145
Views
44
CrossRef citations to date
0
Altmetric
Original

Cancer/Testis Antigens: Structural and Immunobiological Properties

, Ph.D., , Ph.D. & , M.D.
Pages 222-236 | Published online: 04 Sep 2002

REFERENCES

  • Boon T., van der Bruggen P. Human Tumor Antigens Recognized by T Lymphocytes. J. Exp. Med. 1996; 183: 725–729
  • Kirkin A.F., Dzhandzhugazyan K., Zeuthen J. Melanoma-Associated Antigens Recognized by Cytotoxic T Lymphocytes. APMIS 1998; 106: 665–679
  • van der Bruggen P., Traversari C., Chomez P., , et al. A Gene Encoding an Antigen Recognized by Cytolytic T Lymphocytes on a Human Melanoma. Science 1991; 254: 1643–1647
  • Güre A.O., Türeci Ö., Sahin U., , et al. SSX: a Multigene Family with Several Members Transcribed in Normal Testis and Human Cancer. Int. J. Cancer 1997; 72: 965–971
  • Robbins P.F., El-Gamil M., Li Y.F., , et al. Cloning of a New Gene Encoding an Antigen Recognized by Melanoma-Specific HLA-A24-Restricted Tumor-Infiltrating Lymphocytes. J. Immunol. 1995; 154: 5944–5950
  • De Plaen E., Arden K., Traversari C., , et al. Structure, Chromosomal Localization, and Expression of 12 Genes of the MAGE Family. Immunogenetics 1994; 40: 360–369
  • Jurk M., Kremmer E., Schwarz U., , et al. MAGE-11 Protein is Highly Conserved in Higher Organisms and Located Predominantly in the Nucleus. Int. J. Cancer 1998; 75: 762–766
  • Huang L.Q., Brasseur F., Serrano A., , et al. Cytolytic T Lymphocytes Recognize an Antigen Encoded by MAGE-A10 on a Human Melanoma. J. Immunol. 1999; 162: 6849–6854
  • Serrano A., Lethé B., Delroisse J.M., , et al. Quantitative Evaluation of the Expression of MAGE Genes in Tumors by Limiting Dilution of cDNA Libraries. Int. J. Cancer 1999; 83: 664–669
  • Visseren M.J., van der Burg S.H., van der Voort E.I., , et al. Identification of HLA-A*0201-Restricted CTL Epitopes Encoded by the Tumor-Specific MAGE-2 Gene Product. Int. J. Cancer 1997; 73: 125–130
  • Gaugler B., Van den Eynde B.J., van der Bruggen P., , et al. Human Gene MAGE-3 Codes for an Antigen Recognized on a Melanoma by Autologous Cytolytic T Lymphocytes. J. Exp. Med. 1994; 179: 921–930
  • Duffour M.T., Chaux P., Lurquin C., , et al. A MAGE-A4 Peptide Presented by HLA-A2 is Recognized by Cytolytic T Lymphocytes. Eur. J. Immunol. 1999; 29: 3329–3337
  • Tanzarella S., Russo V., Lionello I., , et al. Identification of a Promiscuous T-Cell Epitope Encoded by Multiple Members of the MAGE Family. Cancer Res. 1999; 59: 2668–2674
  • Panelli M.C., Bettinotti M.P., Lally K., , et al. A Tumor-Infiltrating Lymphocyte from a Melanoma Metastasis with Decreased Expression of Melanoma Differentiation Antigens Recognizes MAGE-12. J. Immunol. 2000; 164: 4382–4392
  • Manici S., Sturniolo T., Imro M.A., , et al. Melanoma Cells Present a MAGE-3 Epitope to CD4+ Cytotoxic T Cells in Association with Histocompatibility Leukocyte Antigen DR11. J. Exp. Med. 1999; 189: 871–876
  • Chaux P., Vantomme V., Stroobant V., , et al. Identification of MAGE-3 Epitopes Presented by HLA-DR Molecules to CD4+ T Lymphocytes. J. Exp. Med. 1999; 189: 767–778
  • Mulcahy K.A., Rimoldi D., Brasseur F., , et al. Infrequent Expression of the MAGE Gene Family in Uveal Melanomas. Int. J. Cancer 1996; 66: 738–742
  • Van Pel A., van der Bruggen P., Coulie P.G., , et al. Genes Coding for Tumor Antigens Recognized by Cytolytic T Lymphocytes. Immunol. Rev. 1995; 145: 229–250
  • Yamashita N., Ishibashi H., Hayashida K., , et al. High Frequency of the MAGE-1 Gene Expression in Hepatocellular Carcinoma. Hepatology 1996; 24: 1437–1440
  • Chambost H., Brasseur F., Coulie P., , et al. A Tumour-Associated Antigen Expression in Human Haematological Malignancies. Br. J. Haematol. 1993; 84: 524–526
  • Shichijo S., Tsunosue R., Masuoka K., , et al. Expression of the MAGE Gene Family in Human Lymphocytic Leukemia. Cancer Immunol. Immunother. 1995; 41: 90–103
  • Chambost H., van Baren N., Brasseur F., , et al. Expression of Gene MAGE-A4 in Reed–Sternberg Cells. Blood 2000; 95: 3530–3533
  • De Plaen E., Naerhuyzen B., De Smet C., , et al. Alternative Promoters of Gene MAGE4a. Genomics 1997; 40: 305–313
  • Hunt J.S. Immunobiology of Pregnancy. Curr. Opin. Immunol. 1992; 4: 591–596
  • Brasseur F., Rimoldi D., Liénard D., , et al. Expression of MAGE Genes in Primary and Metastatic Cutaneous Melanoma. Int. J. Cancer 1995; 63: 375–380
  • Eura M., Ogi K., Chikamatsu K., , et al. Expression of the MAGE Gene Family in Human Head-and-Neck Squamous-Cell Carcinomas. Int. J. Cancer 1995; 64: 304–308
  • Katano M., Nakamura M., Morisaki T., , et al. Melanoma Antigen-Encoding Gene-1 Expression in Invasive Gastric Carcinoma: Correlation with Stage of Disease. J. Surg. Oncol. 1997; 64: 195–201
  • Patard J.J., Brasseur F., Gil-Diez S., , et al. Expression of MAGE Genes in Transitional-Cell Carcinomas of the Urinary Bladder. Int. J. Cancer 1995; 64: 60–64
  • Marchand M., Weynants P., Rankin E., , et al. Tumor Regression Responses in Melanoma Patients Treated with a Peptide Encoded by Gene MAGE-3. Int. J. Cancer 1995; 63: 883–885
  • Marchand M., van Baren N., Weynants P., , et al. Tumor Regressions Observed in Patients with Metastatic Melanoma Treated with an Antigenic Peptide Encoded by Gene MAGE-3 and Presented by HLA-A1. Int. J. Cancer 1999; 80: 219–230
  • Lurquin C., De Smet C., Brasseur F., , et al. Two Members of the Human MAGEB Gene Family Located in Xp21.3 Are Expressed in Tumors of Various Histological Origins. Genomics 1997; 46: 397–408
  • Lucas S., De Plaen E., Boon T. MAGE-B5, MAGE-B6, MAGE-C2, and MAGE-C3: Four New Members of the MAGE Family with Tumor-Specific Expression. Int. J. Cancer 2000; 87: 55–60
  • Muscatelli F., Walker A.P., De Plaen E., , et al. Isolation and Characterization of a MAGE Gene Family in the Xp21.3 Region. Proc. Natl Acad. Sci. USA 1995; 92: 4987–4991
  • Dabovic B., Zanaria E., Bardoni B., , et al. A Family of Rapidly Evolving Genes from the Sex Reversal Critical Region in Xp21. Mamm. Genome 1995; 6: 571–580
  • Fleischhauer K., Gattinoni L., Dalerba P., , et al. The DAM Gene Family Encodes a New Group of Tumor-Specific Antigens Recognized by Human Leukocyte Antigen A2-Restricted Cytotoxic T Lymphocytes. Cancer Res. 1998; 58: 2969–2972
  • Lucas S., De Smet C., Arden K.C., , et al. Identification of a New MAGE Gene with Tumor-Specific Expression by Representational Difference Analysis. Cancer Res. 1998; 58: 743–752
  • Chen Y.T., Güre A.O., Tsang S., , et al. Identification of Multiple Cancer/Testis Antigens by Allogeneic Antibody Screening of a Melanoma Cell Line Library. Proc. Natl Acad. Sci. USA 1998; 95: 6919–6923
  • Güre A.O., Stockert E., Arden K.C., , et al. CT10: A New Cancer-Testis (CT) Antigen Homologous to CT7 and the MAGE Family, Identified by Representational-Difference Analysis. Int. J. Cancer 2000; 85: 726–732
  • Boccaccio I., Glatt-Deeley H., Watrin F., , et al. The Human MAGEL2 Gene and its Mouse Homologue are Paternally Expressed and Mapped to the Prader–Willi Region. Hum. Mol. Genet. 1999; 8: 2497–2505
  • Nakada Y., Taniura H., Uetsuki T., , et al. The Human Chromosomal Gene for Necdin, a Neuronal Growth Suppressor, in the Prader–Willi Syndrome Deletion Region. Gene 1998; 213: 65–72
  • Pold M., Zhou J., Chen G.L., , et al. Identification of a New, Unorthodox Member of the MAGE Gene Family. Genomics 1999; 59: 161–167
  • Lucas S., Brasseur F., Boon T. A New MAGE Gene with Ubiquitous Expression Does Not Code for Known MAGE Antigens Recognized by T Cells. Cancer Res. 1999; 59: 4100–4103
  • Fukuda M.N., Sato T., Nakayama J., , et al. Trophinin and Tastin, a Novel Cell Adhesion Molecule Complex with Potential Involvement in Embryo Implantation. Genes Dev. 1995; 9: 1199–1210
  • Boël P., Wildmann C., Sensi M.L., , et al. BAGE: A New Gene Encoding an Antigen Recognized on Human Melanomas by Cytolytic T Lymphocytes. Immunity 1995; 2: 167–175
  • Van den Eynde B.J., Peeters O., De Backer O., , et al. A New Family of Genes Coding for an Antigen Recognized by Autologous Cytolytic T Lymphocytes on a Human Melanoma. J. Exp. Med. 1995; 182: 689–698
  • Chen M.E., Lin S.H., Chung L.W., , et al. Isolation and Characterization of PAGE-1 and GAGE-7. New Genes Expressed in the LNCaP Prostate Cancer Progression Model that Share Homology with Melanoma-Associated Antigens. J. Biol. Chem. 1998; 273: 17618–17625
  • De Backer O., Arden K.C., Boretti M., , et al. Characterization of the GAGE Genes That Are Expressed in Various Human Cancers and in Normal Testis. Cancer Res. 1999; 59: 3157–3165
  • Brinkmann U., Vasmatzis G., Lee B., , et al. PAGE-1, an X Chromosome-Linked GAGE-like Gene that is Expressed in Normal and Neoplastic Prostate, Testis, and Uterus. Proc. Natl Acad. Sci. USA 1998; 95: 10757–10762
  • Brinkmann U., Vasmatzis G., Lee B., , et al. Novel Genes in the PAGE and GAGE Family of Tumor Antigens Found by Homology Walking in the dbEST Database. Cancer Res. 1999; 59: 1445–1448
  • Ikeda H., Lethé B., Lehmann F., , et al. Characterization of an Antigen that is Recognized on a Melanoma Showing Partial HLA Loss by CTL Expressing an NK Inhibitory Receptor. Immunity 1997; 6: 199–208
  • van Baren N., Chambost H., Ferrant A., , et al. PRAME, A Gene Encoding an Antigen Recognized on a Human Melanoma by Cytolytic T Cells, Is Expressed in Acute Leukaemia Cells. Br. J. Haematol. 1998; 102: 1376–1379
  • Watari K., Tojo A., Nagamura-Inoue T., , et al. Identification of a Melanoma Antigen, PRAME, as a BCR/ABL-Inducible Gene. FEBS Lett. 2000; 466: 367–371
  • Pellat-Deceunynck C., Mellerin M.P., Labarriere N., , et al. The Cancer Germ-Line Genes MAGE-1, MAGE-3 and PRAME Are Commonly Expressed by Human Myeloma Cells. Eur. J. Immunol. 2000; 30: 803–809
  • Sahin U., Türeci Ö., Schmitt H., , et al. Human Neoplasms Elicit Multiple Specific Immune Responses in the Autologous Host. Proc. Natl Acad. Sci. USA 1995; 92: 11810–11813
  • Chen Y.T., Boyer A.D., Viars C.S., , et al. Genomic Cloning and Localization of CTAG, a Gene Encoding an Autoimmunogenic Cancer-Testis Antigen NY-ESO-1, to Human Chromosome Xq28. Cytogenet. Cell Genet. 1997; 79: 237–240
  • Chen Y.T., Scanlan M.J., Sahin U., , et al. A Testicular Antigen Aberrantly Expressed in Human Cancers Detected by Autologous Antibody Screening. Proc. Natl Acad. Sci. USA 1997; 94: 1914–1918
  • Wang R.F., Johnston S.L., Zeng G., , et al. A Breast and Melanoma-Shared Tumor Antigen: T Cell Responses to Antigenic Peptides Translated from Different Open Reading Frames. J. Immunol. 1998; 161: 3598–3606
  • Jäger E., Jäger D., Karbach J., , et al. Identification of NY-ESO-1 Epitopes Presented by Human Histocompatibility Antigen (HLA)-DRB4*0101-0103 and Recognized by CD4+ T Lymphocytes of Patients with NY-ESO-1-Expressing Melanoma. J. Exp. Med. 2000; 191: 625–630
  • Lethé B., Lucas S., Michaux L., , et al. LAGE-1, A New Gene with Tumor Specificity. Int. J. Cancer 1998; 76: 903–908
  • Türeci Ö., Sahin U., Schobert I., , et al. The SSX-2 Gene, Which Is Involved in the t(X;18) Translocation of Synovial Sarcomas, Codes for the Human Tumor Antigen HOM-MEL-40. Cancer Res. 1996; 56: 4766–4772
  • Margolin J.F., Friedman J.R., Meyer W.K., , et al. Krüppel-Associated Boxes Are Potent Transcriptional Repression Domains. Proc. Natl Acad. Sci. USA 1994; 91: 4509–4513
  • Türeci Ö., Sahin U., Zwick C., , et al. Identification of a Meiosis-Specific Protein as a Member of the Class of Cancer/Testis Antigens. Proc. Natl Acad. Sci. USA 1998; 95: 5211–5216
  • Meuwissen R.L., Meerts I., Hoovers J.M., , et al. Human Synaptonemal Complex Protein 1 (SCP1): Isolation and Characterization of the cDNA and Chromosomal Localization of the Gene. Genomics 1997; 39: 377–384
  • Lim S.H., Austin S., Owen-Jones E., , et al. Expression of Testicular Genes in Haematological Malignancies. Br. J. Cancer 1999; 81: 1162–1164
  • Zendman A.J.W., Cornelissen I.M.A., Weidle U.H., , et al. CTp11, a Novel Member of the Family of Human Cancer/Testis Antigens. Cancer Res. 1999; 59: 6223–6229
  • Yuan L., Shan J., De Risi D., , et al. Isolation of a Novel Gene, TSP50, by a Hypomethylated DNA Fragment in Human Breast Cancer. Cancer Res. 1999; 59: 3215–3221
  • Scanlan M.J., Altorki N.K., Güre A.O., , et al. Expression of Cancer-Testis Antigens in Lung Cancer: Definition of Bromodomain Testis-Specific Gene (BRDT) as a New CT Gene, CT9. Cancer Lett. 2000; 150: 155–164
  • Shichijo S., Nakao M., Imai Y., , et al. A Gene Encoding Antigenic Peptides of Human Squamous Cell Carcinoma Recognized by Cytotoxic T Lymphocytes. J. Exp. Med. 1998; 187: 277–288
  • Kikuchi M., Nakao M., Inoue Y., , et al. Identification of a SART-1-Derived Peptide Capable of Inducing HLA-A24-Restricted and Tumor-Specific Cytotoxic T Lymphocytes. Int. J. Cancer 1999; 81: 459–466
  • Yang D., Nakao M., Shichijo S., , et al. Identification of a Gene Coding for a Protein Possessing Shared Tumor Epitopes Capable of Inducing HLA-A24-Restricted Cytotoxic T Lymphocytes in Cancer Patients. Cancer Res. 1999; 59: 4056–4063
  • Weber J., Salgaller M., Samid D., , et al. Expression of the MAGE-1 Tumor Antigen is Up-Regulated by the Demethylating Agent 5-Aza-2′-Deoxycytidine. Cancer Res. 1994; 54: 1766–1771
  • De Smet C., De Backer O., Faraoni I., , et al. The Activation of Human Gene MAGE-1 in Tumor Cells is Correlated with Genome-Wide Demethylation. Proc. Natl Acad. Sci. USA 1996; 93: 7149–7153
  • Li J., Yang Y., Fujie T., , et al. Expression of BAGE, GAGE, and MAGE Genes in Human Gastric Carcinoma. Clin. Cancer Res. 1996; 2: 1619–1625
  • De Smet C., Martelange V., Lucas S., , et al. Identification of Human Testis-Specific Transcripts and Analysis of Their Expression in Tumor Cells. Biochem. Biophys. Res. Commun. 1997; 241: 653–657
  • De Smet C., Lurquin C., Lethé B., , et al. DNA Methylation Is the Primary Silencing Mechanism for a Set of Germ Line- and Tumor-Specific Genes with a CpG-Rich Promoter. Mol. Cell Biol. 1999; 19: 7327–7335
  • Wijermans P., Lubbert M., Verhoef G., , et al. Low-Dose 5-Aza-2′-Deoxycytidine, a DNA Hypomethylating Agent, for the Treatment of High-Risk Myelodysplastic Syndrome: A Multicenter Phase II Study in Elderly Patients. J. Clin. Oncol. 2000; 18: 956–962
  • Thibault A., Figg W.D., Bergan R.C., , et al. A Phase II Study of 5-Aza-2′-Deoxycytidine (Decitabine) in Hormone Independent Metastatic (D2) Prostate Cancer. Tumori 1998; 84: 87–89
  • Barker C.F., Billingham R.E. Immunologically Privileged Sites. Adv. Immunol. 1977; 25(1–54)1–54
  • Tomita Y., Kimura M., Tanikawa T., , et al. Immunohistochemical Detection of Intercellular Adhesion Molecule-1 (ICAM-1) and Major Histocompatibility Complex Class I Antigens in Seminoma. J. Urol. 1993; 149: 659–663
  • Takahashi K., Shichijo S., Noguchi M., , et al. Identification of MAGE-1 and MAGE-4 Proteins in Spermatogonia and Primary Spermatocytes of Testis. Cancer Res. 1995; 55: 3478–3482
  • Dick L.R., Aldrich C., Jameson S.C., , et al. Proteolytic Processing of Ovalbumin and Beta-Galactosidase by the Proteasome to a Yield Antigenic Peptides. J. Immunol. 1994; 152: 3884–3894
  • Goldberg A.L., Rock K.L. Proteolysis, Proteasomes and Antigen Presentation. Nature 1992; 357: 375–379
  • Wenzel T., Baumeister W. Conformational Constraints in Protein Degradation by the 20S Proteasome. Nature (Struct. Biol.) 1995; 2: 199–204
  • Garnier J., Gibrat J.F., Robson B. GOR Method for Predicting Protein Secondary Structure from Amino Acid Sequence. Methods Enzymol. 1996; 266(540–53)540–553
  • Wootton J.C. Non-Globular Domains in Protein Sequences: Automated Segmentation Using Complexity Measures. Comput. Chem. 1994; 18: 269–285
  • Levitskaya J., Coram M., Levitsky V., , et al. Inhibition of Antigen Processing by the Internal Repeat Region of the Epstein–Barr Virus Nuclear Antigen-1. Nature 1995; 375: 685–688
  • Levitskaya J., Sharipo A., Leonchiks A., , et al. Inhibition of Ubiquitin/Proteasome-Dependent Protein Degradation by the Gly-Ala Repeat Domain of the Epstein–Barr Virus Nuclear Antigen 1. Proc. Natl Acad. Sci. USA 1997; 94: 12616–12621
  • Nonacs R., Humborg C., Tam J.P., , et al. Mechanisms of Mouse Spleen Dendritic Cell Function in the Generation of Influenza-Specific, Cytolytic T Lymphocytes. J. Exp. Med. 1992; 176: 519–529
  • Niedermann G., Butz S., Ihlenfeldt H.G., , et al. Contribution of Proteasome-Mediated Proteolysis to the Hierarchy of Epitopes Presented by Major Histocompatibility Complex Class I Molecules. Immunity 1995; 2: 289–299
  • Bell D., Young J.W., Banchereau J. Dendritic Cells. Adv. Immunol. 1999; 72: 255–324
  • Rogers S., Wells R., Rechsteiner M. Amino Acid Sequences Common to Rapidly Degraded Proteins: the PEST Hypothesis. Science 1986; 234: 364–368
  • Traversari C., van der Bruggen P., Luescher I.F., , et al. A Nonapeptide Encoded by Human Gene MAGE-1 is Recognized on HLA-A1 by Cytolytic T Lymphocytes Directed Against Tumor Antigen MZ2-E. J. Exp. Med. 1992; 176: 1453–1457
  • Chaux P., Luiten R., Demotte N., , et al. Identification of Five MAGE-A1 Epitopes Recognized by Cytolytic T Lymphocytes Obtained by In Vitro Stimulation with Dendritic Cells Transduced with MAGE-A1. J. Immunol. 1999; 163: 2928–2936
  • Fujie T., Tahara K., Tanaka F., , et al. A MAGE-1-Encoded HLA-A24-Binding Synthetic Peptide Induces Specific Anti-Tumor Cytotoxic T Lymphocytes. Int. J. Cancer 1999; 80: 169–172
  • Luiten R., van der Bruggen P. A MAGE-A1 Peptide is Recognized on HLA-B7 Human Tumors by Cytolytic T Lymphocytes. Tissue Antigens 2000; 55: 149–152
  • van der Bruggen P., Szikora J.P., Boël P., , et al. Autologous Cytolytic T Lymphocytes Recognize a MAGE-1 Nonapeptide on Melanomas Expressing HLA-Cw*1601. Eur. J. Immunol. 1994; 24: 2134–2140
  • Tahara K., Takesako K., Sette A., , et al. Identification of a MAGE-2-Encoded Human Leukocyte Antigen-A24-Binding Synthetic Peptide That Induces Specific Antitumor Cytotoxic T Lymphocytes. Clin. Cancer Res. 1999; 5: 2236–2241
  • Reynolds S.R., Celis E., Sette A., , et al. HLA-Independent Heterogeneity of CD8+ T Cell Responses to MAGE-3, Melan- A/MART-1, gp100, Tyrosinase, MC1R, and TRP-2 in Vaccine-Treated Melanoma Patients. J. Immunol. 1998; 161: 6970–6976
  • van der Bruggen P., Bastin J., Gajewski T., , et al. A Peptide Encoded by Human Gene MAGE-3 and Presented by HLA-A2 Induces Cytolytic T Lymphocytes That Recognize Tumor Cells Expressing MAGE-3. Eur. J. Immunol. 1994; 24: 3038–3043
  • Tanaka F., Fujie T., Tahara K., , et al. Induction of Antitumor Cytotoxic T Lymphocytes with a MAGE-3-Encoded Synthetic Peptide Presented by Human Leukocytes Antigen-A24. Cancer Res. 1997; 57: 4465–4468
  • Oiso M., Eura M., Katsura F., , et al. A Newly Identified MAGE-3-Derived Epitope Recognized by HLA-A24-Restricted Cytotoxic T Lymphocytes. Int. J. Cancer 1999; 81: 387–394
  • Russo V., Tanzarella S., Dalerba P., , et al. Dendritic Cells Acquire the MAGE-3 Human Tumor Antigen from Apoptotic Cells and Induce a Class I-Restricted T Cell Response. Proc. Natl Acad. Sci. USA 2000; 97: 2185–2190
  • Herman J., van der Bruggen P., Luescher I.F., , et al. A Peptide Encoded by the Human MAGE3 Gene and Presented by HLA-B44 Induces Cytolytic T Lymphocytes That Recognize Tumor Cells Expressing MAGE3. Immunogenetics 1996; 43: 377–383
  • Jäger E., Chen Y.T., Drijfhout J.W., , et al. Simultaneous Humoral and Cellular Immune Response Against Cancer-Testis Antigen NY-ESO-1: Definition of Human Histocompatibility Leukocyte Antigen (HLA)-A2-Binding Peptide Epitopes. J. Exp. Med. 1998; 187: 265–270
  • Zeng G., Touloukian C.E., Wang X., , et al. Identification of CD4+ T Cell Epitopes from NY-ESO-1 Presented by HLA-DR Molecules. J. Immunol. 2000; 165: 1153–1159
  • Aarnoudse C.A., van den Doel P.B., Heemskerk B., , et al. Interleukin-2-Induced, Melanoma-Specific T Cells Recognize CAMEL, an Unexpected Translation Product of LAGE-1. Int. J. Cancer 1999; 82: 442–448

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.