766
Views
126
CrossRef citations to date
0
Altmetric
New Drugs

Tumor-activated Prodrugs—A New Approach to Cancer Therapy

, Ph.D.
Pages 604-619 | Published online: 24 Sep 2004

References

  • Frei E., Teicher B. A., Holden S. A., Cathcart K. N., Wang Y. Y. Preclinical studies and clinical correlation of the effect of alkylating dose. Cancer Res. 1998; 48: 6417–6423
  • Denny W. A., Wilson W. R., Hay M. P. Recent developments in the design of bioreductive drugs. Br. J. Cancer 1996; 74(Supp. 27)32–38
  • Wilson W. R., Pullen S. M., Hogg A., Helsby N. A., Hicks K. O., Denny W. A. Quantitation of bystander effects in nitroreductase suicide gene therapy using three-dimensional cell cultures. Cancer Res. 2002; 62: 1425–1432, [PUBMED], [INFOTRIEVE]
  • Denny W. A. Prodrug strategies in cancer therapy. Eur. J. Med. Chem. 2001; 36: 577–595, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Denny W. A., Wilson W. R. Bioreducible mustards: a paradigm for hypoxia-selective prodrugs of diffusible cytotoxins (HPDCs). Cancer Met. Rev. 1993; 12: 135–151, [CROSSREF]
  • Weber G., Prajda N., Abonyi M., Look K. Y., Tricot G. Tiazofurin: molecular and clinical action. Anticancer Res. 1996; 16: 3313–3322, [PUBMED], [INFOTRIEVE], [CSA]
  • Bailey S. M., Wyatt M. D., Friedlos F., Hartley J. A., Knox R. J., Lewis A. D., Workman P. Involvement of DT-diaphorase (EC 1.6.99.2) in the DNA crosslinking and sequence selectivity of the bioreductive antitumor agent EO9. Br. J. Cancer 1997; 76: 1596–1603, [PUBMED], [INFOTRIEVE]
  • Fitzsimmons S. A., Workman P., Grever M., Paull K., Camalier R., Lewis A. D. Reductase enzyme expression across the National Cancer Institute tumor cell line panel: correlation with sensitivity to mitomycin C and EO9. J. Natl. Cancer Inst. 1996; 88: 259–269, [PUBMED], [INFOTRIEVE]
  • Pavlidis N., Hanauske A. R., Gamucci T., Smyth J., Lehnert M., Te Velde A., Lan J., Verweij J. A randomized phase II study with two schedules of the novel indoloquinone EO9 in non-small-cell lung cancer: a study of the EORTC Early Clinical Studies Group (ECSG). Ann. Oncol. 1996; 7: 529–531, [PUBMED], [INFOTRIEVE]
  • Dirix L. Y., Tonnesen F., Cassidy J., Epelbaum R., ten Bokkel Huinink W. W., Pavlidis N., Sorio R., Gamucci T., Wolff I., Te Velde A., Lan J., Verweij J. EO9 phase II study in advanced breast, gastric, pancreatic and colorectal carcinoma by the EORTC early clinical studies group. Eur. J. Cancer 1996; 32A: 2019–2022, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Cummings J., Spanswick V. J., Gardiner J., Ritchie A., Smyth J. F. Pharmacological and biochemical determinants of the antitumor activity of the indoloquinone EO9. Biochem. Pharmacol. 1998; 55: 253–260, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • McLeod H. L., Graham M. A., Aamdal S., Setanoians A., Groot Y., Lund B. Phase I pharmacokinetics and limited sampling strategies for the bioreductive alkylating drug E09. Eur. J. Cancer 1996; 32A: 1518–1522, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Breistol K., Hendriks H. R., Berger D. P., Langdon S. P., Fiebig H. H., Fodstad O. The antitumor activity of the prodrug N-L-leucyldoxorubicin and its parent compound doxorubicin in human tumor xenografts. Eur. J. Cancer 1998; 34: 1602–1606, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • DeFeo-Jones D., Garsky V. M., Wong B. K., Feng D. M., Bolyar T., Haskell K., Kiefer D. M., Leander K., McAvoy E., Lumma P., Wai J., Senderak E. T., Motzel S. L., Van Zwieten K. M., Lin J. H., Freidinger R., Huff J., Oliff A., Jones R. E. A peptide-doxorubicin ‘prodrug’ activated by prostate-specific antigen selectively kills prostate tumor cells positive for prostate-specific antigen in vivo. Nat. Med. 2000; 6: 1248–1252, [CROSSREF], [CSA]
  • Wong B. K., DeFeo-Jones D., Jones R. E., Garsky V. M., Feng D. M., Oliff A., Chiba M., Ellis J. D., Lin J. H. PSA-specific and non-PSA-specific conversion of a PSA-targeted peptide conjugate of doxorubicin to its active metabolites. Drug Met. Disp. 2001; 29: 313–318, [CSA]
  • DiPaola R. S., Rinehart J., Nemunaitis J., Ebbinghaus S., Rubin E., Capanna T., Ciardella M., Doyle-Lindrud S., Goodwin S., Fontaine M., Adams N., Williams A., Schwartz M., Winchell G., Wickersham K., Deutsch P., Yao S.-L. Characterization of a novel prostate-specific antigen-activated peptide-doxorubicin conjugate in patients with prostate cancer. J. Clin. Oncol. 2002; 20: 1874–1879, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dubowchik G. M., Walker M. A. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharm. Ther. 1999; 83: 67–123, [CROSSREF], [CSA]
  • Sjogren H. O., Isaksson M., Willner D., Hellstrom I., Hellstrom K. E., Trail P. A. Antitumor activity of carcinoma-reactive BR96-doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats. Cancer Res. 1997; 57: 4530–4536, [PUBMED], [INFOTRIEVE]
  • Saleh M. N., Sugarman S., Murray J., Ostroff J. B., Healey D., Jones D., Daniel C. R., LeBherz D., Brewer H., Onetto N., LoBuglio A. F. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J. Clin. Oncol. 2000; 18: 2282–2292, [PUBMED], [INFOTRIEVE]
  • Hinman L. M., Hamann P. R., Wallace R., Menendez A. T., Durr F. E., Upeslacis J. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res. 1993; 53: 3336–3342, [PUBMED], [INFOTRIEVE]
  • Knoll K., Wrasidlo W., Scherberich J. E., Gaedicke G., Fischer P. Targeted therapy of experimental renal cell carcinoma with a novel conjugate of monoclonal antibody 138H11 and calicheamicin γI1. Cancer Res. 2000; 60: 6089–6094, [PUBMED], [INFOTRIEVE]
  • Siegel M. M., Tabei K., Kunz A., Hollander I. J., Hamann P. R., Bell D. H., Berkenkamp S., Hillenkamp F. Calicheamicin derivatives conjugated to monoclonal antibodies: determination of loading values and distributions by infrared and UV matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization mass spectrometry. Anal. Chem. 1997; 69: 2716–2726, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Larson R. A., Boogaerts M., Estey E., Karanes C., Stadtmauer E. A., Sievers E. L., Mineur P., Bennett J. M., Berger M. S., Eten C. B., Munteanu M., Loken M. R., van Dongen J. J.M., Bernstein I. D., Appelbaum F. R. Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia 2002; 16: 1627–1636, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Liu C., Chari R. V.J. The development of antibody delivery systems to target cancer with highly potent maytansinoids. Expert Opin. Investig. Drugs 1997; 6: 169–172
  • Liu C., Tadayoni B. M., Bourret L. A., Mattocks K. M., Derr S. M., Widdison W. C., Kedersha N. L., Ariniello P. D., Goldmacher V., Lambert J. M., Blattler W. A., Chari R. V. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 8618–8623, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Boger D. L., Johnson D. S. CC-1065 and the duocarmycins—understanding their biological function through mechanistic studies. Angew. Chem., Int. Ed. 1996; 35: 1438–1474, [CROSSREF], [CSA]
  • Suzawa T., Nagamura S., Saito H., Ohta S., Hanai N., Yamasaki M. Synthesis of a novel duocarmycin derivative DU-257 and its application to immunoconjugate using poly(ethylene glycol)-dipeptidyl linker capable of tumor specific activation. Bioorg. Med. Chem. 2000; 8: 2175–2184, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Deonarain M. P., Epenetos A. A. Targeting enzymes for cancer therapy: old enzymes in new roles. Br. J. Cancer 1994; 70: 786–794, [PUBMED], [INFOTRIEVE]
  • Niculescu-Duvaz I., Friedlos F., Niculescu-Duvaz D., Davies L., Springer C. J. Prodrugs for antibody- and gene-directed enzyme prodrug therapies (ADEPT and GDEPT). Anti-Cancer Drug Des. 1999; 14: 517–538
  • Bagshawe K. D., Sharma S. K., Springer C. J., Rogers G. Antibody directed enzyme prodrug therapy (ADEPT). A review of some theoretical, experimental and clinical aspects. Anal. Oncol. 1994; 5: 879–891
  • Blakey D. C., Burke P. J., Davies D. H., Dowell R. I., East S. J., Ekersley K. P., Fitton J. E., McDaid J., Melton R. J., Niculescu-Duvas I., Pinder P. E., Sharma S. K., Wright A. F., Springer C. J. ZD2767, an improved system for antibody-directed enzyme prodrug therapy that results in tumor regressions in colorectal tumor xenografts. Cancer Res. 1996; 56: 3287–3292, [PUBMED], [INFOTRIEVE]
  • Monks N. R., Calvete J. A., Curtin N. J., Blakey D. C., East S. J., Newell D. R. Cellular glutathione as a determinant of the sensitivity of colorectal tumor cell-lines to ZD2767 antibody-directed enzyme prodrug therapy (ADEPT). Br. J. Cancer 2000; 83: 267–269, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kerr D. E., Schreiber G. J., Vrudhula V. M., Svensson H. P., Hellstrom I., Hellstrom K. E., Senter P. D. Regressions and cures of melanoma xenografts following treatment with monoclonal antibody β-lactamase conjugates in combination with anticancer prodrugs. Cancer Res. 1995; 55: 3558–3563, [PUBMED], [INFOTRIEVE]
  • Meyer D. L., Jungheim L. N., Mikolajczyk S. D., Starling J. J., Alhem C. N. Preparation and characterization of a β-lactamase-Fab′ conjugate for the site-specific activation of oncolytic agents. Bioconjug. Chem. 1992; 3: 42–48, [PUBMED], [INFOTRIEVE]
  • Meyer D. L., Jungheim L. N., Law K. L., Mikolajczyk S. D., Shepherd T. A., Makensen D. G., Briggs S. L., Starling J. J. Site-specific prodrug activation by antibody-beta-lactamase conjugates: regression and long-term growth inhibition of human colon carcinoma xenograft models. Cancer Res. 1993; 53: 3956–3963, [PUBMED], [INFOTRIEVE]
  • Svensson H. P., Vrudhula V. M., Emswiler J. E., MacMaster J. F., Cosand W. L., Senter P. D., Wallace P. M. In vitro and in vivo activities of a doxorubicin prodrug in combination with monoclonal antibody β-lactamase conjugates. Cancer Res. 1995; 55: 2357–2365, [PUBMED], [INFOTRIEVE]
  • Wang S. M., Chern J. W., Yeh M. Y., Ng J. C., Tung E., Roffler S. R. Specific activation of glucuronide prodrugs by antibody-targeted enzyme conjugates for cancer therapy. Cancer Res. 1992; 52: 4484–4491, [PUBMED], [INFOTRIEVE]
  • Houba P. H.J., Boven E., Van Der Meulen-Muileman I. H., Leenders R. G.G., Scheeren J. W., Pinedo H. M., Haisma H. J. A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Int. J. Cancer 2001; 91: 550–554, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Greco O., Dachs G. U. Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J. Cell. Physiol. 2001; 187: 22–36, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wildner O. In situ use of suicide genes for therapy of brain tumours. Ann. Med. 1999; 31: 421–429, [PUBMED], [INFOTRIEVE]
  • Ishii-Morita H., Agbaria R., Mullen C. A., Hirano H., Koeplin D. A., Ram Z., Oldfield E. H., Johns D. G., Blaese R. M. Mechanism of ‘bystander effect’ killing in the herpes simplex thymidine kinase gene therapy model of cancer treatment. Gene Ther. 1997; 4: 244–251, [CROSSREF]
  • Mesnil M., Yamasaki H. Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res. 2000; 60: 3989–3999, [PUBMED], [INFOTRIEVE]
  • Rainov N. G., Fetell M., Cloughesy T., et al. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. 2000; 11: 2389–2401, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Denny W. A. Prodrugs for gene-directed enzyme-prodrug therapy (suicide gene therapy). J. Biomed. Biotech. 2003; 3: 49–70
  • Kievit E., Bershad E., Ng E., Sethna P., Dev I., Lawrence T. S., Rehemtulla A. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res. 1999; 59: 1417–1421, [PUBMED], [INFOTRIEVE]
  • Huber B., Austin E., Richards C., Davis S., Good S. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 8302–8306, [PUBMED], [INFOTRIEVE], [CSA]
  • Pandha H. S., Martin L., Rigg A., Hurst H. C., Stamp G. W.H., Sikora K., Lemoine N. R. Prodrug activation therapy for breast cancer: a phase I clinical trial of erbB-2-directed suicide gene expression. J. Clin. Oncol. 1999; 17: 2180–2189, [PUBMED], [INFOTRIEVE]
  • Leichman C. G. Schedule dependency of 5-fluorouracil. Oncology 1999; 13: 26–32, [PUBMED], [INFOTRIEVE]
  • Waxman D. J., Chen L., Hecht J. E., Jounaidi Y. Cytochrome P450-based cancer gene therapy: recent advances and future prospects. Drug Met. Rev. 1999; 31: 503–522, [CROSSREF], [CSA]
  • Wei M. X., Tamiya T., Rhee R. J., Breakefield X. O., Chiocca E. A. Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm. Clin. Cancer Res. 1995; 1: 1171–1177, [PUBMED], [INFOTRIEVE], [CSA]
  • Hunt S. Technology evaluation: MetXia-P450, Oxford BioMedica. Curr. Opin. Mol. Ther. 2001; 3: 595–598, [PUBMED], [INFOTRIEVE], [CSA]
  • Lohr M., Bago Z. T., Bergmeister H., et al. Cell therapy using microencapsulated 293 cells transfected with a gene construct expressing CYP2B1, an ifosfamide converting enzyme, instilled intra-arterially in patients with advanced-stage pancreatic carcinoma: a phase I/II study. J. Mol. Med. 1999; 77: 393–398, [PUBMED], [INFOTRIEVE], [CSA]
  • Lohr M., Hummel F., Faulmann G., Ringel J., Saller R., Hain J., Gunzburg W. H., Salmons B. Microencapsulated, CYP2B1-transfected cells activating ifosfamide at the site of the tumor: the magic bullets of the 21st century. Cancer Chemother. Pharmacol. 2002; 49(Suppl. 1)S21–S24, [PUBMED], [INFOTRIEVE]
  • Anlezark G. M., Melton R. G., Sherwood R. F., Coles B., Friedlos F., Knox R. J. The bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954). I. Purification and properties of a nitroreductase enzyme from Escherichia coli. A potential enzyme for antibody-directed enzyme prodrug therapy (ADEPT). Biochem. Pharmacol. 1992; 44: 2289–2295, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Knox R. J., Friedlos F., Marchbank T., Roberts J. J. Bioactivation of CB 1954: reaction of the active 4-hydroxylamino derivative with thioesters to form the ultimate DNA-DNA interstrand crosslinking species. Biochem. Pharmacol. 1991; 42: 1691–1697, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Palmer D. H., Mautner V., Mirza D., Buckels J., Olliff D., Hull D., Mountain A., Harris P., Djeha H., Ellis J., Horne M., Hill S., Wrighton C., Searle P. F., Kerr D. J., Young L. S., James N. D. Virus-directed enzyme prodrug therapy (VDEPT): clinical trials with adenoviral nitroimidazole reductase (Ad-ntr). Br. J. Cancer 2002; 86(Suppl. 1)S30
  • Chung-Faye G., Palmer D., Anderson D., Clark J., Downes M., Baddeley J., Hussain S., Murray P. I., Searle P., Seymour L., Harris P. A., Ferry D., Kerr D. J. Virus-directed, enzyme prodrug therapy with nitroimidazole reductase: a phase I and pharmacokinetic study of its prodrug, CB1954. Clin. Cancer Res. 2001; 7: 2662–2668, [CSA]
  • Anlezark G. M., Melton R. G., Sherwood R. F., Wilson W. R., Denny W. A., Palmer B. D., Knox R. J., Friedlos F., Williams A. Bioactivation of dinitrobenzamide mustards by an E. coli B nitroreductase. Biochem. Pharmacol. 1995; 50: 609–615, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Harris A. L. Hypoxia—a key regulatory factor in tumor growth. Nat. Rev. Cancer 2002; 2: 38–47, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Baish J. W., Netti P. A., Jain R. K. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc. Res. 1997; 53: 128–141, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Movsas B., Chapman J. D., Horwitz E. M., Pinover W. H., Greenberg R. E., Hanlon A. L., Iyer R., Hanks G. E. Hypoxic regions exist in human prostate carcinoma. Urology 1999; 53: 11–18, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Patterson A. V., Saunders M. P., Chinje E. C., Patterson LH., Stratford I. J. Enzymology of tirapazamine metabolism: a review. Anti-Cancer Drug Des. 1998; 13: 541–573, [CSA]
  • Brown J. M. The hypoxic cell: a target for selective cancer therapy—eighteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 1999; 59: 5863–5870, [PUBMED], [INFOTRIEVE]
  • Hwang J. T., Greenberg M. M., Fuchs T., Gates K. S. Reaction of the hypoxia-selective antitumor agent tirapazamine with a C1′-radical in single-stranded and double-stranded DNA: the drug and its metabolites can serve as surrogates for molecular oxygen in radical-mediated DNA damage reactions. Biochemistry 1999; 38: 14248–14255, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lartigau E., Guichard M. Does tirapazamine (SR-4233) have any cytotoxic or sensitizing effect on three human tumour cell lines at clinically relevant partial oxygen pressure?. Int. J. Radiat. Biol. 1995; 67: 211–216, [PUBMED], [INFOTRIEVE]
  • Senan S., Rampling R., Graham M. A., Wilson P., Robin H., Eckardt N., Lawson N., McDonald A., von Roemeling R., Workman P., Kaye S. B. Phase I and pharmacokinetic study of tirapazamine (SR-4233) administered every three weeks. Clin. Cancer Res. 1997; 3: 31–38, [PUBMED], [INFOTRIEVE], [CSA]
  • Lee D. J., Trotti A., Spencer S., Rostock R., Fisher C., von Roemeling R., Harvey E., Groves E. Concurrent tirapazamine and radiotherapy for advanced head and neck carcinomas: a phase II study. Int. J. Radiat. Oncol. Biol. Phys. 1998; 42: 811–815, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Kovacs M. S., Hocking D. J., Evans J. W., Slim B. G., Wouters B. G., Brown J. M. Cisplatin anti-tumour potentiation by tirapazamine results from a hypoxia-dependent cellular sensitization to cisplatin. Br. J. Cancer 1999; 80: 1245–1251, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Von Pawel J., Von Roemeling R., Gatzemeier U., Boyer M., Elisson L. O., Clark P., Talbot D., Rey A., Butler T. W., Hirsh V., Olver I., Bergman B., Ayoub J., Richardson G., Dunlop D., Arcenas A., Vescio R., Viallet J., Treat J. Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: a report of the international CATAPULT I study group. J. Clin. Oncol. 2000; 18: 1351–1359, [PUBMED], [INFOTRIEVE]
  • Miller V. A., Ng K. K., Grant S. C., Kindler H., Pizzo B., Heelan R. T., von Roemeling R., Kris M. G. Phase II study of the combination of the novel bioreductive agent, tirapazamine, with cisplatin in patients with advanced non-small-cell lung cancer. Ann. Oncol. 1997; 8: 1269–1271, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lee A. E., Wilson W. R. Hypoxia-dependent retinal toxicity of bioreductive anticancer prodrugs in mice. Toxicol. Appl. Pharmacol. 2000; 163: 50–59, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Raleigh S. M., Wanogho E., Burke M. D., McKeown S. R., Patterson L. H. Involvement of human cytochromes P450 (CYP) in the reductive metabolism of AQ4N, a hypoxia activated anthraquinone di-N-oxide prodrug. Int. J. Radiat. Oncol. Biol. Phys. 1998; 42: 763–767, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Smith P. J., Blunt N. J., Desnoyers R., Giles Y., Patterson L. H. DNA topoisomerase II-dependent cytotoxicity of alkylaminoanthraquinones and their N-oxides. Cancer Chemother. Pharmacol. 1997; 39: 455–461, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Patterson L. H., McKeown S. R., Ruparelia K., Double J. A., Bibby M. C., Cole S., Stratford I. J. Enhancement of chemotherapy and radiotherapy of murine tumors by AQ4N, a bioreductively activated anti-tumor agent. Br. J. Cancer 2000; 82: 1984–1990, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Friery O. P., Gallagher R., Murray M. M., Hughes C. M., Galligan E. S., McIntyre I. A., Patterson L. H., Hirst D. G., McKeown S. R. Enhancement of the anti-tumour effect of cyclophosphamide by the bioreductive drugs AQ4N and tirapazamine. Br. J. Cancer 2000; 82: 1469–1473, [PUBMED], [INFOTRIEVE]
  • Patterson L. H. Bioreductively activated antitumor N-oxides: the case of AO4N, a unique approach to hypoxia-activated cancer chemotherapy. Drug Met. Rev. 2002; 34: 581–592, [CROSSREF], [CSA]
  • Belcourt M. F., Hodnick W. F., Rockwell S., Sartorelli A. C. Differential toxicity of mitomycin C and porfiromycin to aerobic and hypoxic Chinese hamster ovary cells overexpressing human NADPH:cytochrome c (P-450) reductase. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 456–460, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Belcourt M. F., Hodnick W. F., Rockwell S., Sartorelli A. C. Exploring the mechanistic aspects of mitomycin antibiotic bioactivation in Chinese hamster ovary cells overexpressing NADPH:cytochrome C (P-450) reductase and DT-diaphorase. Adv. Enzyme Regul. 1998; 38: 111–133, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Tomasz M., Palom Y. The mitomycin bioreductive antitumor agents: cross-linking and alkylation of DNA as the molecular basis of their activity. Pharmacol. Ther. 1997; 76: 73–87, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Haffty B. G., Son Y. H., Wilson L. D., Papac R., Fischer D., Rockwell S., Sartorelli A. C., Ross D., Sasaki C. T., Fischer J. J. Bioreductive alkylating agent porfiromycin in combination with radiation therapy for the management of squamous cell carcinoma of the head and neck. Radiat. Oncol. Investig. 1997; 5: 235–245, [PUBMED], [INFOTRIEVE], [CSA]
  • Beall H. D., Winski S. L. Mechanisms of action of quinone-containing alkylating agents. I. NQO1-directed drug development. Front. Biosci. 2000; 5: D639–D648, [PUBMED], [INFOTRIEVE], [CSA]
  • Chung-Faye G., Palmer C., Anderson D., Clark J., Downes M., Baddeley J., Hussain S., Murray P. I., Searle P., Seymour L., Harris P. A., Ferry D., Kerr D. J. Virus-directed, enzyme prodrug therapy with nitroimidazole reductase: a phase I and pharmacokinetic study of its prodrug, CB1954. Clin. Cancer Res. 2001; 7: 2662–2668, [CSA]
  • Breider M. A., Pilcher G. D., Graziano M. J., Gough A. W. Retinal degeneration in rats induced by CI-1010, a 2-nitroimidazole radiosensitizer. Toxicol. Pathol. 1998; 26: 234–239, [PUBMED], [INFOTRIEVE], [CSA]
  • Wilson W. R., Tercel M., Anderson R. F., Denny W. A. Reduction of nitroarylmethyl quaternary ammonium prodrugs of mechlorethamine by radiation. Anti-Cancer Drug Des. 1998; 13: 663–685, [CSA]
  • Wilson W. R., Denny W. A., Tercel M. Radiation-Activated Cytotoxins: A New Use for Roentgen's Rays in Cancer Treatment, U. Hagen, D. Harder, H. Jung, C. Streffer. Proc. 10th Int. Congr. Radiat. Res., 1996; Vol. 2: 791–794
  • Mori M., Hatta H., Nishimoto S. J. Stereoelectronic effect on one-electron reductive release of 5-fluorouracil from 5-fluoro-1-(2′-oxocycloalkyl)uracils as a new class of radiation-activated antitumor prodrugs. Org. Chem. 2000; 65: 4641–4647, [CROSSREF]
  • Shibamoto Y., Zhou L., Hatta H., Mori M., Nishimoto S.-I. A novel class of antitumor prodrug, 1-(2′-Oxopropyl)-5-fluorouracil (OFU001), that releases 5-fluorouracil upon hypoxic irradiation. Jpn. J. Cancer Res. 2000; 91: 433–438, [PUBMED], [INFOTRIEVE], [CSA]
  • Shibamoto Y., Zhou L., Hatta H., Mori M., Nishmoto S. In vivo evaluation of a novel antitumor prodrug, 1-(2′-oxopropyl)-5-fluorouracil (OFU001), which releases 5-fluorouracil upon hypoxic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2001; 49: 407–413, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Wilson W. R., Ferry D. M., Tercel M., Anderson R. F., Denny W. A. Radiation-activated prodrugs as hypoxia-selective cytotoxins: model studies with nitroarylmethyl quaternary salts. Radiat. Res. 1998; 149: 237–245, [PUBMED], [INFOTRIEVE]
  • Denny W. A., Wilson W. R., Ware D. C., Atwell G. J., Milbank J. B.J., Stevenson R. J. Anticancer 8-Substituted Quinolines and 2,3-Dihydro-1H-Pyrrolo[3,2-f]Quinoline Complexes of Cobalt and Chromium. PCT Int. Appl. WO 0259122 A1, Auckland Uniservices Limited, NZ August 1, 2002, 97 pp

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.