94
Views
25
CrossRef citations to date
0
Altmetric
Original

Disruption of Oncogene/Tumor Suppressor Networks During Human Carcinogenesis

, Ph.D.
Pages 71-81 | Published online: 22 Apr 2002

REFERENCES

  • Nevins J.R., Vogt P.K. Cell Transformation by Viruses. Fundamental Virology, B.N. Fields, D.M. Knipe, P.M. Howley. 3rd Ed., Lippincott-Raven, Philadelphia 1996; 267–309
  • Evan G.I., Wyllie A.H., Gilbert C.S., Littlewood T.D., Land H., Brooks M., , et al. Induction of Apoptosis in Fibroblasts by c-myc Protein. Cell 1992; 69: 119–128
  • Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W. Oncogenic Ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602
  • Armitage P., Doll R. The Age Distribution of Cancer and a Multi-Stage Theory of Carcinogenesis. Br. J. Cancer 1954; 8: 1–12
  • Yuspa S.H., Hennings H., Saffiotti U. Cutaneous Chemical Carcinogenesis: Past, Present, and Future. J. Invest. Dermatol. 1976; 67: 199–208
  • Land H., Parada L.F., Weinberg R.A. Tumorigenic Conversion of Primary Embryo Fibroblasts Requires at Least Two Cooperating Oncogenes. Nature 1983; 304: 596–602
  • Ruley H.E. Adenovirus Early Region 1A Enables Viral and Cellular Transforming Genes to Transform Primary Cells in Culture. Nature 1983; 304: 602–606
  • Hahn W.C., Counter C.M., Lundberg A.S., Beijersbergen R.L., Brooks M.W., Weinberg R.A. Creation of Human Tumor Cells with Defined Genetic Elements. Nature 1999; 400: 464–468
  • Vogelstein B., Kinzler K.W. The Multistep Nature of Cancer. Trends Genet. 1993; 9: 138–141
  • Vogelstein B., Fearon E.R., Hamilton S.R., Kern S.E., Preisinger A.C., Leppert M., , et al. Genetic Alterations During Colorectal-Tumor Development. New Engl. J. Med. 1988; 319: 525–532
  • Lander E.S., Weinberg R.A. Genomics: Journey to the Center of Biology. Science 2000; 287: 1777–1782
  • Scherf U., Ross D.T., Waltham M., Smith L.H., Lee J.K., Tanabe L., , et al. A Gene Expression Database for the Molecular Pharmacology of Cancer (see comments). Nat. Genet. 2000; 24: 236–244
  • Knudson A.G., Jr., Meadows A.T., Nichols W.W., Hill R. Chromosomal Deletion and Retinoblastoma. New Engl. J. Med. 1976; 295(20)1120–1123
  • Knudson A.G., Jr. Mutation and Cancer: Statistical Study of Retinoblastoma. Proc. Natl. Acad. Sci. USA 1971; 68(4)820–823
  • Gateff E. Tumor Suppressor and Overgrowth Suppressor Genes of Drosophila Melanogaster: Developmental Aspects. Int. J. Dev. Biol. 1994; 38: 565–590
  • De Lorenzo C., Mechler B.M., Bryant P.J. What is Drosophila Telling Us About Cancer?. Cancer Metastasis Rev. 1999; 18: 295–311
  • Friend S.H., Bernards R., Rogelj S., Weinberg R.A., Rapaport J.M., Albert D.M., , et al. A Human DNA Segment with Properties of the Gene that Predisposes to Retinoblastoma and Osteosarcoma. Nature 1986; 323: 643–646
  • Harlow E., Whyte P., Franza B.R., Schley C. Association of Adenovirus Early Region 1A Proteins With Cellular Polypeptides. Mol. Cell. Biol. 1986; 6: 1579–1589
  • Yee S., Branton P.E. Detection of Cellular Proteins Associated with Human Adenovirus Type 5 Early Region E1A Polypeptides. Virology 1985; 147: 142–153
  • Stehelin D., Guntaka R.V., Varmus H.E., Bishop J.M. Purification of DNA Complementary to Nucleotide Sequences Required for Neoplastic Transformation of Fibroblasts by Avian Sarcoma Viruses. J. Mol. Biol. 1976; 101: 349–365
  • Stehelin D., Varmus H.E., Bishop J.M., Vogt P.K. DNA Related to The Transforming Gene(s) of Avian Sarcoma Viruses is Present in Normal Avian DNA. Nature 1976; 260: 170–173
  • Courtneidge S.A., Smith A.E. Polyoma Virus Transforming Protein Associates with the Product of the c-src Cellular Gene. Nature 1983; 303: 435–439
  • Lane D.P., Crawford L.V. T Antigen is Bound to a Host Protein in SV40-Transformed Cells. Nature 1979; 278: 261–263
  • Linzer D.I.H., Levine A.J. Characterization of a 54 k Dalton Cellular SV40 Tumor Antigen Present in SV40-Transformed Cells and Uninfected Embryonal Carcinoma Cells. Cell 1979; 17: 43–52
  • Sarnow P., Ho Y.S., Williams J., Levine A.J. Adenovirus E1b-58kD Tumor Antigen and SV40 Large Tumor Antigen are Physically Associated with the Same 54 kD Cellular Protein in Transformed Cells. Cell 1982; 28: 387–394
  • Whyte P., Buchkovich K.J., Horowitz J.M., Friend S.H., Raybuck M., Weinberg R.A., , et al. Association Between an Oncogene and an Antioncogene: The Adenovirus E1A Proteins Bind to the Retinoblastoma Gene Product. Nature 1988; 334: 124–129
  • Weinberg R.A. The Cat and Mouse Games that Genes, Viruses, and Cells Play. Cell 1997; 88: 573–575
  • DeCaprio J.A., Ludlow J.W., Figge J., Shew J.Y., Huang C.M., Lee W.H., , et al. SV40 Large Tumor Antigen Forms a Specific Complex with the Product of the Retinoblastoma Susceptibility Gene. Cell 1988; 54: 275–283
  • Dyson N., Howley P.M., Münger K., Harlow E. The Human Papillomavirus-16 E7 Oncoprotein Is Able to Bind to the Retinoblastoma Gene Product. Science 1989; 243: 934–937
  • Phelps W.C., Yee C.L., Münger K., Howley P.M. The Human Papillomavirus Type 16 E7 Gene Encodes Transactivation and Transformation Functions Similar to Adenovirus E1a. Cell 1988; 53: 539–547
  • Defeo-Jones D., Huang P.S., Jones R.E., Haskell K.M., Vuocolo G.A., Hanobik M.G., , et al. Cloning of cDNAs for Cellular Proteins that Bind to the Retinoblastoma Gene Product. Nature 1991; 352: 251–254
  • Kaelin W.G., Jr., Pallas D.C., DeCaprio J.A., Kaye F.J., Livingston D.M. Identification of Cellular Proteins that Can Interact Specifically with the T/E1A-Binding Region of the Retinoblastoma Gene Product. Cell 1991; 64: 521–532
  • Buchkovich K., Duffy L.A., Harlow E. The Retinoblastoma Protein is Phosphorylated During Specific Phases of the Cell Cycle. Cell 1989; 58: 1097–1105
  • DeCaprio J.A., Ludlow J.W., Lynch D., Furukawa Y., Griffin J., Piwnica-Worms H., , et al. The Product of the Retinoblastoma Susceptibility Gene has Properties of a Cell Cycle Regulatory Element. Cell 1989; 58: 1085–1095
  • Lin B.T.-Y., Gruenwald S., Morla A.O., Lee W.-H., Wang J.Y.J. Retinoblastoma Cancer Suppressor Gene Product is a Substrate of the Cell Cycle Regulator cdc2 Kinase. EMBO J. 1991; 10: 857–864
  • Roberts J.M. Evolving Ideas About Cyclins. Cell 1999; 98: 129–132
  • Sherr C.J. Cancer Cell Cycles. Science 1996; 274: 1672–1677
  • Harbour J.W., Luo R.X., Dei Santi A., Postigo A.A., Dean D.C. Cdk Phosphorylation Triggers Sequential Intramolecular Interactions that Progressively Block Rb Functions as Cells Move Through G1. Cell 1999; 98: 859–869
  • Weinberg R.A. The Retinoblastoma Protein and Cell Cycle Control. Cell 1995; 81: 323–330
  • Weintraub S.J., Prater C.A., Dean D.C. Retinoblastoma Protein Switches the E2F Site from Positive to Negative Element. Nature 1992; 358: 259–261
  • Dyson N. The Regulation of E2F by pRB-Family Proteins. Genes. Dev. 1998; 12: 2245–2262
  • Horowitz J.M., Park S.-H., Bogenmann E., Cheng J.-C., Yandell D.W., Kaye F., , et al. Frequent Inactivation of the Retinoblastoma Anti-Oncogene Is Restricted to a Subset of Human Tumors. Proc. Natl. Acad. Sci. USA 1990; 87: 2775–2779
  • Scheffner M., Münger K., Byrne J.C., Howley P.M. The State of the p53 and Retinoblastoma Genes in Human Cervical Carcinoma Cell Lines. Proc. Natl. Acad. Sci. USA 1991; 88: 5523–5527
  • Szepetowski P., Nguyen C., Perucca-Lostanlen D., Carle G.F., Tsujimoto Y., Birnbaum D., , et al. D11S146 and BCL1 Are Physically Linked but Can Be Discriminated by Their Amplification Status in Human Breast Cancer. Genomics 1991; 10(2)410–416
  • Jiang W., Kahn S.M., Tomita N., Zhang Y.J., Lu S.H., Weinstein I.B. Amplification and Expression of the Human Cyclin D Gene in Esophageal Cancer. Cancer Res. 1992; 52: 2980–2983
  • Zukerberg L.R., Yang W.I., Gadd M., Thor A.D., Koerner F.C., Schmidt E.V., , et al. Cyclin D1 (PRAD1) Protein Expression in Breast Cancer: Approximately One-Third of Infiltrating Mammary Carcinomas Show Overexpression of the Cyclin D1 Oncogene. Mod. Pathol. 1995; 8: 560–567
  • Costello J.F., Plass C., Arap W., Chapman V.M., Held W.A., Berger M.S., , et al. Cyclin-Dependent Kinase 6 (CDK6) Amplification in Human Gliomas Identified Using Two-Dimensional Separation of Genomic DNA. Cancer Res. 1997; 57: 1250–1254
  • Timmermann S., Hinds P., Münger K. Elevated Activity of Cyclin-Dependent Kinase 6 in Human Squamous Cell Carcinoma Lines. Cell Growth Differ. 1997; 8: 361–370
  • Reifenberger G., Reifenberger J., Ichimura K., Meltzer P.S., Collins V.P. Amplification of Multiple Genes from Chromosomal Region 12q13-14 in Human Malignant Gliomas: Preliminary Mapping of the Amplicons Shows Preferential Involvement of CDK4, SAS, and MDM2. Cancer Res. 1994; 54: 4299–4303
  • Khatib Z.A., Matsushime H., Valentine M., Shapiro D.N., Sherr C.J., Look A.T. Coamplification of the CDK4 Gene with MDM2 and GLI in Human Sarcomas. Cancer Res. 1993; 53: 5535–5541
  • Reymond A., Brent R. p16 Proteins from Melanoma-prone Families Are Deficient in Binding to Cdk4. Oncogene 1995; 11(6)1173–1178
  • Hussussian C.J., Struewing J.P., Goldstein A.M., Higgins P.A., Ally D.S., MD, et al. Germline p16 Mutations in Familial Melanoma (see comments). Nat. Genet. 1994; 8: 15–21
  • Kamb A., Shattuck-Eidens D., Eeles R., Liu Q., Gruis N.A., Ding W., , et al. Analysis of the p16 Gene (CDKN2) as a Candidate for the Chromosome 9p Melanoma Susceptibility Locus. Nat. Genet. 1994; 8: 23–26
  • Hebert J., Cayuela J.M., Berkeley J., Sigaux F. Candidate Tumor-Suppressor Genes MTS1 (p16(INK4A)) and MTS2 (p15(INK4B)) Display Frequent Homozygous Deletions in Primary Cells from T- But Not from B-Cell Lineage Acute Lymphoblastic Leukemias. Blood 1994; 84: 4038–4044
  • Weinberg R.A. E2F and Cell Proliferation: A World Turned Upside Down. Cell 1996; 85(4)457–459
  • Sellers W.R., Novitch B.G., Miyake S., Heith A., Otterson G.A., Kaye F.J., , et al. Stable Binding to E2F Is Not Required for the Retinoblastoma Protein to Activate Transcription, Promote Differentiation, and Suppress Tumor Cell Growth. Genes Dev. 1998; 12: 95–106
  • Hurford R.K., Jr., Cobrinik D., Lee M.H., Dyson N. pRB and p107/p130 Are Required for the Regulated Expression of Different Sets of E2F Responsive Genes. Genes Dev. 1997; 11: 1447–1463
  • Claudio P.P., Howard C.M., Fu Y., Cinti C., Califano L., Micheli P., , et al. Mutations in the Retinoblastoma-Related Gene RB2/p130 in Primary Nasopharyngeal Carcinoma. Cancer Res. 2000; 60: 8–12
  • Claudio P.P., Howard C.M., Pacilio C., Cinti C., Romano G., Minimo C., , et al. Mutations in the Retinoblastoma-Related Gene RB2/p130 in Lung Tumors and Suppression of Tumor Growth In Vivo by Retrovirus-Mediated Gene Transfer. Cancer Res. 2000; 60: 372–382
  • Werness B.A., Levine A.J., Howley P.M. Association of Human Papillomavirus Types 16 and 18 E6 Proteins with p53. Science 1990; 248: 76–79
  • DeLeo A.B., Jay G., Appella E., Dubois G.C., Law L.W., Old L.J. Detection of a Transformation-Related Antigen in Chemically Induced Sarcomas and Other Transformed Cells of the Mouse. Proc. Natl. Acad. Sci. USA 1979; 76: 2420–2424
  • Parada L.F., Land H., Weinberg R.A., Wolf D., Rotter V. Cooperation Between Gene Encoding p53 Tumour Antigen and Ras in Cellular Transformation. Nature 1984; 312: 649–651
  • Ben David Y., Prideaux V.R., Chow V., Benchimol S., Bernstein A. Inactivation of the p53 Oncogene by Internal Deletion or Retroviral Integration in Erythroleukemic Cell Lines Induced by Friend Leukemia Virus. Oncogene 1988; 3: 179–185
  • Hinds P., Finlay C., Levine A.J. Mutation is Required to Activate the p53 Gene for Cooperation with the Ras Oncogene and Transformation. J. Virol. 1989; 63: 739–746
  • Finlay C.A., Hinds P.W., Levine A.J. The p53 Protooncogene Can Act as a Suppressor of Transformation. Cell Growth Differ. 1989; 57: 1083–1093
  • Baker S.J., Fearon E.R., Nigro J.M., Hamilton S.R., Preisinger A.C., Jessup J.M., , et al. Chromosome 17 Deletions and p53 Gene Mutations in Colorectal Carcinomas. Science 1989; 244: 217–221
  • Li F.P., Fraumeni J.F., Jr. Rhabdomyosarcoma in Children: Epidemiologic Study and Identification of a Familial Cancer Syndrome. J. Natl. Cancer. Inst. 1969; 43: 1365–1373
  • Malkin D., Li F.P., Strong L.C., Fraumini J.F., Jr., Nelson C.E., Kim D.H., , et al. Germ Line p53 Mutations in a Familial Syndrome of Breast Cancer, Sarcomas, and Other Neoplasias. Science 1990; 250: 1233–1238
  • Gualberto A., Aldape K., Kozakiewicz K., Tlsty T.D. An Oncogenic Form of p53 Confers a Dominant, Gain-of-Function Phenotype that Disrupts Spindle Checkpoint Control. Proc. Natl. Acad. Sci. USA 1998; 95: 5166–5171
  • Marin M.C., Jost C.A., Brooks L.A., Irwin M.S., O'Nions J., Tidy J.A., , et al. A Common Polymorphism Acts as an Intragenic Modifier of Mutant p53 Behaviour. Nat. Genet. 2000; 25: 47–54
  • Lane D.P. Cancer: p53, Guardian of the Genome. Nature 1992; 358: 15–16
  • Sakaguchi K., Herrera J.E., Saito S., Miki T., Bustin M., Vassilev A., , et al. DNA Damage Activates p53 Through a Phosphorylation–Acetylation Cascade. Genes Dev. 1998; 12: 2831–2841
  • El-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., , et al. WAF1, a Potential Mediator of p53 Tumor Suppression. Cell 1993; 75: 817–825
  • Harper J.W., Adami G.R., Wei N., Keyomarsi K., Elledge S.J. The p21 CDK-Interacting Protein cip1 is a Potent Inhibitor of G1 Cyclin-Dependent Kinases. Cell 1993; 75: 805–816
  • Harrington E.A., Bruce J.L., Harlow E., Dyson N. pRB Plays an Essential Role in Cell Cycle Arrest Induced by DNA Damage. Proc. Natl. Acad. Sci. USA 1998; 95: 11945–11950
  • Wagner A.J., Kokontis J.M., Hay N. Myc-Mediated Apoptosis Requires Wild-type p53 in a Manner Independent of Cell Cycle Arrest and the Ability of p53 to Induce p21waf1/cip1. Genes Dev. 1994; 8: 2817–2830
  • Polyak K., Xia Y., Zweier J.L., Kinzler K.W., Vogelstein B. A Model for p53-Induced Apoptosis. Nature 1997; 389: 300–305
  • Miyashita T., Reed J.C. Tumor Suppressor p53 is a Direct Transcriptional Activator of the Human Bax Gene. Cell 1995; 80(2)293–299
  • Oda E., Ohki R., Murasawa H., Nemoto J., Shibue T., Yamashita T., , et al. Noxa, a BH3-only Member of the Bcl-2 Family and Candidate Mediator of p53-Induced Apoptosis. Science 2000; 288: 1053–1058
  • Attardi L.D., Reczek E.E., Cosmas C., Demicco E.G., McCurrach M.E., Lowe S.W., , et al. PERP, an Apoptosis-Associated Target of p53, is a Novel Member of the PMP-22/gas3 Family. Genes Dev. 2000; 14: 704–718
  • Bennett M., Macdonald K., Chan S.W., Luzio J.P., Simari R., Weissberg P. Cell Surface Trafficking of Fas: a Rapid Mechanism of p53-mediated Apoptosis. Science 1998; 282: 290–293
  • Kubbutat M.H., Jones S.N., Vousden K.H. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303
  • Haupt Y., Maya R., Kazaz A., Oren M. Mdm2 Promotes the Rapid Degradation of p53. Nature 1997; 387: 296–299
  • Barak Y., Juven T., Haffner R., Oren M. Mdm2 Expression Is Induced by Wild Type p53 Activity. EMBO J. 1993; 12: 46146–46148
  • Momand J., Zambetti G.P., Olson D.C., George D., Levine A.J. The mdm-2 Oncogene Product Forms a Complex with the p53 Protein and Inhibits p53-mediated Transactivation. Cell 1992; 69(7)1237–1245
  • Honda R., Tanaka H., Yasuda H. Oncoprotein MDM2 Is a Ubiquitin Ligase E3 for Tumor Suppressor p53. FEBS Lett. 1997; 420: 25–27
  • Ladanyi M., Cha C., Lewis R., Jhanwar S.C., Huvos A.G., Healey J.H. MDM2 Gene Amplification in Metastatic Osteosarcoma. Cancer Res. 1993; 53: 16–18
  • Leach F.S., Tokino T., Meltzer P., Burrell M., Oliner J.D., Smith S., , et al. p53 Mutation and MDM2 Amplification in Human Soft Tissue Sarcomas. Cancer Res. 1993; 53: 2231–2234
  • Xiao Z.X., Chen J.D., Levine A.J., Modjtahedi N., Xing J., Sellers W.R., , et al. Interaction Between the Retinoblastoma Protein and the Oncoprotein MDM2. Nature 1995; 375: 694–698
  • Hsieh J.K., Chan F.S., O'Connor D.J., Mittnacht S., Zhong S., Lu X. RB Regulates the Stability and the Apoptotic Function of p53 via MDM2. Mol. Cell. 1999; 3: 181–193
  • Stott F.J., Bates S., James M.C., McConnell B.B., Starborg M., Brookes S., , et al. The Alternative Product from the Human CDKN2A Locus, p14(ARF), Participates in a Regulatory Feedback Loop with p53 and MDM2. EMBO J. 1998; 17: 5001–5014
  • Zhang Y., Xiong Y., Yarbrough W.G. ARF Promotes MDM2 Degradation and Stabilizes p53: ARF-INK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways. Cell 1998; 92: 725–734
  • Quelle D.E., Zindy F., Ashmun R.A., Sherr C.J. Alternative Reading Frames of the INK4a Tumor Suppressor Gene Encode Two Unrelated Proteins Capable of Inducing Cell Cycle Arrest. Cell 1995; 83: 993–1000
  • Bates S., Phillips A.C., Clark P.A., Stott F., Peters G., Ludwig R.L., , et al. p14ARF Links the Tumour Suppressors RB and p53. Nature 1998; 395: 124–125
  • Sherr C.J., Weber J.D. The ARF/p53 Pathway. Curr. Opin. Genet. Dev. 2000; 10: 94–99
  • Inoue K., Roussel M.F., Sherr C.J. Induction of ARF Tumor Suppressor Gene Expression and Cell Cycle Arrest by Transcription Factor DMP1. Proc. Natl. Acad. Sci. USA 1999; 96: 3993–3998
  • Hirai H., Sherr C.J. Interaction of D-type Cyclins with a Novel Myb-like Transcription Factor, DMP1. Mol. Cell Biol. 1996; 16: 6457–6467
  • Ruas M., Peters G. The p16INK4a/CDKN2A Tumor Suppressor and Its Relatives. BBA Rev. Cancer 1998; 1378(2)F115–F177
  • Campisi J. Cancer, Aging and Cellular Senescence. In Vivo 2000; 14: 183–188
  • Lundblad V., Blackburn E.H. An Alternative Pathway for Yeast Telomere Maintenance Rescues est1-Senescence. Cell 1993; 73: 347–360
  • Kim N.W., Piatyszek M.A., Prowse K.R., Harley C.B., West M.D., Ho P.L., , et al. Specific Association of Human Telomerase Activity with Immortal Cells and Cancer. Science 1994; 266: 2011–2015
  • Wang J., Xie L.Y., Allan S., Beach D., Hannon G.J. Myc Activates Telomerase. Genes Dev. 1998; 12(12)1769–1774
  • Wu K.J., Grandori C., Amacker M., Simon-Vermot N., Polack A., Lingner J., , et al. Direct Activation of TERT Transcription by c-MYC. Nat. Genet. 1999; 21: 220–224
  • Wang J., Hannon G.J., Beach D.H. Risky Immortalization by Telomerase. Nature 2000; 405: 755–756
  • Klingelhutz A.J., Foster S.A., McDougall J.K. Telomerase Activation by the E6 Gene Product of Human Papillomavirus Type 16. Nature 1996; 380: 79–82
  • Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C.P., Morin G.B., , et al. Extension of Life-Span by Introduction of Telomerase into Normal Human Cells. Science 1998; 279: 349–352
  • Kiyono T., Foster S.A., Koop J.I., McDougall J.K., Galloway D.A., Klingelhutz A.J. Both Rb/p16INK4a Inactivation and Telomerase Activity Are Required to Immortalize Human Epithelial Cells (see comments). Nature 1988; 396: 84–88
  • Artandi S.E., Chang S., Lee S.L., Alson S., Gottlieb G.J., Chin L., , et al. Telomere Dysfunction Promotes Non-reciprocal Translocations and Epithelial Cancers in Mice. Nature 2000; 406: 641–645
  • Hanahan D. Benefits of Bad Telomeres. Nature 2000; 406: 573–574
  • Sen S. Aneuploidy and Cancer. Curr. Opin. Oncol. 2000; 12: 82–88
  • Nowell P.C. The Clonal Evolution of Tumor Cell Populations. Science 1976; 194: 23–28
  • Livingstone L.R., White A., Sprouse J., Livanos E., Jacks T., Tlsty T.D. Altered Cell Cycle Arrest and Gene Amplification Potential Accompany Loss of Wild-type p53. Cell 1992; 70: 923–935
  • Hashida T., Yasumoto S. Induction of Chromosomal Abnormalities in Mouse and Human Epidermal Keratinocytes by the Human Papillomavirus Type 16 E7 Oncogene. J. Gen. Virol. 1991; 72: 1569–1577
  • Urbani L., Stearns T. The Centrosome. Curr. Biol. 1999; 9: R315–R317
  • Meraldi P., Lukas J., Fry A.M., Bartek J., Nigg E.A. Centrosome Duplication in Mammalian Somatic Cells Requires E2F and Cdk2-cyclin A. Nat. Cell. Biol. 1999; 1: 88–93
  • Duensing S., Lee L.Y., Duensing A., Basile J., Piboonniyom S., Gonzalez S., , et al. The Human Papillomavirus Type 16 E6 and E7 Oncoproteins Cooperate to Induce Mitotic Defects and Genomic Instability by Uncoupling Centrosome Duplication from the Cell Division Cycle. Proc. Natl. Acad. Sci. USA 2000; 97: 10002–10007
  • Cahill D.P., Kinzler K.W., Vogelstein B., Lengauer C. Genetic Instability and Darwinian Selection in Tumours. Trends Cell Biol. 1999; 9: M57–M60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.