. Definition of the developmental transition from dopaminergic to photic regulation of C‐Fos gene expression in the rat suprachiasmatic nucleus. Mol. Brain Res. 1995; 33: 136–148
  • Weaver D. R., Namboodiri M. A., Reppert S. M. Iodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain. FEBS Let. 1988; 228: 123–127
  • Weaver D. R., Rivkees S. A., Reppert S. M. D1‐dopamine receptors activate C‐Fos expression in the fetal suprachiasmatic nuclei. Proc. Natl. Acad. Sci. USA. 1992; 89: 9201–9204
  • Weinert D. Age‐dependent changes of the circadian system. Chronobiol. Int. 2000; 17: 261–283
  • Weinert D. The temporal order of mammals. Evidence for multiple central and peripheral control mechanisms and for endogenous and exogenous components: some implications for research on aging. Biol. Rhythm Res. 2005, in press
  • Weinert D., Schuh J. Investigations on the development of the time‐structure of some parameters during the postnal ontogeny. I. Daily patterns of motor activity, feeding, and drinking. [German]. Zool. Jb. Anat. 1984a; 111: 133–146
  • Weinert D., Schuh J. Investigations on the development of the time‐structure of some parameters during the postnal ontogeny. II. Daily patterns of blood glucose and lliver glycogen [German]. Zool. Jb. Anat. 1984b; 111: 147–153
  • Weinert D., Schuh J. Frequency and phase correlations of the biorhythms of metabolic indices in mice during their postnatal ontogeny. [Russian]. Biulleten Eksperimentalnoi Biologii i Meditsiny. 1988; 106: 723–726
  • Weinert D., Ulrich F. E., Schuh J. Ontogenetic changes in the circadian rhythm of plasma insulin and its correlation to food intake. [German]. Biomed. Biochim. Acta 1987; 46: 387–395
  • Weinert D., Ulrich F. E., Schuh J. On the postnatal development of the daily rhythmicity under normal and inverse lighting conditions in mice. [German]. Zool. Jb. Physiol. 1989; 93: 257–269
  • Weinert D., Sitka U., Halberg F. On the formation of circadian body temperature and cardio‐vascular rhythm in pre‐ and full‐term newborns. [German]. Wiss. Zeitschr. HUB, Reihe Math./Nat. Wiss. 1990; 39: 413–419
  • Weinert D., Eimert H., Uhlemann S. Effect of various LD‐ and feeding cycles on the circadian rhythmicity depending on age. J. Interdiscipl. Cycle Res. 1992; 23: 215–217
  • Weinert D., Eimert H., Schuh J. Consequences of modified zeitgeber‐conditions during juvenile phase for the circadian system of adult mice. Chronobiology and Chronomedicine, Basic Research and Applications, C. Gutenbrunner, G. Hildebrandt, R. Moog. Verlag Peter Lang, Frankfurt am Main 1993; 145–150
  • Weinert D., Sitka U., Minors D. S., Waterhouse J. M. The development of circadian rhythmicity in neonates. Early Human Develop. 1994; 36: 117–126
  • Weinert D., Sitka U., Minors D., Menna‐Barreto L., Waterhouse J. Twenty‐four‐hour and ultradian rhythmicities in healthy full‐term neonates: exogenons and endogenous influences. Biol. Rhythm Res. 1997; 28: 441–452
  • Wolfensohn S., Lloyd M. Handbook of Laboratory Animal Management and Welfare. Blackwell Science, Oxford 1998; 394
  • Yagita K., Yamaguchi S., Tamanini F., Der Horst G. T., Hoeijmakers J. H., Yasui A., Loros J. J., Dunlap J. C., Okamura H. Dimerization and nuclear entry of MPER proteins in mammalian cells. Genes Develop. 2000; 14: 1353–1363
  • Yagita K., Tamanini F., Yasuda M., Hoeijmakers J. H., van der Horst G. T., Okamura H. Nucleocytoplasmic shuttling and MCRY‐dependent inhibition of ubiquitylation of the MPER2 clock protein. EMBO J. 2002; 21: 1301–1314
  • Yamazaki S., Numano R., Abe M., Hida A., Takahashi R., Ueda M., Block G. D., Sakaki Y., Menaker M., Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288: 682–685
  • Yellon S. M., Longo L. D. Melatonin rhythms in fetal and maternal circulation during pregnancy in sheep. Am. J. Physiol. 1987; 252: E799–E802
  • Young M. W., Kay S. A. Time zones: a comparative genetics of circadian clocks. Nature Rev. Genetics 2001; 2: 702–715
  • Zylka M. J., Shearman L. P., Weaver D. R., Reppert S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 1998; 20: 1103–1110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.