69
Views
24
CrossRef citations to date
0
Altmetric
Clinical Science Review

Dendritic Cell-Based Immunotherapy of Malignant Gliomas

, Ph.D. & , M.D.
Pages 405-416 | Published online: 18 Aug 2004

References

  • Steinman R. M., Dhodapkar M. Active immunization against cancer with dendritic cells: the near future. Int. J. Cancer 2001; 94: 459–473, [PUBMED], [INFOTRIEVE]
  • Brossart P., Wirths S., Brugger W., Kanz L. Dendritic cells in cancer vaccines. Exp. Hematol. 2001; 29: 1247–1255, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Sprinzl G. M., Kacani L., Schrott-Fischer A., Romani N., Thumfart W. F. Dendritic cell vaccines for cancer therapy. Cancer Treat. Rev. 2001; 27: 247–255, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhou L.-J., Tedder T. F. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J. Immunol. 1995; 154: 3821–3835, [PUBMED], [INFOTRIEVE]
  • de Saint-Vis B., Vincent J., Vandenabeele S., Vanbervliet B., Pin J. J., Ait-Yahia S., Patel S., Mattei M. G., Banchereau J., Zurawski S., Davoust J., Caux C., Lebecque S. A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 1998; 9: 325–336, [CSA], [CROSSREF]
  • Sallusto F., Cella M., Danieli C., Aanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macro-molecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial roducts. J. Exp. Med. 1995; 182: 389–400, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Fanger N. A., Wardwell K., Shen L., Tedder T. F., Guyre P. M. Type I (CD64) and type II (CD32) Fc gamma receptor-mediated phagocytosis by human blood dendritic cells. J. Immunol. 1996; 157: 541–548, [PUBMED], [INFOTRIEVE]
  • Arnold-Schild D., Hanau D., Spehner D., Schmid C., Rammcnsee H. G., de la Salle H., Schild H. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol. 1999; 162: 3757
  • Rodriguez A., Regnault A., Kleijmeer M., Ricciardi-Castagnoli P., Amigorena S. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat. Cell Biol. 1999; 1: 362–368, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Ann. Rev. Immunol. 1997; 15: 821–850, [CSA], [CROSSREF]
  • Sauter B., Albert M. L., Francisco L., Larsson M., Somersan S., Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 2000; 191: 423–434, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Albert M. L., Sauter B., Bhardwaj. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 86–89, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Albert M. L., Jegathesan M., Darnell R. B. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat. Immunol. 2001; 2(11)1010–1017, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Schoenberger S. P., Toes R. E., van der Voort E. I., Offringa R., Melief C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998; 393: 480–483, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bennett S. R., Carbone F. R., Karamalis F., Flavell R. A., Miller J. F., Heath W. R. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998; 393: 478–480, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Nouri-Shirazi M., Banchereau J., Fay J., Palucka K. Dendritic cell based tumor vaccines. Immunol. Lett. 2000; 74: 5–10, [CSA], [CROSSREF]
  • McLendon R. E., Wikstrand C. J., Matthews M. R., Al-Baradei R., Bigner S. H., Bigner D. D. Glioma-associated antigen expression in oligodendroglial neoplasms: tenascin and epidermal growth factor receptor. J Histochem Cytochem 2000; 48: 1103–1110, [PUBMED], [INFOTRIEVE], [CSA]
  • Kuan C. T., Wikstrand C. J., Bigner D. D. EGFRvIII as a promising target for antibody-based brain tumor therapy. Brain Tumor Pathology 2000; 17: 71–78, [PUBMED], [INFOTRIEVE], [CSA]
  • Chakravarty A., Delaney M. A., Noll E., Black P. N., Loeffler J. S., Muzikansky A., Dyson N. J. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin. Cancer Res. 2001; 7: 2387–2395, [CSA]
  • Horowitz J. Adenovirus-mediated p53 gene therapy: overview of preclinical studies and potential clinical applications. Curr. Opin. Mol. Ther. 1999; 1: 500–509, [PUBMED], [INFOTRIEVE], [CSA]
  • Pollack I. F., Finkelstein S. D., Woods J., Burnham J., Holmes E. J., Hamilton R. L., Yates A. J., Boyett J. M., Finlay J. L. Expression of p53 and prognosis in children with maliognant gliomas. N. Engl. J. Med. 2002; 346: 420–427, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Scarcella D. L., Chow C. W., Gonzales M. F., Economou C., Brasseur F., Ashley D. M. Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers. Clin. Cancer Res. 1999; 5: 335–341, [PUBMED], [INFOTRIEVE], [CSA]
  • Imaizumi T., Kuramoto T., Matsunaga K., Shichijo S., Yutani S., Shigemori M., Oizumi K., Itoh K. Expression of the tumor rejection antigen SART1 in brain tumors. Int. J. Cancer 1999; 83: 760–764, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Murayama K., Kobayashi T., Imaizumi T., Matsunaga K., Kuramoto T., Shigemori M., Shichijo S., Itoh K. Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides. J. Immunother. 2000; 23: 511, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Sahin U., Koslowski M., Tureci O., Eberle T., Zwick C., Romeike B., Moringlane J. R., Schwechheimer K., Feiden W., Pfreundschuh M. Expression of cancer testis genes in human brain tumors. Clin. Cancer Res. 2000; 6: 3916–3922, [PUBMED], [INFOTRIEVE], [CSA]
  • Loging W. T., Lal A., Siu I.-M., Loney T. L., Wikstrand C. J., Marra M. A., Prange C., Bigner D. D., Strausberg R. L., Riggins G. J. Identifying potential tumor markers and antigens by database mining and rapid expression screening. Genome Res. 2000; 10: 1393–1402, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Sallinen S.-L., Sallinen P. K., Haapasalo H. K., Helin H. J., Helen P. T., Schraml P., Kallioniemi O. P., Kononen J. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 2000; 60: 6617–6622, [PUBMED], [INFOTRIEVE]
  • Schmits R., Cochlovius B., Treiz G., Regitz E., Ketter R., Preuss K., Romeike B. F., Pfreundschuh M. Analysis of the antibody repertoire of astrocytoma patients against antigens expressed by gliomas. Int. J. Cancer 2002; 98: 73–77, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Fischer U., Struss A. K., Hemmer D., Pallasch C. P., Steudel W. I., Meese E. Glioma-expressed antigen 2 (GLEA2): a novel protein that can elicit immune responses in glioblastoma patients and some controls. Clin. Exp. Immunol 2001; 126: 206–213, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Albert M. L., Sauter B., Bhardwaj N. Dendritic cells acquire antigens from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 86–89, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Jenne L., Arright J., Jonuleit H., Saurat J. H., Hauser C. Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res. 2000; 60: 4446–4452, [PUBMED], [INFOTRIEVE]
  • Siesjo P., Visse E., Sjogren H. O. Cure of established, intracerebral rat gliomas induced by therapeutic immunizations with tumor cells and purified APC or adjuvant IFN-γ treatment. J. Immunother. 1996; 19: 334–345, [CSA]
  • Heimberger A. B., Crotty L. E., Archer G. E., McLendon R. E., Friedman A., Dranoff G., Bigner D. D., Sampson J. H. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J. Neuroimmunol. 2000; 103: 16–25, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Aoki H., Mizuo M., Natsume A., Tsugawa T., Tsujimura K., Takahashi T., Yoshida J. Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor. Cancer Immunol. Immunother. 2001; 50: 463–468, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ni H., Speliman S. R., Jean W. C., Hall W. A., Low W. C. Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracerebral gliomas. J. Neuro-Oncol. 2001; 51: 1–9, [CSA], [CROSSREF]
  • Liau L. M., Black K. L., Prins R. M., Sykes S. N., DiPatre P.-L., Cloughesy T. F., Becker D. P., Bronstein J. M. Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J. Neurosurg. 1999; 90: 1115–1124, [PUBMED], [INFOTRIEVE]
  • Boczkowski D., Nair S. K., Snyder D., Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. 1996; 184: 465–472, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Gilboa E. The makings of a tumor rejection antigen. Immunity 1999; 11: 263–270, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ashley D. M., Faiola B., Nair S., Hale L. P., Bigner D. D., Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J. Exp. Med. 1997; 186: 1177–1182, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Yamanaka R., Zullo S. A., Tanaka R., Blaese M., Xanthopoulos K. G. Enhancement of antitumor immune response in glioma models in mice by genetically modified dendritic cells pulsed with Semiliki Forest virus-mediated complementary DNA. J. Neurosurg. 2001; 94: 474–481, [PUBMED], [INFOTRIEVE]
  • Akasaki Y., Kikuchi T., Homma S., Abe T., Kofe D., Ohno T. Antitumor effect of immunizations with fusions of dendritic and glioma cells in a mouse brain tumor model. J. Immunother. 2001; 24: 106–113, [CROSSREF]
  • Kotera Y., Shimizu K., Mule J. J. Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res. 2001; 61: 8105–8109, [PUBMED], [INFOTRIEVE]
  • Sloan A. E., Parajuli P. Human autologous dendritic cell-glioma fusions: feasibility and capacity to stimulate T cells with proliferative and cytolytic activity. J. Neuro-Oncology. 2003; 64: 177–183, [CROSSREF]
  • Sloan A. E., Parajuli P., Mathupala S. P. DC-tumor cell fusion for induction of tumor-specific T-cell response against malignant brain tumors: comparison with DC pulsed with total tumor RNA or tumor lysate. Proc. Am. Assoc. Cancer Res. 2002; 93, Abstract 476
  • Yamanaka R., Zullo S. A., Ramsey J., Yajima N., Tsuchiya N., Tanaka R., Blaese M., Xanthopoulos K. G. Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus-mediated interleukin-12. J. Neurosurg. 2002; 97: 611–618, [PUBMED], [INFOTRIEVE]
  • Liau L. M., Black K. L., Martin N. A., et al. Treatment of aglioblastoma patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case report. Neurosurg. Focus 2000; 9: 1–5
  • Yu J. S., Wheeler C. J., Zelter P. M., Ying H., Finger D. N., Lee P. K., Yong W. H., Incardona F., Thompson R. C., Reidinger M. S., Zhang W., Prins R. M., Black K. L. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T cell infiltration. Cancer Res. 2001; 61: 842–847, [PUBMED], [INFOTRIEVE]
  • Yu J. S., Wheeler C. J., Zeltzer P. M., Ying H., Finger D. N., Lee P. K., Yong W. H., Incardona F., Thompson R. C., Reidinger M. S., Zhang W., Prins R. M., Black K. L. Dendritic cell immunotherapy for patients with Glioblastoma multiforme and anaplastic astrocytoma. Proc. Am. Assoc. Cancer Res. 2001; 42, Abstract 1478
  • Okada H., Pollack I. F., Lieberman F., Lunsford L. D., Kondziolka D., Schiff D., Attanucci J., Edington H., Chambers W., Kalinski P., Kinzler D., Whiteside T., Elder E., Potter D. Gene therapy of malignant gliomas: a pilot study of vaccination with irradiated autologous glioma and dendritic cells admixed with IL-4 transduced fibroblasts to elicit an immune response. Hum. Gene Ther. 2001; 12: 575–595, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Kikuchi T., Akasaki Y., Irie M., Homma S., Abe T., Ohno T. Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol. Immunother. 2001; 50: 337–344, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Yamanaka R., Abe T., Yajima N., Tsuchiya N., Homma J., Kobayashi T., Narita M., Takahashi M., Tanaka R. Vaccination of recurrent glioma patients with tumor lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br. J. Cancer 2003; 89: 1172–1179, [PUBMED], [INFOTRIEVE]
  • Jonuleit H., Giesecke-Tuettenberg A., Tuting T., Thurner-Schuler B., Stuge T. B., Paragnik L., Kandemir A., Lee P. P., Schuler G., Knop J., Enk A. H. A comparison of two types of dendritic cells as adjuvants for the induction of melanoma-specific T cell responses in humans following intranodal injection. Int. J. Cancer 2001; 93: 243–251, [PUBMED], [INFOTRIEVE]
  • Skov S., Bonyhadi M., Odum N., Ledbetter J. A. IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells. J. Immunol. 2000; 164: 3500–3505, [PUBMED], [INFOTRIEVE]
  • Dallal R. M., Lotze M. T. The dendritic cell and human cancer vaccines. Curr. Opin. Immunol. 2000; 12: 583–588, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Valone F. H., Small E., MacKenzie M., Burch P., Lacy M., Peshwa M. V., Laus R. Dendritic cell-based treatment of cancer: closing in on a cellular therapy. Cancer J. 2001; 7(suppl 2)S53–S61, [PUBMED], [INFOTRIEVE]
  • Brasel K., McKenna H. J., Morrissey P. J., Charrier K., Morris A. E., Lee C. C., Williams D. E., Lyman S. D. Hematologic effects of flt3 ligand in vivo in mice. Blood 1996; 88: 2004, [PUBMED], [INFOTRIEVE], [CSA]
  • Maraskovsky E., Brasel K., Teepe M., Roux E. R., Lyman S. D., Shortman K., McKenna H. J. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 1996; 184: 1953, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Daro E., Pulendran B., Brasel K., Teepe M., Pettit D., Lynch D. H., Vremec D., Robb L., Shortman K., McKenna H. J., Maliszewski C. R., Maraskovsky E. Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but not CD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J. Immunol. 2000; 165: 49, [PUBMED], [INFOTRIEVE]
  • Pulendran B., Banchereau J., Burkeholder S., Kraus E., Guinet E., Chalouni C., Caron D., Maliszewski C., Davoust J., Fay J., Palucka K. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J. Immunol. 2000; 165: 566–572, [PUBMED], [INFOTRIEVE]
  • Parajuli P., Mosley R. L., Pisarev V., Chavez J., Ulrich A., Varney M., Singh R. K., Talmadge J. E. Flt3 ligand and granulocyte-macrophage colony-stimulation factor preferentially expand and stimulate different dendritic cell and T cell subsets. J. Exp. Hematol. 2001; 29(10)1185–1193, [CROSSREF]
  • Basak S. K., Harui A., Stolina M., Sharma S., Mitani K., Dubinett S. M., Roth M. D. Increased dendritic cell number and function following continuous in vivo infusion of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood 2002; 99: 2869–2879, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Disis M. L., Rinn K., Knuston L., Davis D., Caron D., dela Rosa C., Schiffman K. Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers. Blood 2002; 99: 2845–2850, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Parajuli P., Vladimir P., Sublet J., Steffel A., Varney M., Singh R., LaFace D., Talmadge J. E. Immunization with wild-type p53 gene sequences co-administered with Flt3 ligand induces an antigen-specific type 1 T cell response. Cancer Res. 2001; 61(22)8227–8234, [PUBMED], [INFOTRIEVE]
  • Wallenfriedman M. A., Conrad J. A., DelaBarre L., Graupman P. C., Lee G., Garwood M., Gregerson D. S., Jean W. C., Hall W. A., Low W. C. Effects of continuous localized infusion of granulocyte-macrophage colony-stimulating factor and inoculations of irradiated glioma cells on tumor regression. J. Neurosurg. 1999; 90: 1064–1071, [PUBMED], [INFOTRIEVE]
  • Plautz G. E., Barnet G. H., Miller D. W., Cohen B. H., Prayson R. A., Krauss J. C., Luciano M., Kangisser D. B., Shu S. Systemic T cell adoptive immunotherapy of malignant gliomas. J. Neurosurg. 1998; 89: 42–51, [PUBMED], [INFOTRIEVE]
  • Sloan A. E., Dansey R., Zamarano L., Barger G., Hamm C., Diaz F., Baynes R., Wood G. Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stmulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg. Focus 2000; 9(6)1–8, A 9
  • Phan G. Q., Wang E., Marincola F. M. T-cell-directed cancer vaccines: mechanisms of immune escape and immune tolerance. Expert Opin. Biol. Ther. 2001; 1: 511–523, [PUBMED], [INFOTRIEVE], [CSA]
  • Garrido F., Algarra I. MHC antigens and tumor escape from immune surveillance. Adv. Cancer Res. 2001; 83: 117–158, [PUBMED], [INFOTRIEVE], [CSA]
  • Tait B. D. HLA class I expression on human cancer cells. Implications for effective immunotherapy. Hum. Immunol. 2000; 61: 158–165, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Antel J. P., McCrea E., Ladiwala U., Qin Y. F., Becher B. Non-MHC-restricted cell-mediated lysis of human oligodendrocytes in vitro: relation with CD56 expression. J. Immunol. 1998; 160: 1606–1611, [PUBMED], [INFOTRIEVE]
  • Saeterdal I., thorStraten P., Myklebust J. H., Kirkin A. F., Gjertsen M. K., Gaudernack G. Generation and characterization of gp100 peptide-specific NK-T cell clones. Int. J. Cancer 1998; 75: 794–803, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lopez R. D., Waller E. K., Lu P. H., Negrin R. S. CD58/LFA-3 and IL-12 provided by activated monocytes are critical in the in vitro expansion of CD56+ T cells. Cancer Immunol. Immunother. 2001; 49: 629–640, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Smyth M. J., Crowe N. Y., Hayakawa Y., Takeda K., Yagita H., Godfrey D. NK-T cells—conductors of tumor immunity?. Cur. Opin. Immunol. 2002; 14: 165–171, [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.