Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 22, 2005 - Issue 3
150
Views
11
CrossRef citations to date
0
Altmetric
Review

Functional Proteomics: A Promising Approach to Find Novel Components of the Circadian System

, &
Pages 403-415 | Published online: 07 Jul 2009

References

  • Akimoto H., Wu C., Kinumi T., Ohmiya Y. Biological rhythmicity in expressed proteins of the marine dinoflagellate Lingulodinium polyedrum demonstrated by chronological proteomics. Biochem. Biophys. Res. Commun. 2004; 315: 306–312
  • Bachvaroff T. R., Concepcion G. T., Rogers G. T., Herman E. M., Delwiche C. F. Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Protist. 2004; 155: 65–78
  • Boudreau E., Nickelsen J., Lemaire S. D., Ossenbuhl F., Rochaix J. D. The Nac2 gene of Chlamydomonas encodes a chloroplast TPR‐like protein involved in psbD mRNA stability. EMBO J. 2000; 19: 3366–3376
  • Bruce V. G. The biological clock in Chlamydomonas reinhardtii. J. Protozool. 1970; 17: 328–334
  • Bruce V. G. Mutants of the biological clock in Chlamydomonas reinhardtii. Genetics 1972; 70: 537–548
  • Byrne T. E., Wells M. R., Johnson C. H. Circadian rhythms of chemotaxis to ammonium and methylammonium uptake in Chlamydomonas. Plant Physiol. 1992; 98: 879–886
  • Chen S., Prapapanich V., Rimerman R. A., Honore B., Smith D. F. Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins hsp90 and hsp70. Mol. Endocrinol. 1996; 10: 682–693
  • Danon A., Mayfield S. P. ADP‐dependent phosphorylation regulates RNA‐binding in vitro: implications in light‐modulated translation. EMBO J. 1994; 13: 2227–2235
  • Denison C., Rudner A. D., Gerber S. A., Bakalarski C. E., Moazed D., Gygi S. P. A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell Proteomics 2005; 4: 246–254
  • Doran P., Dowling P., Lohan J., McDonnell K., Poetsch S., Ohlendieck K. Subproteomics analysis of Ca2+‐binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle. Eur. J. Biochem. 2004; 271: 3943–3952
  • Dunlap J. P., Loros J. J. The Neurospora circadian system. J. Biol. Rhythms 2004; 19: 414–424
  • Eng J., McCormack A. L., Yates J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994; 5: 976–989
  • Fagan T., Morse D., Hastings J. W. Circadian synthesis of a nuclear‐encoded chloroplast glyceraldehyde‐3‐phosphate dehydrogenase in the dinoflagellate Gonyaulax polyedra is translationally controlled. Biochem. 1999; 38: 7689–695
  • Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem. Sci. 1994; 19: 331–336
  • Goto K., Johnson C. H. Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J. Cell Biol. 1995; 129: 1061–1069
  • Grossman A. R. Paths toward algal genomics. Plant Physiol. 2005; 137: 410–427
  • Grossman A. R., Harris E. E., Hauser C., Lefebvre P. A., Martinez D., Rokhsar D., Shrager J., Silflow C. D., Stern D., Vallon O., Zhang Z. Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot. Cell 2003; 2: 1137–1150
  • Harmer S. L., Hogenesch J. B., Straume M., Chang H. S., Han B., Zhu T., Wang X., Kreps J. A., Kay S. A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 2000; 290: 2110–2113
  • Harmer S. L., Panda S., Kay S. A. Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 2001; 17: 215–253
  • Harris E. H. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001; 52: 363–406
  • Hastings J. W., Sweeney B. M. A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol. Bull. 1958; 115: 440–458
  • Hastings J. W., Astrachan L., Sweeney B. M. A persistent diurnal rhythm in photosynthesis. J. Gen. Physiol. 1961; 45: 69–76
  • He Q., Cheng P., Yang Y., He Q., Yu H., Liu Y. FWD1‐mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. EMBO J. 2003; 22: 4421–4430
  • Hirano H., Islam N., Kawasaki H. Technical aspects of functional proteomics in plants. Phytochem. 2004; 65: 1487–498
  • Hogenesh J. B., Panda S., Kay S., Takahashi J. S. Circadian transcriptional output in the SCN and liver of the mouse. Novartis Found. Symp. 2003; 253: 171–180
  • Johnson C. H. Precise circadian clocks in prokaryotic cyanobacteria. Curr. Issues Mol. Biol. 2004; 6: 103–110
  • Johnson C. H., Kondo T., Goto K. Circadian rhythms in Chlamydomonas. Circadian Clocks from Cell to Human. Proceedings of the Fourth Sapporo Symposium on Biological Rhythms, T. Hiroshige, K. Honma. Hokkaido University Press. 1992; 139–155
  • Kim J., Mayfield S. P. Protein disulfide isomerase as a regulator of chloroplast translational activation. Science 1997; 278: 1954–1957
  • Kim S. Y., Chudapongse N., Lee S. M., Levin M. C., Oh J. T., Park H. J., Ho I. K. Proteomic analysis of phosphotyrosyl proteins in the rat brain: effect of butorphanol dependence. J. Neurosci. Res. 2004; 77: 867–877
  • Kleffmann T., Russenberger D., von Zychlinski A., Christopher W., Sjolander K., Gruissem W., Baginsky S. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr. Biol. 2004; 14: 354–362
  • Ko H. W., Jiang J., Edery I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 2002; 420: 673–678
  • Lacombe E., Doorselaere J. V., Boerjan W., Boudet A. M., Grima‐Pettenati J. Characterization of cis‐elements required for vascular expression of the cinnamoyl CoA reductase gene and for protein‐DNA complex formation. Plant J. 2000; 23: 663–676
  • Liu J., Shen X., Nguyen V. A., Kunos G., Gao B. Alpha(1) adrenergic agonist induction of p21(waf1/cip1) mRNA stability in transfected HepG2 cells correlates with the increased binding of an AU‐rich element binding factor. J. Biol. Chem. 2000; 275: 11846–11851
  • Marcovic P., Roenneberg T., Morse D. Phased protein synthesis at several circadian times does not change protein levels in Gonyaulax. J. Biol. Rhythms 1996; 11: 57–67
  • Mergenhagen D. Circadian clock: genetic characterization of a short period mutant of Chlamydomonas reinhardtii. Eur. J. Cell Biol. 1984; 33: 13–18
  • Milos P., Morse D., Hastings J. W. Circadian control over synthesis of many Gonyaulax proteins is at a translational level. Naturwissenschaften. 1990; 77: 87–89
  • Mittag M. Circadian rhythms in microalgae. Int. Rev. Cytol. 2001; 206: 213–247
  • Mittag M., Wagner V. The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii. Biol. Chem. 2003; 384: 689–95
  • Mittag M., Li L. M., Hastings J. W. The mRNA level of the circadian regulated Gonyaulax luciferase remains constant over the cycle. Chronobiol. Int. 1998; 15: 93–98
  • Mittag M., Kiaulehn S., Johnson C. H. The circadian clock in Chlamydomonas reinhardtii: What is it for? What is it similar to?. Plant Physiol. 2005; 137: 399–409
  • Morse D., Milos P. M., Roux E., Hastings J. W. Circadian regulation of the synthesis of substrate binding protein in the Gonyaulax bioluminescent system involves translational control. Proc. Natl. Acad. Sci. USA. 1989; 86: 172–176
  • Nikaido S. S., Johnson C. H. Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem. Photobiol. 2000; 71: 758–765
  • Okamoto T., Higuchi K., Shinkawa T., Isobe T., Lorz H., Koshiba T., Kranz E. Identification of major proteins in maize egg cells. Plant Cell Physiol. 2004; 45: 1406–1412
  • Panda S., Antoch M. P., Miller B. H., Si A. I., Schook A. B., Straume M., Schultz P. G., Kay S. A., Takahashi J. S., Hogenesch J. B. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002a; 109: 307–320
  • Panda S., Hogenesch J. B., Kay S. A. Circadian rhythms from flies to human. Nature 2002b; 417: 329–335
  • Peltier J. B., Ytterberg A. J., Sun Q., van Wijk K. J. New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J. Biol. Chem. 2004; 279: 49367–49383
  • Prinz T., Muller J., Kuhn K., Schafer J., Thompson A., Schwarz J., Hamon C. Characterization of low abundant membrane protein using the protein sequence tag technology. J. Proteome Res. 2004; 3: 1073–1081
  • Reinders J., Lewandrowski U., Moebius J., Wagner Y., Sickmann A. Challenges in mass spectrometry‐based proteomics. Proteomics 2004; 4: 3686–36703
  • Reppert S. M., Weaver D. R. Coordination of circadian timing in mammals. Nature 2002; 418: 935–941
  • Roenneberg T., Hastings J. W. Cell movement and pattern formation in Gonyaulax polyedra. Oscillations and Morphogenesis, L. Rensing. Marcel Dekker, New York 1992; 399–412
  • Schramm A., Apostolov O., Sitek B., Pfeiffer K., Struhler K., Meyer H. E., Havers W., Eggert A. Proteomics: techniques and applications in cancer research. Klin. Padiatr. 2003; 215: 293–297
  • Stauber E. J., Hippler M. Chlamydomonas reinhardtii proteomics. Plant Physiol. Biochem. 2004; 42: 989–1001
  • Straley S. C., Bruce V. G. Stickiness to glass: circadian changes in the cell surface of Chlamydomonas reinhardtii. Plant Physiol. 1979; 63: 1175–81
  • Sweeney B. M., Hastings J. W. Rhythmic cell division in populations of Gonyaulax polyedra. J. Protozool. 1958; 5: 217–224
  • Taylor R. S., Wu C. C., Hays L. G., Eng J. K., Yates J. R., Howell K. E. Proteomics of rat liver Golgi complex: minor proteins are identified through sequential fractionation. Electrophoresis 2000; 21: 3441–3459
  • Trebitsh T., Meiri E., Ostersetzer O., Adam Z., Danon A. The protein disulfide isomerase‐like RB60 is partitioned between stroma and thylakoids in Chlamydomonas reinhardtii chloroplasts. J. Biol. Chem. 2001; 276: 4564–4569
  • Vaistij F. E., Boudreau E., Lemaire S. D., Goldschmidt‐Clermont M., Rochaix J. D. Characterization of Mbb1, a nucleus‐encoded tetratricopeptide‐like repeat protein required for expression of the chloroplast psbB/psbT/psbH gene cluster in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 2000; 97: 14813–14818
  • Van der Voorn L., Ploegh H. L. The WD‐40 repeat. FEBS Lett. 1992; 307: 131–134
  • Wagner V., Fiedler M., Markert C., Hippler M., Mittag M. Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii. FEBS Lett. 2004; 559: 129–135
  • Werner R. Chlamydomonas reinhardtii as a unicellular model for circadian rhythm analysis. Chronobiol. Int. 2002; 19: 325–343
  • Zhang Z., Quick M. K., Kanelakis K. C., Gijzen M., Krishna P. Characterization of a plant homolog of hop, a cochaperone of hsp90. Plant Physiol. 2003; 131: 525–535

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.