69
Views
32
CrossRef citations to date
0
Altmetric
Original

Melatonin Protects Against Oxidative Stress Caused by δ-Aminolevulinic Acid: Implications for Cancer Reduction

, M.D., Ph.D. & , Ph.D.
Pages 276-286 | Published online: 04 Sep 2002

REFERENCES

  • Kappas A., Sassa S., Anderson K.E. The Porphyrias. The Metabolic Basis of Inherited Diseases, J.B. Stanbury, J.B. Wyngaarden, D.S. Fredrickson, J.L. Goldstein, M.S. Brown. McGraw-Hill, New York 1983; 1300–1384
  • Hillemanns P., Korell M., Schmitt-Sody M., , et al. Photodynamic Therapy in Women with Cervical Intraepithelial Neoplasia Using Topically Applied 5-Aminolevulinic Acid. Int. J. Cancer 1999; 81: 34–38
  • Costa C.A., Trivelato G.C., Pinto A.M.P., , et al. Correlation between Plasma 5-Aminolevulinic Acid Concentrations and Indicators of Oxidative Stress in Lead-Exposed Workers. Clin. Chem. 1997; 43: 1196–1202
  • Kauppinen R., Mustajoki P. Acute Hepatic Porphyria and Hepatocellular Carcinoma. Brit. J. Cancer 1988; 57: 117–120
  • Batlle A.M. Porphyrins, Porphyrias, Cancer and Photodynamic Therapy—A Model for Carcinogenesis. J. Photochem. Photobiol. B 1993; 20: 5–22
  • Bjersing L., Andersson C., Lithner F. Hepatocellular Carcinoma in Patients from Northern Sweden with Acute Intermittent Porphyria: Morphology and Mutations. Cancer Epidemiol. Biomarkers Prev. 1996; 5: 393–397
  • Linet M.S., Gridley G., Nyrén O., , et al. Primary Liver Cancer, Other Malignancies, and Mortality Risks Following Porphyria: A Cohort Study in Denmark and Sweden. Am. J. Epidemiol. 1999; 149: 1010–1015
  • Sun Y. Free Radicals, Antioxidant Enzymes and Carcinogenesis. Free Radic. Biol. Med. 1990; 8: 583–589
  • Alvarez-Gonzalez R. Free Radicals, Oxidative Stress, and DNA Metabolism in Human Cancer. Cancer Invest. 1999; 17: 376–377
  • Moan J., Bech Ø., Gaullier J.M., , et al. Protoporphyrin IX Accumulation in Cells Treated with 5-Aminolevulinic Acid: Dependence on Cell Density, Cell Size and Cell Cycle. Int. J. Cancer 1998; 75: 134–139
  • Gibson S.L., Nguyen M.L., Havens J.J., , et al. Relationship of δ-Aminolevulinic Acid-Induced Protoporphyrin IX Levels to Mitochondrial Content in Neoplastic Cells In Vitro. Biochem. Biophys. Res. Commun. 1999; 265: 315–321
  • Dougherty T.J., Gomer C.J., Henderson B.W., , et al. Photodynamic Therapy. J. Natl. Cancer Inst. 1998; 90: 889–905
  • McGillion F.B., Thompson G.G., Goldberg A. Tissue Uptake of δ-Aminolevulinic Acid. Biochem. Pharmacol. 1975; 24: 299–301
  • Casas A., Fukuda H., Batlle A.M. Tissue Distribution and Kinetics of Endogenous Porphyrins Synthesized after Topical Application of ALA in Different Vehicles. Brit. J. Cancer 1999; 81: 13–18
  • Monteiro H.P., Abdalla D.S.P., Faljoni-Alario A., , et al. Generation of Active Oxygen Species During Auto-oxidation of Oxyhemoglobin and δ-Aminolevulinic Acid. Biochim. Biophys. Acta 1986; 881: 100–106
  • Monteiro H.P., Abdalla D.S.P., Augusto O., , et al. Free Radical Generation During δ-Aminolevulinic Acid Auto-oxidation Induction by Hemoglobin and Connections with Porphyrinopathies. Arch. Biochem. Biophys. 1989; 271: 206–216
  • Timmins G.S., Liu K.J., Bechara E.J.H., , et al. Trapping of Free Radicals with Direct In Vivo EPR Detection: A Comparison of 5,5-Dimethyl-1-Pyrroline-N-Oxide and 5-Diethoxyphosphoryl-5-Methyl-1-Pyrroline-N-Oxide as Spin Traps for HO√ and SO4√. Free Radic. Biol. Med. 1999; 27: 329–333
  • Biempica L., Kosower N., Ma M.H., , et al. Hepatic Porphyrias. Arch. Pathol. 1974; 98: 336–343
  • Fraga C.G., Onuki J., Lucesoli F., , et al. 5-Aminolevulinic Acid Mediates the In Vivo and In Vitro Formation of 8-Hydroxy-2′-Deoxyguanosine in DNA. Carcinogenesis 1994; 15: 2241–2244
  • Douki T., Onuki J., Medeiros M.H.G., , et al. Hydroxyl Radicals Are Involved in the Oxidation of Isolated and Cellular DNA Bases by 5-Aminolevulinic Acid. FEBS Lett. 1998; 428: 93–96
  • Di Mascio P., Teixeira P.C., Onuki J., , et al. DNA Damage by 5-Aminolevulinic and 4,5-Dioxovaleric Acids in the Presence of Ferritin. Arch. Biochem. Biophys. 2000; 373: 368–374
  • Burcham P.C. Genotoxic Lipid Peroxidation Products: Their DNA Damaging Properties and Role in Formation of Endogenous DNA Adducts. Mutagenesis 1998; 13: 287–305
  • Carneiro R.C.G., Reiter R.J. δ-Aminolevulinic Acid-Induced Lipid Peroxidation in Rat Kidney and Liver Is Attenuated by Melatonin: An In Vitro and In Vivo Study. J. Pineal. Res. 1998; 24: 131–136
  • Carneiro R.C.G., Reiter R.J. Melatonin Protects Against Lipid Peroxidation Induced by δ-Aminolevulinic Acid in Rat Cerebellum, Cortex and Hippocampus. Neuroscience 1998; 82: 293–299
  • Princ F.G., Juknat A.A., Maxit A.G., , et al. Melatonin's Antioxidant Protection Against δ-Aminolevulinic Acid-Induced Oxidative Damage in Rat Cerebellum. J. Pineal Res. 1997; 23: 40–46
  • Princ F.G., Maxit A.G., Gardalda C., , et al. In Vivo Protection by Melatonin Against δ-Aminolevulinic Acid-Induced Oxidative Damage and Its Antioxidant Effect on the Activity of Haem Enzymes. J. Pineal Res. 1998; 24: 1–8
  • Karbownik M., Tan D.X., Reiter R.J. Melatonin Reduces the Oxidation of Nuclear DNA and Membrane Lipids Induced by the Carcinogen δ-Aminolevulinic Acid. Int. J. Cancer 2000; 8: 7–11
  • Karbownik M., Reiter R.J., Garcia J.J., , et al. Melatonin Reduces Rat Hepatic Macromolecular Damage Due to Oxidative Stress Caused by δ-Aminolevulinic Acid. Biochim. Biophys. Acta 2000; 1523: 140–146
  • Karbownik M., Tan D.X., Manchester L.C., , et al. Renal Toxicity of the Carcinogen δ-Aminolevulinic Acid: Antioxidant Effects of Melatonin. Cancer Lett. 2000; 161: 1–7
  • Vercesi A.E., Castilho R.F., Meinicke A.R., , et al. Oxidative Damage of Mitochondria Induced by 5-Aminolevulinic Acid: Role of Ca2+ and Membrane Protein Thiols. Biochim. Biophys. Acta 1994; 1188: 86–92
  • Hermes-Lima M., Valle V.G., Vercesi A.E., , et al. Damage to Rat Liver Mitochondria Promoted by δ-Aminolevulinic Acid-Generated Reactive Oxygen Species: Connections with Acute Intermittent Porphyria and Lead-Poisoning. Biochim. Biophys. Acta 1991; 1056: 57–63
  • Badaway A.A.B., Welch N., Morgan C.J. Tryptophan Pyrrolase in Heme Regulation. Biochem. J. 1981; 198: 309–314
  • Daya S., Nonaka K.O., Buzzell G.R., , et al. Heme Precursor 5-Aminolevulinic Acid Alters Brain Tryptophan and Serotonin Levels Without Changing Pineal Serotonin and Melatonin Concentrations. J. Neurosci. Res. 1989; 23: 304–309
  • Daya S., Nonaka K.O., Reiter R.J. Melatonin Counteracts the 5-Aminolevulinic Acid-Induced Rise of Rat Forebrain Tryptophan and Serotonin Concentrations at Night. Neurosci. Lett. 1990; 114: 113–116
  • Puy H., Deybach J.C., Bogdan A., , et al. Increased δ-Aminolevulinic Acid and Decreased Pineal Melatonin Production. J. Clin. Invest. 1996; 97: 104–110
  • Puy H., Deybach J.C., Beaudry P., , et al. Decreased Nocturnal Plasma Melatonin Levels in Patients with Recurrent Acute Intermittent Porphyria Attacks. Life Sci. 1993; 53: 621–627
  • Menendez-Pelaez A., Rodriguez C., Dominguez P. 5-Aminolevulinate Synthase mRNA Levels in the Harderian Gland of Syrian Hamsters: Correlation with Porphyrin Concentrations and Regulation by Androgens and Melatonin. Mol. Cell Endocrinol. 1991; 80: 177–182
  • Antolin I., Rodriguez C., Sainz R.M., , et al. Neurohormone Melatonin Prevents Cell Damage: Effect on Gene Expression for Antioxidant Enzymes. FASEB J. 1996; 10: 882–890
  • Durkó I., Juhász A. Porphyrin Synthesis in Primary Nervous Tissue Cultures from 10−3 M delta-Aminolaevulinic Acid in the Presence of Melatonin and Neuropeptides. Neurochem. Res. 1986; 11: 607–615
  • Durkó I., Joó I., Juhász A. Effects of Melatonin and Light on Porphyrin Synthesis in the Bovine Retina, Pigment Epithelium and Choroid. Biochim. Biophys. Acta 1992; 1135: 111–114
  • Buzzell G.R., Panger A., Panger B., , et al. Melatonin and Porphyrin in the Harderian Glands of the Syrian Hamster: Circadian Patterns and Response to Autumnal Conditions. Int. J. Biochem. 1990; 22: 1465–1469
  • Reiter R.J. Functional Aspects of the Pineal Hormone Melatonin in Combating Cell and Tissue Damage Induced by Free Radicals. Eur. J. Endocrinol. 1996; 134: 412–420
  • Reiter R.J. Antioxidant Actions of Melatonin. Adv. Pharmacol. 1997; 38: 103–117
  • Reiter R.J. Oxidative Damage in the Central Nervous System: Protection by Melatonin. Prog. Neurobiol. 1998; 56: 359–384
  • Reiter R.J. Oxidative Damage to Nuclear DNA: Amelioration by Melatonin. Neuroendocrinol. Lett. 1999; 20: 145–150
  • Reiter R.J., Tan D.X., Kim S.J., , et al. Augmentation of Indices of Oxidative Damage in Life-Long Melatonin-Deficient Rats. Mech. Aging Dev. 1999; 110: 157–173
  • Reiter R.J., Tan D.X., Manchester L.C., , et al. Biochemical Reactivity of Melatonin with Reactive Oxygen and Nitrogen Species: A Review of the Evidence. Cell Biochem. Biophys. 2001; 34: 237–256
  • Tan D.X., Reiter R.J., Chen L.D., , et al. Both Physiological and Pharmacological Levels of Melatonin Reduce DNA Adduct Formation Induced by the Carcinogen Safrole. Carcinogenesis 1994; 15: 215–218
  • Vijayalaxmi, Meltz M.L., Reiter R.J. Melatonin and Protection from Genetic Damage in Blood and Bone Marrow: Whole-Body Irradiation Studies in Mice. J. Pineal Res. 1999; 27: 221–225
  • Qi W., Reiter R.J., Tan D.X., , et al. Chromium(III)-Induced 8-Hydroxydeoxyguanosine in DNA and Its Reduction by Antioxidants: Comparative Effects of Melatonin, Ascorbate and Vitamin E. Environ. Health Perspect. 2000; 108: 399–402
  • Qi W., Reiter R.J., Tan D.X., , et al. Increased Levels of Oxidatively Damaged DNA Induced by Chromium(III) and H2O2: Protection by Melatonin and Related Molecules. J. Pineal Res. 2000; 29: 54–61
  • Karbownik M., Reiter R.J., Qi W., , et al. Protective Effects of Melatonin Against Oxidation of Guanine Bases in DNA and Decreased Microsomal Membrane Fluidity in Rat Liver Induced by Whole Body Ionizing Radiation. Mol. Cell Biochem. 2000; 211: 137–144
  • Karbownik M., Reiter R.J. Antioxidative Effects of Melatonin in Protection Against Cellular Damage Caused by Ionizing Radiation. Proc. Soc. Exp. Biol. Med. 2000; 225: 9–22
  • Reiter R.J. Melatonin: That Ubiquitously Acting Pineal Hormone. News Physiol. Sci. 1991; 6: 223–227
  • Tan D.X., Chen L.D., Poeggeler B., , et al. Melatonin: A Potent, Endogenous Hydroxyl Radical Scavenger. Endocr. J. 1993; 1: 57–60
  • Tan D.X., Manchester L.C., Reiter R.J., , et al. A Novel Melatonin Metabolite, Cyclic 3-Hydroxymelatonin: A Biomarker of In Vivo Hydroxyl Radical Generation. Biochem. Biophys. Res. Commun. 1998; 253: 614–620
  • Matuszak Z., Reszka K.J., Chignell C.F. Reaction of Melatonin and Related Indoles with Hydroxyl Radicals: EPR and Spin Trapping Investigations. Free Radic. Biol. Med. 1997; 23: 367–372
  • Stasica P., Paneth P., Rosiak J.M. Hydroxyl Radical Recation with Melatonin Molecule: A Computational Study. J. Pineal Res. 2000; 29: 125–127
  • Bandyopadhyay D., Biswas K., Bandyopadhyay U., , et al. Melatonin Protects Against Stress-Induced Gastric Lesions by Scavenging the Hydroxyl Radical. J. Pineal Res. 2000; 29: 143–151
  • Menendez-Pelaez A., Reiter R.J. Distribution of Melatonin in Mammalian Tissues: The Relative Importance of Cytosolic versus Nuclear Localization. J. Pineal Res. 1993; 15: 59–69
  • Gilad E., Cuzzocrea S., Zingarelli B., , et al. Melatonin Is a Scavenger of Peroxynitrite. Life Sci. 1997; 60: PL169–PL174
  • Blanchard B., Pompon D., Ducrocq C. Nitrosation of Melatonin by Nitric Oxide and Peroxynitrite. J. Pineal Res. 2000; 29: 184–192
  • Zang L.Y., Cosma G., Gardner H., , et al. Scavenging of Reactive Oxygen Species by Melatonin. Biochim. Biophys. Acta 1998; 1425: 469–477
  • Tan D.X., Manchester L.C., Reiter R.J., , et al. Significance of Melatonin in Antioxidative Defense System: Reactions and Products. Biol. Signals Recept. 2000; 9: 137–159
  • Mahal H.S., Sharma H.S., Mukherjee T. Antioxidant Properties of Melatonin: A Pulse Radiolysis Study. Free Radic. Biol. Med. 1999; 26: 557–565
  • Costa E.J.X., Lopes R.H., Lamy-Freund M.T. Solubility of Pure Bilayers to Melatonin. J. Pineal Res. 1995; 19: 123–126
  • Shida C.S., Castrucci A.M.L., Lamy-Freund M.T. High Melatonin Solubility in Aqueous Media. J. Pineal Res. 1994; 16: 198–201
  • Ceraulo L., Ferrugia M., Tesoriere L., , et al. Interactions of Melatonin with Membrane Models: Portioning of Melatonin in AOT and Lecithin Reversed Micelles. J. Pineal Res. 1999; 26: 108–112
  • Tesoriere L., D'Arpa D., Conti S., , et al. Melatonin Protects Human Red Blood Cells from Oxidative Hemolysis: New Insight into the Radical-Scavenging Activity. J. Pineal Res. 1999; 27: 95–105
  • Pieri C., Marra M., Moroni F., , et al. Melatonin: A Peroxyl Radical Scavenger More Effective Than Vitamin E. Life Sci. 1994; 55: PL271–PL276
  • Antunes F., Barclay L.R., Ingold K.U., , et al. On the Antioxidant Activity of Melatonin. Free Radic. Biol. Med. 1999; 26: 117–128
  • Garcia J.J., Reiter R.J., Guerrero J.M., , et al. Melatonin Prevents Changes in Microsomal Membrane Fluidity During Induced Lipid Peroxidation. FEBS Lett. 1997; 408: 297–300
  • Garcia J.J., Reiter R.J., Ortiz G.G., , et al. Melatonin Enhances Tamoxifen's Ability to Prevent the Reduction in Microsomal Membrane Fluidity Induced by Lipid Peroxidation. J. Membr. Biol. 1998; 162: 59–65
  • Noda Y., Mori A., Liburty R., , et al. Melatonin and Its Precursors Scavenge Nitric Oxide. J. Pineal Res. 1999; 27: 159–164
  • Cagnoli C.M., Atabay C., Kharlamov E., , et al. Melatonin Protects Neurons from Singlet Oxygen-Induced Apoptosis. J. Pineal Res. 1995; 18: 222–226
  • Hardeland R., Reiter R.J., Poeggeler B., , et al. The Significance of the Metabolism of the Neurohormone Melatonin: Antioxidative Protection and Formation of Bioactive Substances. Neurosci. Biobehav. Rev. 1993; 17: 347–357
  • Barlow-Walden L.R., Reiter R.J., Abe M., , et al. Melatonin Stimulates Brain Glutathione Peroxidase Activity. Neurochem. Int. 1995; 26: 497–502
  • Pablos M.I., Reiter R.J., Ortiz G.G., , et al. Rhythms of Glutathione Peroxidase and Glutathione Reductase in the Brain of Chick and Their Inhibition by Light. Neurochem. Int. 1998; 32: 69–75
  • Urata Y., Honma S., Goto S., , et al. Melatonin Induces gamma-Glutamylcysteine Synthetase Mediated by Activator Protein-1 in Human Vascular Endothelial Cells. Free Radic. Biol. Med. 1999; 27: 838–847
  • Pierrefiche G., Laborit H. Oxygen Radicals, Melatonin and Aging. Exp. Gerontol. 1995; 30: 213–227
  • Pereira B., Curi R., Kokubun E., , et al. 5-Aminolevulinic Acid-Induced Alterations of Oxidative Metabolism in Sedentary and Exercise-Trained Rats. J. Appl. Physiol. 1992; 72: 226–230
  • Bettahi I., Pozo D., Osuna C., , et al. Physiological Concentrations of Melatonin Inhibit Nitric Oxide Synthase Activity in the Rat Hypothalamus. J. Pineal Res. 1996; 20: 205–210
  • Blask D.E. Melatonin in Oncology. Melatonin: Biosynthesis, Physiological Effects, and Clinical Applications, H.S. Yu, R.J. Reiter. CRC Press, Boca Raton, FL 1993; 447–475
  • Regelson W., Pierpaoli W. Melatonin: a Rediscovered Antitumor Hormone? Its Relation to Surface Receptors; Sex Steroid Metabolism, Immunologic Response, and Chronobiologic Factors in Tumor Growth and Therapy. Cancer Invest. 1987; 5: 379–385
  • Blask D.E., Sauer L.A., Dauchy R.T., , et al. Melatonin Inhibition of Cancer Growth In Vivo Involves Suppression of Tumor Fatty Acid Metabolism via Melatonin Receptor-Mediated Signal Transduction Events. Cancer Res. 1999; 59: 4693–4701
  • Petranka J., Baldwin W., Biermann J., , et al. The Oncostatic Action of Melatonin in an Ovarian Carcinoma Cell Line. J. Pineal Res. 1999; 26: 129–136
  • Shiu S.Y.W., Li L., Xu J.N., , et al. Melatonin-Induced Inhibition of Proliferation and G1/S Cell Cycle Transition Delay of Human Choriocarcinoma JAr Cells: Possible Involvement of MT2 (MEL1B) Receptor. J. Pineal Res. 1999; 27: 183–192
  • Malins D.C., Polissar N.L., Schaefer S., , et al. A Unified Theory of Carcinogenesis Based on Order–Disorder Transitions in DNA Structure as Studied in the Human Ovary and Breast. Proc. Natl Acad. Sci. USA 1998; 95: 7637–7642
  • Benot S., Goberna R., Reiter R.J., , et al. Physiological Levels of Melatonin Contribute to the Antioxidant Capacity of Human Serum. J. Pineal Res. 1999; 27: 59–64
  • Manev H., Uz T., Kharlamov A., , et al. Increased Brain Damage after Stroke or Excitotoxic Seizures in Melatonin-Deficient Rats. FASEB J. 1996; 10: 1546–1551
  • Kilic E., Ozdemir Y.G., Bolay H., , et al. Pinealectomy Aggravates and Melatonin Administration Attenuates Brain Damage in Focal Ischemia. J. Cereb. Blood Flow Metab. 1999; 19: 511–516
  • Lupulescu A. Cancer Cell Metabolism: Its Relevance to Cancer Treatment. Cancer Invest. 1999; 17: 423–433
  • Shklar G., Oh S.K. Experimental Basis for Cancer Prevention by Vitamin E. Cancer Invest. 2000; 18: 214–222
  • Lissoni P., Meregalli S., Nosetto L., , et al. Increased Survival Time in Brain Glioblastomas by a Radioneuroendocrine Strategy with Radiotherapy Plus Melatonin Compared to Radiotherapy Alone. Oncology 1996; 53: 43–46
  • Cuzzocrea S., Costantino G., Mazzon E., , et al. Regulation of Prostaglandin Production in Carrageenan-Induced Pleurisy by Melatonin. J. Pineal Res. 1999; 27: 9–14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.