51
Views
8
CrossRef citations to date
0
Altmetric
Original

Understanding the Interaction Between Environmental Exposures and Molecular Events in Colorectal Carcinogenesis

& , Sc.D
Pages 524-539 | Published online: 31 May 2001

REFERENCES

  • Parkin D. M., Muir C. S., Whelan S. L., et al. Cancer Incidence in Five Continents. International Agency for Research on Cancer, LyonFrance 1992; 6, Pub. 88
  • Petrelli N., Michalek A. M., Freedman A. N., et al. Immunochemical Versus Guaiac Occult Blood Stool Tests: Results of a Community-Based Screening Program. Surg. Oncol. 1994; 3: 27–36
  • Sidransky D., Tokino T., Hamilton S. R., et al. Identification of ras Oncogene Mutations in the Stool of Patients with Curable Colorectal Tumors. Science 1996; 256: 102–105
  • Eguchi S., Kohara N., Komuta K., et al. Mutations of the p53 Gene in the Stool of Patients with Resectable Colorectal Cancer. Cancer 1996; 77(suppl)1707–1710
  • Gastrointestinal Tumor Study Group. Adjuvant Therapy of Colon Cancer: Results of a Prospectively Randomized Trial. N. Engl. J. Med. 1984; 310: 737–43
  • Greenwald P., Kelloff G. J., Boone C. W., et al. Genetic and Cellular Changes in Colorectal Cancer: Proposed Targets of Chemopreventive Agents. Cancer Epidemiol. Biomarkers Prev. 1995; 4: 691–702
  • Muir C., Waterhouse J., Mack T., Powell J., Whelan S., Smans M., et al. Cancer Incidence in Five Continents; International Agency for Research on Cancer. LyonFrance 1987
  • Kotake K., Koyama Y., Nasu J., et al. Relation of Family History of Cancer and Environmental Factors to the Risk of Colorectal Cancer: A Case-Control Study. Jpn. J. Clin. Oncol. 1995; 25: 195–202
  • Potter J. D. Nutrition and Colorectal Cancer. Cancer Causes Control 1996; 7: 127–146
  • IARC Intestinal Microecology Group. Dietary Fiber, Transit Time, Faecal Characteristics and Large Bowel Cancer in Two Scandanavian Populations, Lancet. 1977; 2: 207–211
  • Armstrong B., Doll R. Environmental Factors and Cancer Incidence and Mortality in Different Countries, with Special Reference to Dietary Practices. Int. J. Cancer 1975; 15: 617–631
  • Mckeown-Eyssen G., Bright-See E. Relationship Between Colon Cancer Mortality and Fiber Consumption: An International Study (abstract). Fibre in Human and Animal Nutrition, G. Wallace, L. Bell. Royal Society of New Zealand, WellingtonNew Zealand 1983
  • Potter J. D., Slattery M. L., Bostick R. M., et al. Colon Cancer: A Review of the Epidemiology. Epidemiol. Rev. 1993; 15: 499–545
  • Willet W. C., Stampfer M. J., Colditz G. A., et al. Relation of Meat, Fat, and Fiber Intake to the Risk of Colon Cancer in a Prospective Study Among Women. N. Engl. J. Med. 1990; 323: 1664–1672
  • Goldbohm S. A., van den Brandt P. A., van't Veer P., et al. A Prospective Cohort Study on the Relation Between Meat Consumption and the Risk of Colon Cancer. Cancer Res. 1994; 54: 718–723
  • Giovannucci E., Rimm E. B., Stampfer M. J., et al. Intake of Fat, Meat, and Fiber in Relation to Risk of Colon Cancer in Men. Cancer Res. 1994; 54: 2390–2397
  • Steinmetz K. A., Potter J. D. A Review of Vegetables, Fruit, and Cancer. Cancer Causes Control 1991; 2: 325–357
  • Giovannucci E., Rimm E. B., Ascherio A., et al. Alcohol, Low-Methionine-Low-Folate Diets and Risk of Colon Cancer in Men. J. Natl. Cancer. Inst. 1995; 87: 265–73
  • Ma J., Stamper M. J., Giovannucci E., et al. Methylenetetrahydrofolate Reductase Polymorphism, Dietary Interactions, and Risk of Colorectal Cancer. Cancer Res. 1997; 57: 1098–1102
  • Giovannucci E., Stampfer M. J., Colditz G. A., et al. Multivitamin Use, Folate, and Colon Cancer in Women in the Nurses' Health Study. Ann. Intern. Med. 1998; 129: 517–524
  • Weiss H. A., Forman D. Aspirin, NSAIDS and Protection from Colorectal Cancer: A Review of the Epidemiological Evidence. Scand. J. Gastroenterol. 1996; 220: 137–141
  • Reeves M. J., Newcomb P. A., Trentham-Dietz A., et al. Nonsteroidal Anti-Inflammatory Drug Use and Protection Against Colorectal Cancer in Women. Cancer Epidemiol. Biomarkers Prev. 1996; 5: 955–960
  • Kauppi M., Pukkala E., Isomaki H. Low Incidence of Colorectal Cancer in Patients with Rheumatoid Arthritis. Clin. Exp. Rheumatol. 1996; 14: 551–553
  • Giovannucci E., Rimm E. B., Stampfer M. J., et al. Aspirin Use and the Risk for Colorectal Cancer and Adenoma in Male Health Professionals. Ann. Intern. Med. 1994; 121: 241–246
  • Hoff G., Vatn M. H., Larsen S. Relationship Between Tobacco Smoking and Colorectal Polyps. Scand. J. Gastroenterol. 1987; 22: 13–16
  • Honjo S., Kono S., Shinchi K., et al. Cigarette Smoking, Alcohol Use and Adenomatous Polyps of the Sigmoid Colon. Jpn. J. Cancer Res. 1992; 83: 806–811
  • Kikendall J. W., Bowen P. E., Burgess M. B., et al. Cigarettes and Alcohol as Independent Risk Factors for Colonic Adenomas. Gasteroenterology 1991; 26: 758–762
  • Kune G. A., Kune S., Watson L. F., et al. Smoking and Adenomatous Polyps. Gastroenterology 1992; 103: 1370–1371, (letter)
  • Lee W. C., Neugaut A. I., Garbowski G. C., et al. Cigarettes, Alcohol, Coffee and Caffeine as Risk Factors for Colorectal Adenomatous Polyps. Ann. Epidemiol. 1993; 3: 239–244
  • Martinez M. E., McPherson R. S., Annegers J. F., et al. Cigarette Smoking and Alcohol Consumption as Risk Factors for Colorectal Adenomatous Polyps. J. Natl. Cancer Inst. 1995; 87: 274–279
  • Giovannucci E., Colditz G. A., Stampfer M. J., et al. A Prospective Study of Cigarette Smoking and Risk of 534 Ishibe and Freedman Colorectal Adenoma and Colorectal Cancer in U.S. Women. J. Natl. Cancer Inst. 1994; 86: 192–199
  • Giovannucci E., Rimm E. B., Stampfer M. J., et al. A Prospective Study of Cigarette Smoking and Risk of Colorectal Adenoma and Colorectal Cancer in U.S. Men. J. Natl. Cancer Inst. 1994; 86: 183–191
  • Hsing A. W., McLaughlin J. K., Chow W. H., et al. Risk Factors for Colorectal Cancer in a Prospective Study Among U.S. White Men. Int. J. Cancer 1998; 77: 549–553
  • Terry M. B., Neugat A. I. Cigarette Smoking and the Colorectal Adenoma-Carcinoma Sequence: A Hypothesis to Explain the Paradox. Am. J. Epidemiol. 1998; 147: 903–910
  • Yamada K., Araki S., Tamura M., et al. Case-Control Study of Colorectal Carcinoma In Situ and Cancer in Relation to Cigarette Smoking and Alcohol Use (Japan). Cancer Causes Control 1997; 8: 780–785
  • Nyren O., Bergstrom R., Nystrom L., et al. Smoking and Colorectal Cancer: A 20-Year Follow-Up Study of Swedish Construction Workers. J. Natl. Cancer Inst. 1996; 88: 1302–1307
  • D'Avanzo B., La Vecchia C., Franceschi S., et al. Cigarette Smoking and Colorectal Cancer: A Study of 1584 Cases and 2879 Controls. Prev. Med. 1995; 24: 571–579
  • Heineman E. F., Zahm S. H., McLaughlin J. K., et al. Increased Risk of Colorectal Cancer Among Smokers: Results of a 26-Year Follow-Up of U. S. Veterans and a Review. Int. J. Cancer 1994; 59: 728–738
  • Fearon E. R., Vogelstein B. A Genetic Model for Colorectal Tumorigenesis. Cell 1990; 61: 759–767
  • Fearon E. R. Molecular Genetic Studies of the Adenoma- Carcinoma Sequence. Adv. Intern. Med. 1993; 39: 123–147
  • Hamilton S. R. Molecular Genetics of Colorectal Carcinoma. Cancer 1992; 70 (suppl): 1216s–1221s
  • Vogelstein B., Fearon E. R., Hamilton S. R., et al. Genetic Alterations During Colorectal-Tumor Development. N. Engl. J. Med. 1988; 319: 525–532
  • Cho K. P., Vogelstein B. Genetic Alterations in the Adenoma-Carcinoma Sequence. Cancer 1992; 70 (suppl): 1727–1731
  • Powell S. M., Zilz N., Beazer-Barclay Y., et al. APC Mutations Occur Early During Colorectal Tumorigenesis. Nature 1993; 359: 235–237
  • Counts J., Goodman J. Alterations in DNA Methylation May Play a Variety of Roles in Carcinogenesis. Cell 1995; 83: 13–15
  • Bos J. L. The ras Gene Family and Human Carcinogenesis. Mutat. Res. 1988; 195: 255–271
  • Shibata D., Peinado M. A., Ionov Y., et al. Genomic Instability in Repeated Sequences Is an Early Somatic Event in Colorectal Tumorigenesis that Persists After Transformation. Nature Genetics 1994; 6: 273–81
  • Hedrick L., Cho K. R., Fearon E. R., et al. The DCC Gene Product in Cellular Differentiation and Colorectal Tumorigenesis. Genes Dev. 1994; 8: 1174–1183
  • Thun M. J. NSAID Use and Decreased Risk of Gastrointestinal Cancers. Gastroenterol. Clin. North Am. 1996; 25: 333–348
  • Sturmer T., Glynn R. J., Lee I. M., et al. Aspirin Use and Colorectal Cancer: Post-Trial Follow-Up Data from the Physician's Health Study. Ann. Intern. Med. 1998; 128: 713–720
  • Sandler R. S., Galanko J. C., Murray S. C., et al. Aspirin and Nonsteroidal Anti-Inflammatory Agents and Risk for Colorectal Adenomas. Gastroenterology 1998; 114: 441–447
  • Thun M. J. Aspirin and Gastrointestinal Cancer. Adv. Exp. Med. Biol. 1997; 400A: 395–402
  • Kalgutkar A. S., Crews B. C., Rowlinson S. W., Garner C., Seibert K., Marnett L. J. Aspirin-Like Molecules that Covalently Inactivate Cyclooxygenase-2. Science 1998; 280: 1268–1270
  • Barnes C. J., Cameron I. L., Hardman W. E., Lee M. Non-Steroidal Anti-Inflammatory Drug Effect on Crypt Cell Proliferation and Apoptosis During Initiation of Rat Colon Carcinogenesis. Br. J. Cancer 1998; 77: 573–580
  • Friend W. G. Sulindac Suppression of Colorectal Polyps in Gardner's Syndrome. Am. Fam. Physician 1990; 41: 891–894
  • Gonzaga R. A.F., Lima F. R., Carneiro S., et al. Sulindac Treatment for Familial Polyposis Coli. Lancet 1985; 1: 751, (letter)
  • Rigau J., Pigue J. M., Rubio E., et al. Effects of Long- Term Sulindac Therapy on Colonic Polyposis. Ann. Intern. Med. 1991; 32: 952–954
  • Giardiello F. M., Hamilton S. R., Krush A. J., et al. Treatment of Colonic and Rectal Adenomas with Sulindac in Familial Adenomaous Polyposis. N. Engl. J. Med. 1993; 328: 1313–1316
  • Labayle D., Fisher D., Vielh P., et al. Sulindac Causes Regression of Rectal Polyps in Familial Adenomatous Polyposis. Gastroenterology 1991; 101: 635–639
  • Powell S. M., Zilz N., Beazer-Barclay Y., et al. APC Mutations Occur Early During Colorectal Tumorigenesis. Nature 1992; 359: 235–237
  • His L. C., Angerman-Stewart J., Eling T. E. Introduction of Full Length APC Modulates Cyclooxygenase-2 Expression in HT-29 Human Colorectal Carcinoma Cells at the Translational Level. Carcinogenesis 1999; 20: 2045–2049
  • Reed J. C. Bcl-2 and the Regulation of Programmed Cell Death. J. Cell. Biol. 1994; 124: 1–6
  • Bissonnette R. P., Echeverri F., Mahboubi A., et al. Apoptotic Cell Death Induced by c-myc Is Inhibited by bcl-2. Nature 1992; 359: 552–554
  • Hauge A., Moorghen M., Hicks D., et al. Bcl-2 Expression in Human Colorectal Adenomas and Carcinomas. Oncogene 1994; 9: 3367–3370
  • Bronner M. P., Culin C., Reed J. C., et al. The bcl-2 Proto-Oncogene and the Gastrointestinal Epithelial Tumor Progression Model. Am. J. Pathol. 1995; 146: 20–26
  • Hague A., Manning A. M., Hanlon K. A., et al. Sodium Butyrate Induces Apoptosis in Human Colonic Tumour Cell Lines in a p53-Independent Pathway: Implications for the Possible Role of Dietary Fiber in the Prevention of Large-Bowel Cancer. Int. J.Cancer 1993; 55: 498–505
  • Mandel M., Kumar R. Bcl-2 Expression Regulates Sodium Butyrate-Induced Human MCF-7 Breast Cells. Cell Growth Differentiation 1996; 7: 311–318
  • Mandel M., Wu K., Kumar R. Bcl-2 Deregulation Leads to Inhibition of Sodium Butyrate-Induced Apoptosis in Human Colorectal Carcinoma Cells. Carcinogenesis 1997; 18: 229–232
  • Bos J. L. Ras Oncogenes in Human Cancer: A Review. Cancer Res. 1989; 49: 4682–4689
  • Bos J. L., Fearon E. R., Hamilton S. R., et al. Prevalence of ras-Gene Mutations in Human Colorectal Cancers. Nature 1987; 327: 293–297
  • Andreyev H. F., Norman A. R., Cunningham D., Oats J. R., Clarke P. A. Kirsten ras Mutations in Patients with Colorectal Cancer: The Multicenter “RASCAL” Study. J. Natl. Cancer Inst. 1998; 90: 675–684
  • Burmer G. C., Loeb L. A. Mutations in the KRAS2 Oncogene During Progressive Stages of Human Colon Carcinoma. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 2403–2407
  • Barbacid M. Ras Genes. Ann. Rev. Biochem. 1987; 56: 549–554
  • Strauss B. S. The Origin of Point Mutations in Human Tumor Cells. Cancer Res. 1992; 52: 249–253
  • Dogliotti E. Mutational Spectra: From Model Systems to Cancer-Related Genes. Carcinogenesis 1996; 17: 2113–2118
  • Capella G., Cronauer-Mitra S., Peinado M. A., et al. Frequency and Spectrum of Mutations at Codons 12 and 13 of the c-K-ras Gene in Human Tumors. Environ. Health Perspect. 1991; 93: 125–131
  • Bingham S. A., Pignatelli B., Pollock J. R.A., et al. Does Increased Endogenous Formation of N-Nitroso Compounds in the Human Colon Explain the Association of Red Meat and Colon Cancer. Carcinogenesis 1996; 17: 515–523
  • Jacoby R. F., Alexander R. J., Raicht R. F., et al. K-ras Oncogene Mutations in Rat Colon Tumours Induced by MNU. Carcinogenesis 1992; 13: 45–49
  • Mirvish S. S. Role of N-Nitroso Compounds (NOC) and N-Nitrosation in Etiology of Gastric, Esophageal, Nasopharyngeal and Bladder Cancer and Contribution to Cancer of Known Exposures to NOC. Cancer Lett. 1995; 93: 17–48
  • Morotomi M., Guillem J., LoGerfo P., et al. Production of Diacylglycerol, an Activator of Protein Kinase C, by Human Intestinal Microflora. Cancer Res. 1990; 50: 3595–3599
  • Guillem J. G., Weinstein I. B. The Role of Protein Kinase C in Colon Neoplasia. Familial Adenomatous Polyposis, L. Herrar. Liss, New York 1990; 325–332
  • Steinbach G., Morotomi M., Nomoto K., et al. Calcium Reduces the Increased Fecal 1,2-sn-Diacylglycerol Content in Intestinal Bypass Patients: A Possible Mechanism for Altering Colonic Hyperproliferation. Cancer Res. 1994; 54: 1216–1219
  • Sorenson A. W., Slattery M. L., Ford M. H. Calcium and Colon Cancer: A Review. Nutr. Cancer 1988; 11: 135–145
  • Llor X., Jacoby R. F., Teng B. B., et al. K-ras Muations in 1,2-Dimethylhydrazine-Induced Colonic Tumors: Effects of Supplemental Dietary Calcium and Vitamin D Deficiency. Cancer Res. 1991; 51: 4305–4309
  • Bautista D., Obrador A., Moreno V., Cabeza E., Canet R., Benito E., Bosch X., Costa J. Ki-ras Mutation Modifies the Protective Effect of Dietary Monounsaturated Fat and Calcium on Sporadic Colorectal Cancer. Cancer Epidemiol. Biomarkers Prev. 1997; 6: 57–61
  • Martinez M. E., Maltzman T., Marshall J. R., Einspahr J., Reid M. E., Sampliner R., Ahnen D. J., Hamilton S. R., Alberts D. S. Risk Factors for Ki-ras Protooncogene Mutation in Sporadic Colorectal Adenomas. Cancer Res. 1999; 59: 5181–5185
  • Ookawa K., Sakamoto M., Hirohashi S., et al. Concordant p53 and DCC Alterations and Allelic Losses on Chromosomes 13q and 14q Associated with Liver Metastases of Colorectal Carcinoma. Int. J. Cancer 1993; 53: 382–387
  • Fazeli A., Dickinson S. L., Hermiston M. L., et al. Phenotype of Mice Lacking Functional Deleted in Colorectal Cancer (DCC) Gene. Nature 1997; 386: 796–804
  • Schmitt C. A., Thaler K. R., Wittig B. M., et al. Detection of the DCC Gene Product in Normal and Malignant Colorectal Tissues and Its Relation to a Codon 201 Mutation. Br. J. Cancer 1998; 77: 588–594
  • Fearon E. R., Cho K. R., Nigro J. M., et al. Identification of a Chromosome 18q Gene That Is Altered in Colorectal Cancers. Science 1990; 247: 29–56
  • Shibata D., Reale M. A., Lavin P., et al. Loss of DCC Expression and Prognosis in Colorectal Cancer. N. Engl. J. Med. 1996; 335: 1727–1732
  • Harris C. C. p53: At the Crossroads of Molecular Carcinogenesis and Risk Assessment. Science 1993; 262: 1980–1981
  • Hollstein M., Sidransky D., Vogelstein B., et al. p53 Mutations in Human Cancers. Science 1991; 253: 49–53
  • Jones P. A., Buckley J. D., Henderson B. E., et al. From Gene to Carcinogen: A Rapidly Evolving Field in Molecular Epidemiology. Cancer Res. 1991; 51: 3617–3620
  • Chiba I., Takahashi T., Nau M. M., et al. Mutations in the p53 Gene Are Frequent in Primary, Resected Non- 536 Ishibe and Freedman Small Cell Lung Cancer. Oncogene 1990; 5: 1603–1610
  • Tornaletti S., Pfeifer G. P. Complete and Tissue-Independent Methylation of CpG Sites in the p53 Gene: Implications for Mutations in Human Cancers. Oncogene 1995; 10: 1493–1499
  • Ishioka C., Suzuki T., Kanamaru R. Mutations of p53 Gene in Human Colorectal Tumor in Japan: Molecular Epidemiological Aspects. Tohoku J. Exp. Med. 1992; 167: 243–245
  • Makino H., Ushijima T., Kakiuchi H., et al. Absence of p53 Mutations in Rat Colon Tumors Induced by 2-Amino-6-methyl-dipyrido[1,2-a:3 ′, 2 ′ -d]imidazole, 2- amino-3-methylimidazo[4,5-f]quinoline, or 2-amino-1- methyl-6-phenylimidazo[4,5-b]pyridine. Jpn. J. Cancer Res. 1994; 85: 510–514
  • Schwartz J. L. Molecular and Biochemical Control of Tumor Growth Following Treatments with Carotenoids or Tocopherols. Nutrition and Cancer Prevention and Treatment, K. Prasad, L. Santamaria, R. M. Williams. Humana, Totawa, NJ 1994; 287–316
  • Hamilton S. R. Molecular Genetic Alterations as Potential Prognostic Indicators in Colorectal Carcinoma. Cancer 1992; 69: 1589–1591
  • Freedman A. N., Michalek A. M., Marshall J. R., et al. Familial and Nutritional Risk Factors for p53 Overexpression in Colorectal Cancer. Cancer Epidemiol. Biomarkers Prev. 1996; 5: 285–291
  • Freedman A. N., Michalek A. M., Marshall J. R., et al. The Relationship Between Smoking History and p53 Overexpression in Colorectal Cancer. Br. J. Cancer 1996; 73: 902–908
  • Freedman A. N., Michalek A. M., Zhang Z. F., et al. Dietary Risk Factors for p53 Overexpression in Distal Colorectal Cancer. Am. Assoc. Cancer Res. 1996, April (abstract)
  • Obrador A., Moreno V., Bautista D., Cabeza E., Canet R., Benito E., Bosch X., Costa J. Colorectal Cancer, Diet and p53. Gastroenterology 1998; 114(4 (suppl S)), G2705, Part 2
  • Wink D. A., Kasprzak K. S., Maragos C. M. DNA Deaminating Ability and Genotoxicity of Nitric Oxide and Its Progenitors. Science 1991; 254: 1001–1003
  • Voskuil D. W., Kampman E., van Kraats A. A., Balder H. F., van Muijen G. N.P., Goldbohm R. A., van't Veer Pieter P. P53 Overexpression and p53 Mutations in Colon Carcinomas: Relation to Dietary Risk Factors. Int. J. Cancer 1999; 81: 675–681
  • Ponce-Castanede M. V., Lee M. H., Latres E., et al. p27kip1: Chromosomal Mapping to 12p12-12p13.1 and Absence of Mutations in Human Tumors. Cancer Res. 1995; 55: 1211–1214
  • Kawamata N., Morosetti R., Miller C. W., et al. Molecular Analysis of the Cyclin-Dependent Kinase Inhibitor Gene p27kip1 in Human Malignancies. Cancer Res. 1995; 55: 2266–2269
  • Hengst L., Reed S. I. Translational Control of p27kip1 Accumulation During the Cell Cycle. Science 1996; 271: 1861–1864
  • Pagano M., Tam S. W., Theodoras A. M., et al. Role of the Ubiquitin-Proteasome Pathway in Regulating Abundance of the Cyclin-Dependent Kinase Inhibitor p27. Science 1995; 269: 682–685
  • Frederdorf S., Burns J., Milne A. M., et al. High Level Expression of p27kip1 and Cyclin D1 in Some Human Breast Cancer Cells: Inverse Correlation Between the Expression of p27kip1 and Degree of Malignancy in the Human Breast and Colorectal Cancers. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 6380–6385
  • Loda M., Cukor B., Tam S. W., et al. Increased Proteasome-Dependent Degradation of the Cyclin-Dependent Kinase Inhibitor p27 in Aggressive Colorectal Carcinomas. Nature Med. 1997; 3: 231–234
  • Sgambato A., Ratto C., Faraglia B., Merico M., Ardito R., Schinzari G., Romano G., Cittadini A. R.M. Reduced Expression and Altered Subcellular Localization of the Cyclin-Dependent Kinase Inhibitor p27>kip1 in Human Colon Cancer. Mol. Carcinog. 1999; 26: 172–179
  • Thomas G. V., Szigeti K., Murphy M., Draetta G., Pagano M., Loda M. Down-Regulation of p27 Is Associated with Development of Colorectal Adenocarcinoma Metastases. Am. J. Pathol. 1998; 153: 681–687
  • Ishibe N., Freedman A. N., Michalek A. M., Iacobuzio-Donahue C., Mettlin C. J., Petrelli N. J., Asirwatham J. E., Hamilton S. R. Expression of p27 and bcl-2 and Cigarette Smoking in Colorectal Cancer Risk. Biomarkers 2000; 5: 225–234
  • Lynch H. T., Watson P., Smyrk T. C., et al. Colon Cancer Genetics. Cancer 1992; 70 (suppl): 1300–1311.117
  • Lynch H. T., Smyrk T. Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome): An Updated Review. Cancer 1996; 78: 1149–1167
  • Soliman A. S., Bondy M. L., Guan Y., et al. Reduced Expression of Mismatch Repair Genes in Colorectal Cancer Patients in Egypt. Int. J. Oncol. 1998; 12: 1315–1319
  • Herman J. G., Umar A., Polyak K., et al. Incidence and Functional Consequences of hMLH1 Promoter Hypermethylation in Colorectal Carcinoma. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 6870–6875
  • Ruschoff J., Wallinger S., Dietmaier W., et al. Aspirin Suppresses the Mutator Phenotype Associated with Hereditary Nonpolyposis Colorectal Cancer by Genetic Selection. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 11301–11306
  • Oesch F., Klein S. Relevance of Environmental Alkylating Agents to Repair O6-Alkylguanine-DNA Alkyltransferase: Determination of Individual and Collective Repair Capacities of O6-Methylguanine. Cancer Res. 1992; 52: 1801–1803
  • Au W. W., Wilkinson G. S., Tyring S. K., et al. Monitoring Populations for DNA Repair Deficiency and for Cancer Susceptibility. Environ. Health Perspect. 1996; 104: 579–584
  • Souliotis V. L., Valavanis C., Boussiotis V. A., et al. Comparative Study of the Formation and Repair of O6- Methylguanine in Humans and Rodents Treated with Dicarbazine. Carcinogenesis 1996; 17: 725–732
  • Hamilton S. R. The Molecular Genetics of Colorectal Neoplasia. Gastroenterology 1993; 105: 3–7
  • Jones P. A., Buckley J. D. The Role of DNA Methylation in Cancer. Adv. Cancer Res. 1990; 54: 1–23
  • Giovanucci E., Stampfer M. J., Colditz G. A., et al. Folate, Methionine, and Alcohol Intake and Risk of Colorectal Adenoma. J. Natl. Cancer Inst. 1993; 85: 875–884
  • Freudenheim J. L., Graham S., Marshall J. R., et al. Folate Intake and Carcinogenesis of the Colon and Rectum. Int. J. Epidemiol. 1991; 20: 368–374
  • Benito E., Stiggelbout A., Bosch F. X., et al. Nutritional Factors in Colorectal Cancer Risk: A Case-Control Study in Majorca. Int. J. Cancer 1991; 49: 161–167
  • MacGregor J. T., Wehr C. M., Hiatt R. A., et al. ‘Spontaneous' Genetic Damage in Man: Evaluation of Inter-Individual Variability, Relationship Among Markers of Damage, and Influence of Nutritional Status. Mutat. Res. 1997; 377: 125–135
  • Blount B. C., Mack M. M., Wehr C. M., et al. Folate Deficiency Causes Uracil Misincorporation into Human DNA and Chromosome Breakage: Implications for Cancer and Neuronal Damage. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 3290–3299
  • Cravo M. L., Mason J. B., Dayal Y., et al. Folate Deficiency Enhances the Development of Colonic Neoplasia in Dimethylhydrazine-Treated Rats. Cancer Res. 1992; 52: 5002–5006
  • Schmutte C., Yang A. S., Nguyen T. T., et al. Mechanisms for the Involvement of DNA Methylation in Colon Carcinogenesis. Cancer Res. 1996; 56: 2375–2381
  • Goyette P., Sumner J. S., Milos R., et al. HumanMethylenetetrahydrofolate Reductase: Isolation of cDNA, Mapping and Mutation Identification. Nature Genet. 1994; 7: 195–200
  • Engbersen A. M., Franken D. G., Boers G. H., et al. Thermolabile 5,10-Methylenetetrahydrofolate Reductase as a Cause of Mild Hyperhomocysteinemia. Am. J. Hum. Genet. 1995; 56: 142–150
  • Zittoun J., Tonetti C., Bories D., et al. Plasma Homocysteine Levels Related to Interactions Between Folate Status and Methylenetetrahydrofolate Reductase: A Study in 52 Healthy Subjects. Metabolism 1998; 47: 1413–1418
  • Ou C. Y., Stevenson R. E., Brown V. K., et al. 5, 10- Methylenetetrahydrofolate Reductase Genetic Polymorphism as a Risk Factor for Neural Tube Defects. Am. J. Med. Genet. 1996; 63: 610–614
  • Chen J., Giovannucci E., Kelsey K. T., et al. A Methylenetetrahydrofolate Reductase Polymorphism and the Risk of Colorectal Cancer. Cancer Res. 1996; 56: 4862–4864
  • Slattery M. L., Potter J. D., Samowitz W., Schaffer D., Leppert M. Methylenetetrahydrofolate Reductase, Diet, and Risk of Colon Cancer. Cancer Epidemiol. Biomarkers Prev. 1999; 8: 513–518
  • Chen J., Giovannucci E., Hankinson S., et al. A Prospective Study of Polymorphisms of Methylenetetreahydrofolate Reductase and Methionine Synthase and the Risk of Colorectal Adenoma. Carcinogenesis 1998; 19: 2129–2132
  • Park K. S., Mok J. W., Kim J. C. The 677C_T Mutation in 5,10-Methylenetetrahydrofolate Reductase and Colorectal Cancer Risk. Genetic Testing 1999; 3: 233–236
  • Wisotzkey J. D., Toman J., Bell T., Monk J. S., Jones D. MTHFR (C677T) Polymorphisms and Stage III Colon Cancer: Response to Therapy. Mol. Diagn. 1999; 4: 95–99
  • Flammang T. J., Couch L. H., Levy G. N., et al. DNAAdduct Levels in Congenic Rapid and Slow Acetylator Mouse Strains Following Chronic Administration of 4-Aminobiphenyl. Carcinogenesis 1992; 13: 1887–1891
  • Sinha R., Rothman N., Brown E. D., et al. High Concentrations of the Carcinogen 2-Amino-1-methyl- 6-phenylimidazo-[4,5-B]pyridine (PhIP) Occur in Chicken and Are Dependent on the Cooking Method. Cancer Res. 1995; 55: 4516–4519
  • Ohgaki H., Takayama J. R., Sugimura T. Carcinogenicities of Heterocyclic Amines in Cooked Food. Mutat. Res. 1991; 259: 399–410
  • Ito R., Hasegawa R., Sano M., et al. A New Colon and Mammary Carcinogen in Cooked Food, 2-Amino- 1-methyl-6-phenylimidaso[4,5-b]pyridine (PhIP). Carcinogenesis 1991; 12: 1503–1506
  • Kakiuchi H., Watanabe M., Ushijima T., et al. Specific 5′ -GGGA-3′ GGA-3′ Mutation of the Apc Gene in Rat Colon Tumors Induced by 2-Amino-1-methyl- 6-phenylimadazo(4,5-b)pyridine. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 910–914
  • Miyaki M., Konishi M., Kikuchi-Yanoshita R., et al. Characteristics of Somatic Mutation of the Adenomatous Polyposis Coli Gene in Colorectal Tumors. Cancer Res. 1994; 54: 3011–3020
  • Gerhardsson de Verdier M., Hagman U., Peters R. K., Steineck G., Overvik E. Meat, Cooking Methods and Colorectal Cancer: A Case-Referent Study in Stockholm. Int. J. Cancer 1991; 49: 520–525
  • Schiffman M. H., Felton J. S. Re: “Fried Foods and Risk of Colon Cancer.”. Am. J. Epidemiol. 1990; 131: 376–378
  • Peters R. K., Garabrant D. H., Yu M. C., Mack T. A Case-Control Study of Occupational and Dietary Factors in Colorectal Cancer in Young Men by Subsite. Cancer Res. 1989; 49: 5459–5468
  • Lyon J. L., Mahoney A. W. Fried Foods and Risk of Colon Cancer. Am. J. Epidemiol. 1988; 128: 1000–1006
  • Muscat J. E., Wynder E. L. The Consumption of Well- Done Red Meat and the Risk of Colorectal Cancer. Am. J. Public Health 1994; 84: 856–858
  • Vatsis K. P., Weber W. W., Bell D. A., et al. Nomenclature for N-Acetyltransferases. Pharmacogenetics 1995; 5: 1–17
  • Lang N. P., Chu D. Z., Hunter C. F., et al. Role of Aromatic Amine Acetyltransferase in Human Colorectal Cancer. Arch. Surg. 1986; 121: 1259–1261
  • Wohileb J. C., Hunter C. F., Blass B., et al. Aromatic Amine Acetyltransferase as a Marker for Colorectal Cancer: Environmental and Demographic Associations. Int. J. Cancer 1990; 46: 22–30
  • Roberts-Thomson I. C., Ryan P., Khoo K. K., et al. Diet, Acetylator Phenotype, and Risk of Colorectal Neoplasia. Lancet 1996; 347: 1372–1374
  • Feng Y., Fretland A. J., Rustan T. D., et al. Higher Frequency of Aberrant Crypt Foci in Rapid than Slow Acetylator Inbred Rats Administered the Colon Carcinogen 3,2′-Dimethyl-4-aminobiphenyl. Toxicol. Appl. Pharmacol. 1997; 147: 56–62
  • Levy G. N., Weber W. W. 2-Aminofluorene-DNA Adduct Formation in Acetylator Congenic Mouse Lines. Carcinogenesis 1989; 10: 705–709
  • Paulsen J. E.I., Steffensen I. L., Namork E., et al. Effect of Acetylator Genotype on 3,2′-Dimethyl-4-aminobiphenyl Induced Aberrant Crypt Foci in the Colon of Hamsters. Carcinogenesis 1996; 17: 459–465
  • Flammang T. J., Couch L. H., Levy G. N., et al. DNAAdduct Levels in Congenic Rapid and Slow Acetylator Mice Strains Following Chronic Administration of 4- Aminobiphenyl. Carcinogenesis 1992; 13: 1887–1891
  • Chen J., Stampfer M. J., Hough H. L., et al. A Prospective Study of N-Acetyltransferase Genotype, Red Meat Intake, and Risk of Colorectal Cancer. Proc. Am. Assoc. Cancer Res. 1998; 39: 366
  • Hubbard A. L., Harrison D. J., Moyes C., et al. N-Acetyltransferase 2 Genotype in Colorectal Cancer and Selective Gene Retention in Cancers with Chromosome 8p Deletions. Gut 1997; 41: 229–234
  • Welfare M. R., Cooper J., Bassendine M. F., et al. Relationship Between Acetylator Status, Smoking, and Diet and Colorectal Cancer Risk in the Northeast of England. Carcinogenesis 1997; 18: 1351–1354
  • Rodriguez J. W., Ward G. K., Ferguson R. J., et al. Human Acetylator Genotype: Relationship to Colorectal Cancer Incidence and Arylamine N-Acetyltransferase Expression in Colon Cytosol. Arc. Toxicol. 1993; 67: 445–452
  • Oda Y., Tanaka M., Nakanishi I. Relation Between the Occurrence ofK-rasGene Point Mutations and Genotypes of Polymorphic N-Acetyltransferase in Human Colorectal Carcinomas. Carcinogenesis 1994; 15: 1365–1369
  • Shibuta K., Nakashima T., Abe M., et al. Molecular Genotyping for N-Acetylation Polymorphism in Japanese Patients with Colorectal Cancer. Cancer 1994; 74: 3108–3112
  • Probst-Hensch N. M., Haile R. W., Ingles S. A., et al. Acetylation Polymorphism and Prevalence of Colorectal Adenomas. Cancer Res. 1995; 55: 2017–2020
  • Yoshioka M., Katho T., Nakano M., Takasawa S., Nagata N., Itoh H. Glutathione S-Transferase (GST) M1, T1, P1, N-Acetyltransferase (NAT) 1 and 2 Genetic Polymorphisms and Susceptibility to Colorectal Cancer. J. Univ. Occup. Environ. Health 1999; 21: 133–147
  • Gil J. P., Lechner M. C. Increased Frequency of Wild- Type Arylamine-N-acetyltransferase Allele NAT2*4 Homozygotes in Portuguese Patients with Colorectal Cancer. Carcinogenesis 1998; 19: 37–41
  • Kampman E., Slattery M. L., Bigler J., Lepper M., Samowitz W., Caan B. J., Potter J. D. Meat Consumption, Genetic Susceptibility, and Colon Cancer Risk: A United States Multicenter Case-Control Study. Cancer Epidemiol. Biomarkers Prev. 1999; 8: 15–24
  • Scott R. J., Taeschner W., Heinimann K., et al. Association of Extracolonic Manifestations of Familial Adenomatous Polyposis with Acetylation Phenotype in a Large FAP Kindred. Eur. J. Hum. Genet. 1997; 5: 43–49
  • Bell D. A., Stephens E. A., Castranio T., et al. Polyadenylation Polymorphism in the Acetyltransferase 1 Gene (NAT1) Increases Risk of Colorectal Cancer. Cancer Res. 1995; 55: 3537–3542
  • Turesky R. J., Lang N. P., Butler M. A., Teitel C. H., Kadlubar F. F. Metabolic Activation of Carcinogenic Heterocyclic Amines by Human Liver and Colon. Carcinogenesis 1991; 12: 1839–1845
  • Nebert D. W., McKinnon R. A., Puga A. Human Drug-Metabolizing Enzyme Polymorphisms: Effects on Risk of Toxicity and Cancer. DNA Cell Biol. 1996; 15: 273–280
  • Daly A. K. Molecular Basis of Polymorphic Drug Metabolism. J. Mol. Med. 1995; 73: 539–553
  • McWilliams J. E., Sanderson B. J., Harris E. L., et al. Glutathione S-Transferase M1 (GSTM1) Deficiency and Lung Cancer Risk. Cancer Epidemiol. Biomarkers Prev. 1995; 4: 589–594
  • Abdel-Rahman S. Z., Anwar W. A., Abdel-Aal W. E., et al. GSTM1 and GSTT1 Genes Are Potential Risk Modifiers for Bladder Cancer. Cancer Detect. Prev. 1998; 22: 129–138
  • Bell D. A., Taylor J. A., Paulson D. F., et al. Genetic Risk and Carcinogen Exposure: A Common Inherited Defect of the Carcinogen-Metabolism Gene Glutathione S-Transferase M1 (GSTM1) that Increases Susceptibility to Bladder Cancer. J. Natl. Cancer Inst. 1993; 85: 1159–1164
  • Zhong S., Wyllie A. H., Barnes D., et al. Between the GSTM1 Genetic Polymorphism and Susceptibility to Bladder, Breast and Colon Cancer. Carcinogenesis 1993; 14: 1821–1824
  • Chenevix-Trench G., Young J., Coggan M., et al. Glutathione S-Transferase M1 and T1 Polymorphisms: Susceptibility to Colon Cancer and Age of Onset. Carcinogenesis 1995; 16: 1655–1657
  • Deakin M., Elder J., Hendricksen C., et al. Glutathione S-Transferase GSTT1 Genotypes and Susceptibility to Cancer: Studies of Interactions with GSTM1 in Lung, Oral, Gastric and Colorectal Cancers. Carcinogenesis 1996; 17: 881–884
  • Gertig D. M., Stampfer M., Haiman C., Hennekens C. H., et al. Glutathione S-Transferase GSTM1 and GSTT1 Polymorphisms and Colorectal Cancer Risk: A Prospective Study. Cancer Epidemiol. Biomarkers Prev. 1998; 7: 1001–1005
  • Welfare M., Monesola Adeokun A., Bassendine M. F., Daly A. K. Polymorphisms in GSTP1 GSTM1 and GSTT1 and Susceptibility to Colorectal Cancer. Cancer Epidemiol. Biomarkers Prev. 1999; 8: 289–292
  • Gawronska-Szklarz B., Lubinski J., Kladny J., Kurzawski G., et al. Polymorphism of GSTM1 Gene in Patients with Colorectal Cancer and Colonic Polyps. Exp. Toxicol. Pathol. 1999; 51: 321–325
  • Katoh T., Nagata N., Kuroda Y., et al. Glutathione S-Transferase M1 (GSTM1) and T1 (GSTT1) Genetic Polymorphism and Susceptibility to Gastric and Colorectal Adenocarcinoma. Carcinogenesis 1996; 17: 1855–1859
  • DeMarini D. M., Hastings S. B., Brooks L. R., et al. Pilot Study of Free and Conjugated Urinary Mutagenicity During Consumption of Pan-Fried Meats: Possible Modulation by Cruciferous Vegetables, Glutathione STransferase- M1 and N-Acetyltransferase-2. Mutat. Res. 1997; 381: 38–96
  • Lin H. J., Probst-Hensch N. M., Louie A. D., et al. Glutathione Transferase Null Genotype, Broccoli, and Lower Prevalence of Colorectal Adenomas. Cancer Epidemiol. Biomarkers Prev. 1998; 7: 647–652
  • Kelsey K. T., Nelson H. H., Wiencke J. K., et al. The Glutathione S-Transferase Theta and Mu Deletion Polymorphisms in Asbestosis. Am. J. Intern. Med. 1997; 31: 274–279

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.