1,186
Views
265
CrossRef citations to date
0
Altmetric
Research Article

IMPACT OF CELLULAR METABOLISM ON THE BIOLOGICAL EFFECTS OF BENZO[A]PYRENE AND RELATED HYDROCARBONS

&
Pages 1-35 | Published online: 30 Jan 2001

REFERENCES

  • Committee on Biologic Effects of Atmospheric Pollutants, Particulate Polycyclic Organic Matter, Div. Med. Sci. Natl. Res. Council National Academy of Science, Washington, DC 1972
  • Hattemer-Frey H. A., Travis C. C. Benzo-a-pyrene: Environmental Partitioning and Human Exposure. Toxicol. Ind. Health 1991; 7: 141–157
  • Baum E. J. Occurrence and Surveillance of Polycyclic Aromatic Hydrocarbons. Polycyclic Hydrocarbons and Cancer, H. V. Gelboin, P. O.P. Ts'o. Academic Press, New York 1978; 45–70
  • U.S. Department of Health Education and Welfare. Smoking and Health Public Health Service Publ. No. 1103; Report of the Advisory Committee to the Surgeon General of the Public Health Service. U.S. Govt. Printing Office, Washington, DC 1967
  • Schmeltz I., Hoffmann D., Wynder E. L. Toxic and Tumorigenic Agents in Tobacco Smoke. Analytical Methods and Modes of Origin. Trace Subst. Environ. Health 8, Symp. 1974; 281–295
  • Pryor W. A. Cigarette Smoke Radical and the Role of Free Radicals in Chemical Carcinogenicity. Environ. Health Perspect. 1997; 105: 875–882
  • Hoffmann D., Schmeltz I., Hecht S. S., Wynder E. L. Tobacco Carcinogenesis. Polycyclic Hydrocarbons and Cancer, H. V. Gelboin, P. O.P. Ts'o. Academic Press, New York 1978; 85–117
  • Gelboin H. V. Benzo[a]pyrene Metabolism, Activation, and Carcinogenesis: Role and Regulation of Mixed-Function Oxidases and Related Enzymes. Physiol. Rev. 1980; 60: 1107–1166
  • Lehr R. E., Jerina D. M. Relationships of Quantum Mechanical Calculations, Relative Mutagenicity of Benzo[a]anthracene Diol Epoxides, and “Bay Region” Concept of Aromatic Hydrocarbon Carcinogenicity. J. Toxicol. Environ. Health 1977; 2: 1259–1265
  • Lehr R. E., Jerina D. M. Metabolic Activations of Polycyclic Hydrocarbons: Structure-Activity Relationships. Arch. Toxicol. 1977; 39: 1–6
  • Wislocki P. G., Kapitulnik J., Levin W., Lehr R., Schaefer-Ridder M., Karle J. M., Jerina D. M., Conney A. H. Exceptional Carcinogenic Activity of Benz[a]anthracene 3,4-Dihydrodiol in the Newborn Mouse and the Bay Region Theory. Cancer Res. 1978; 38: 693–696
  • Pelkonen O., Nebert D. W. Metabolism of Polycyclic Aromatic Hydrocarbons: Etiologic Role in Carcinogenesis. Pharmacol. Rev. 1982; 34: 189–222
  • Parkinson A. Biotransformation of Xenobiotics. Casarett and Doull's Toxicology, The Basic Science of Poisons, C. D. Klaassen. McGraw-Hill, New York 1996; 113–186
  • Yang S. K. Stereoselectivity of Cytochrome P-450 Isozymes and Epoxide Hydrolase in the Metabolism of Polycyclic Aromatic Hydrocarbons. Biochem. Pharmacol. 1988; 37: 61–70
  • Selkirk J. K. Benzo[a]pyrene Carcinogenesis: A Biochemical Selection Mechanism. J. Toxicol. Environ. Health 1977; 2: 1245–1258
  • Smithgall T. E., Harvey R. G., Penning T. M. Spectroscopic Identification of Orthoquinones as the Products of Polycyclic Aromatic Trans-dihydrodiol Oxidation Catalyzed by Dihydrodiol Dehydrogenase. A Potential Route of Proximate Carcinogen Metabolism. J. Biol. Chem. 1988; 263: 1814–1820
  • Hollstein M., McCann J., Angelosanto F. A., Nichols W. W. Short-Term Tests for Carcinogens and Mutagens. Mutat. Res. 1979; 65: 133–226
  • Huang A. L., Berard D., Hager G. L. Glucocorticoid Regulation of the HaMuSV p21 Gene Conferred by Sequences from Mouse Mammary Tumor Virus. Cell 1981; 27: 245–255
  • Borgen A., Darvey H., Castagnoli N., Crocker T. T., Rasmussen R. E., Wang I. T. Metabolic Conversion of Benzo[a]pyrene by Syrian Hamster Liver Microsomes and Binding Metabolites to Deoxyribonucleic Acid. J. Med. Chem. 1973; 16: 502–506
  • Selkirk J. K., Croy R. G., Roller P. P., Gelboin H. V. High-Pressure Liquid Chromatographic Analysis of Benzo(a)pyrene Metabolism and Covalent Binding and the Mechanism of Action of 7,8-benzoflavone and 1,2-epoxy-3,3,3-trichloropropane. Cancer Res. 1974; 34: 3474–3480
  • Cavalieri E. L., Rogan E. G. The Approach to Understanding Aromatic Hydrocarbon Carcinogenesis: The Central Role of Radical Cations in Metabolic Activation. Pharmacol. Ther. 1992; 55: 183–199
  • Lesko S., Caspary W., Lorentzen R., Ts'o P. O.P. Enzymic Formation of 6-oxobenzo[a]pyrene Radical in Rat Liver Homogenates from Carcinogenic Benzo[a]pyrene. Biochemistry 1975; 14: 3978–3984
  • Rogan E., Roth R., Katomski P., Benderson J., Cavalieri E. Binding of Benzo[a]pyrene at the 1,3,6 Positions to Nucleic Acids in vivo on Mouse Skin and in vitro with Rat Liver Microsomes and Nuclei. Chem. Biol. Interact. 1978; 22: 35–51
  • Sullivan P. D. Free Radicals of Benzo[a]pyrene and Derivatives. Environ. Health Perspect. 1985; 64: 283–295
  • Sullivan P. D., Calle L. M., Shafer K., Nettleman M. Effect of Antioxidants on Benzo[a]pyrene Free Radicals. Carcinogenesis: A Comprehensive Survey, P. W. Jones, R. I. Freudenthal. Raven Press, New York 1978; 1–8
  • Krzywanska E., Piekarski L. Benzo[a]pyrene Free Radicals Formation in the Presence of Butylated Hydroxyanisole and their Possible Importance in Carcinogenesis. Neoplasma 1977; 24: 395–400
  • Lesko S. A., Lorentzen R. J. Benzo[a]pyrene dione-Benzo[a]pyrene diol Oxidation-Reduction Couples; Involvement in DNA Damage, Cellular Toxicity, and Carcinogenesis. J. Toxicol. Environ. Health 1985; 16: 679–691
  • Lorentzen R. J., Ts'o P. O.P. Benzo[a]pyrenedione/benzo[a]pyrenediol Oxidation-Reduction Couples and the Generation of Reactive Reduced Molecular Oxygen. Biochemistry 1977; 16: 1467–1473
  • Booth J., Sims P. Different Pathways Involved in the Metabolism of the 7,8- and 9,10-dihydrodiols of Benzo[a]pyrene. Biochem. Pharmacol. 1976; 25: 979–980
  • Thakker D. R., Yagi H., Lehr R. E., Kevin W., Buening M., Lu A. Y.H., Chang R. L., Wood A. W., Conney A. H., Jerina D. M. Metabolism of Trans-9,10-dihydroxy-9,10-dihydrobenzo[a]pyrene Occurs Primarily by Arylhydroxylation Rather Than Formation of a Diol Epoxide. Mol. Pharmacol. 1978; 14: 502–513
  • Capdevila J., Estabrook R. W., Prough R. A. The Microsomal Metabolism of Benzo[a]pyrene Phenols. Biochem. Biophys. Res. Commun. 1978; 82: 518–525
  • Slaga T. J., Bracken W. M., Gleason G., Levin W., Yagi H., Jerina D. M., Conney A. H. Marked Differences in Skin Tumor-Initiating Activities of the Optical Enantiomers of the Diastereomeric Benzo[a]pyrene 7,8-diol-9,10-epoxides. Cancer Res. 1979; 39: 67–71
  • Huberman E., Sachs L., Yang S. K., Gelboin H. V. Identification of Mutagenic Metabolites of Benzo[a]pyrene in Mammalian Cells. Proc. Natl. Acad. Sci. USA 1976; 73: 607–611
  • Flowers N. L., Miles P. R. Alterations of Pulmonary Benzo[a]pyrene Metabolism by Reactive Oxygen Metabolites. Toxicology 1991; 68: 259–274
  • Kim K. B., Lee B. M. Oxidative Stress to DNA, Protein, and Antioxidant Enzymes (Superoxide Dismutase and Catalase) in Rats Treated with Benzo[a]pyrene. Cancer Lett. 1997; 113: 205–212
  • Chouroulinkov I., Gentil A., Grover P. L., Sims P. Tumour Initiating Activities on Mouse Skin of Dihydrodiols Derived from Benz[a]pyrene. Br. J. Cancer 1976; 34: 523–532
  • Levin W., Wood A. W., Chang R. L., Slaga T. J., Yagi H., Jerina D. M., Conney A. H. Marked Differences in the Tumor-Initiating Activity of Optically Pure (+)- and (−)-Trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene on Mouse Skin. Cancer Res. 1977; 37: 2721–2725
  • Glatt H. R., Oesch F. Phenolic Benzo[a]pyrene Metabolites Are Mutagens. Mutat. Res. 1976; 36: 379–384
  • Wislocki P. G., Wood A. W., Chang R. L., Levin W., Tagi H., Hernandez O., Dansette P. M., Jerina D. M., Conney A. H. Mutagenicity and Cytotoxicity of Benzo[a]pyrene Arene Oxides, Phenols, Quinones, and Dihydrodiols in Bacterial and Mammalian cells. Cancer Res. 1976; 36: 3350–3357
  • Slaga T. J., Bracken W. M., Viaje A., Berry D. L., Gischer S. M., Miller D. R., Levin W., Conney A. H., Yagi H., Jerina D. M. Tumor Initiating and Promoting Activities of Various Benzo[a]pyrene Metabolites in Mouse Skin. Polynuclear Aromatic Hydrocarbons: Carcinogenesis: A Comprehensive Survey, P. W. Jones, R. I. Freudenthal. Raven Press, New York 1978; 371–382
  • Zhu H., Li Y., Trush M. A. Characterization of Benzo[a]pyrene Quinone-Induced Toxicity to Primary Cultured Bone Marrow Stromal Cells from DBA/2 Mice: Potential Role of Mitochondrial Dysfunction. Toxicol. Appl. Pharmacol. 1995; 130: 108–120
  • Roth R. A., Vinegar A. Action by the Lungs on Circulating Xenobiotic Agents, with a Case Study of Physiologically Based Pharmacokinetic Modeling of Benzo(a)pyrene Disposition. Pharmacol. Therap. 1990; 48: 143–155
  • Recio L., Hsie A. W. Glucuronide Conjugation Reduces the Cytotoxicity But Not the Mutagenicity of Benzo[a]pyrene in the CHO/HGPRT Assay. Teratog. Carcinog. Mutagen. 1984; 4: 391–402
  • Kensler T. W., Guyton K. Z. Modulation of Carcinogenesis by Antioxidants. Biological Consequences of Oxidative Stress, L. Spatz, A. D. Bloom. Oxford University Press, New York 1992; 162–185
  • Byczkowski J. Z., Gessner T. Effects of Inhibition of NADPH:cytochrome P-450 Reductase on Benzo[a]pyrene Metabolism in Mouse Liver Microsomes. Int. J. Biochem. 1989; 21: 525–529
  • Weyand E. H., Bevan D. R. Benzo[a]pyrene Disposition and Metabolism in Rats Following Intratracheal Instillation. Cancer Res. 1986; 46: 5655–5661
  • Weyand E. H., Bevan D. R. Benzo[a]pyrene Metabolism in vivo Following Intratracheal Administration. Polynuclear Aromatic Hydrocarbons: A Decade of Progress. Proceedings of the 10th International Symposium, M. Cooke, A. J. Dennis. Batelle Press, Columbus, Ohio 1988; 913–923
  • Sun J. D., Wolff R. K., Kanapilly G. M. Deposition, Retention, and Biological Fate in Inhaled Benzo-a-pyrene Adsorbed onto Ultrafine Particles and as a Pure Aerosol. Toxicol. Appl. Pharmacol. 1982; 65: 231–244
  • Rahman A., Barrowman J. A., Rahimtula A. The Influence of Bile on the Bioavailability of Polynuclear Aromatic Hydrocarbons from the Rat Intestine. Can. J. Physiol. Pharmacol. 1986; 64: 1214–1218
  • Yamazaki H., Terada M., Tsuboi A., Matsubara C., Hata T., Kakiuchi Y. Distribution and Binding Pattern of Benzo[a]pyrene in Rat Liver, Lung and Kidney Constituents After Oral Administration. Toxicol. Environ. Chem. 1987; 15: 71–81
  • Barhoumi R., Mouneimne Y., Ramos K. S., Safe S. H., Phillips T. D., Centonze V. E., Ainley C., Gupta M. S., Burghardt R. C. Analysis of Benzo[a]pyrene Partitioning and Cellular Homeostasis in a Rat Liver Cell Line. Toxicol. Sci. 2000; 53: 264–270
  • Fahl W. E., Jefcoate C. R., Kasper C. B. Characteristics of Benzo[a]pyrene Metabolism and Cytochrome P-450 Heterogeneity in Rat Liver Nuclear Envelope and Comparison to Microsomal Membrane. J. Biol. Chem. 1978; 253: 3106–3113
  • Kasper C. Biochemical Distinctions between the Nuclear and Microsomal Membranes from Rat Hepatocytes. J. Biol. Chem. 1971; 246: 577–581
  • Khandwala A. S., Kasper C. B. Preferential Induction of Aryl Hydroxylase Activity in Rat Liver Nuclear Envelope by 3-methylcholanthrene. Biochem. Biophys. Res. Commun. 1973; 54: 1241–1246
  • Rogan E., Roth R., Cavalieri E. Enzymology of Polycyclic Hydrocarbon Binding to Nucleic Acids. Carcinogenesis, P. W. Jones, R. Freudenthal. Raven Press, New York 1978; 265–271
  • Sikstrom R., Lanoix J., Bergeron J. J.M. An Enzymatic Analysis of a Nuclear Envelope Fraction. Biochim. Biophys. Acta 1976; 448: 88–102
  • Bresnick E., Stoming T. A., Vaught J. B., Thakkar D. R., Jerina D. M. Nuclear Metabolism of Benzo[a]pyrene and (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Arch. Biochem. Biophys. 1977; 183: 31–37
  • Ross J. A., Nesnow S. 32P-postlabeling in Studies of Polycyclic Aromatic Hydrocarbon Activation. IARC Scientif. Public. (Lyon) 1993; 124: 71–78
  • Talaska G., Jaeger M., Reilman R., Collins T., Warshawsky D. Chronic, Topical Exposure to Benzo[a]pyrene Induces Relatively High Steady-State Levels of DNA Adducts in Target Tissues and Alters Kinetics of Adduct Loss. Proc. Natl. Acad. Sci. USA 1996; 93: 7789–7793
  • Conney A. H., Chang R. L., Jerina D. M., Wei S.-J. C. Studies on the Metabolism of Benzo[a]pyrene and Dose-Dependent Differences in the Mutagenic Profile of Its Ultimate Carcinogenic Metabolite. Drug Metab. Rev. 1994; 26: 125–163
  • Szeliga J., Dipple A. DNA Adduct Formation by Polycyclic Aromatic Hydrocarbon Dihydrodiol Epoxides. Chem. Res. Toxicol. 1998; 11: 1–11
  • Scharping C. E., McManus M. E., Holder G. M. NADPH-Supported and Arachidonic Acid-Supported Metabolism of the Enantiomers of trans-7,8-dihydrobenzo[a]pyrene-7,8-diol by Human Liver Microsomal Samples. Carcinogenesis 1992; 13: 1199–1207
  • Wood A. W., Chang R. L., Levin W., Yagi H., Thakker D. R., Jerina D. M., Conney A. H. Differences in Mutagenicity of the Optical Enantiomers of the Diastereomeric Benzo[a]pyrene 7,8-diol-9,10-epoxides. Biochem. Biophys. Res. Commun. 1997; 77: 1389–1396
  • Buening M. K., Wislocki P. G., Levin W., Yahi H., Thakker D. R., Akagi H., Koreeda M., Jerina D. M., Conney A. H. Tumorigenicity of the Optical Enantiomers of the Diastereomeric Benzo[a]pyrene 7,8-diol-9,10-epoxides in Newborn Mice: Exceptional Activity of (+)-7b,8a-dihydroxy-9a,10a-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Proc. Natl. Acad. Sci. USA 1978; 75: 5358–5361
  • Meehan T., Straub K., Calvin M. Benzo[a]pyrene Diol Epoxide Covalently Binds to Deoxyguanosine and Deoxyadenosine in DNA. Nature 1977; 269: 725–727
  • Bigger C. A.H., Sawicki J. T., Blake D. M., Raymond L. G., Dipple A. Products of Binding of 7,12-dimethylbenz[a]anthracene to DNA in Mouse Skin. Cancer Res. 1983; 49: 5647–5651
  • Iball J. A Refinement of the Structure of 9:10-dimethyl-1:2-benzanthracene. Nature 1964; 201: 916–917
  • Devanesan P., RamaKrishna N. V.S., Padmavathi N. S., Rogan E., Cavalieri E. Formation of Benzo[a]pyrene (BP)-DNA Adducts in Mouse Skin by One-Electron Oxidation. Proc. Am. Ass. Cancer Res. 1992; 32: 135
  • Arif J. M., Shappell N., Sikka H. C., Kumar S., Gupta R. C. 32P-Postlabeling Analysis of Lipophilic DNA Adducts Resulting from Interaction with (±)-3-hydroxy-trans-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Chem. Biol. Interact. 1999; 118: 87–97
  • Joseph P., Jaiswal A. K. NAD(P)H:Quinone Oxidoreductase1 (DT Diaphorase) Specifically Prevents the Formation of Benzo[a]pyrene Quinone-DNA Adducts Generated by Cytochrome P450IA1 and P450 Reductase. Proc. Natl. Acad. Sci. USA 1994; 91: 8413–8417
  • Nagata C., Kodama M., Ioki Y. Electron Spin Resonance Study of the Binding of the 6-oxybenzo[a]pyrene Radical and Benzo[a]pyrenesemiquinone Radicals with DNA and Polynucleotides. Polycyclic Hydrocarbons and Cancer, H. V. Gelboin, P. O.P. Ts'o. Academic Press, New York 1978; 247–260
  • Kodama M., Ioki Y., Nagata C. Binding of Benzo[a]pyrenesemiquinone Radicals with DNA and Polynucleotides. Gann 1977; 68: 253–254
  • Kodama M., Nagata C. Binding of 6-oxybenzo[a]pyrene Radical with DNA and Polynucleotides. Gann 1977; 68: 125–126
  • Borm P. J., Knaapen A. M., Schins R. P., Godschalk R. W., Schooten F. J. Neutrophils Amplify the Formation of DNA Adducts by Benzo[a]pyrene in Lung Target Cells. Environ. Health Perspect. 1997; 105(Suppl 5)1089–1093
  • Feldman G., Remsen J., Shinohara K., Cerutti P. Excisability and Persistence of Benzo[a]pyrene DNA Adducts in Epithelioid Human Lung Cells. Nature 1978; 274: 796–798
  • Pelkonen O., Boobis A. R., Levitt R. C., Kouri R. E., Nebert D. W. Genetic Differences in the Metabolic Activation of Benzo[a]pyrene in Mice. Attempts to Correlate Tumorigenesis with Mutagenesis in vitro. Pharmacology 1979; 18: 281–293
  • King H. W., Thompson M. H., Brookes P. The Role of 9-hydroxy-benzo[a]pyrene in the Microsome Mediated Binding of Benzo[a]pyrene to DNA. Int. J. Cancer 1976; 18: 339–344
  • Kinoshita N., Gelboin H. V. Beta-Glucuronidase Catalyzed Hydrolysis of Benzo[a]pyrene-3-glucuronide and Binding to DNA. Science 1978; 199: 307–309
  • Levin W., Wood A. W., Wislocki P. G., Chang R. L., Kapitulnik J., Mah H. D., Yagi H., Jerina D. M., Conney A. H. Mutagenicity and Carcinogenicity of Benzo[a]pyrene Derivatives. Polycyclic Hydrocarbons and Cancer, H. V. Gelboin, P. O.P. Ts'o. Academic Press, New York 1978; 189–202
  • Chesis P. L., Levin D. E., Smith M. T., Ernster L., Ames B. N. Mutagenicity of Quinones: Pathways of Metabolic Activation and Detoxification. Proc. Natl. Acad. Sci. USA 1984; 81: 1696–1700
  • Hakura A., Tsutsui Y., Sonoda J., Kai J., Imade T., Shimada M., Sugihara Y., Mikami T. Comparison between in vivo Mutagenicity and Carcinogenicity in Multiple Organs by Benzo[a]pyrene in the lacZ Transgenic Mouse (Muta Mouse). Mutat. Res. 1998; 398: 123–130
  • Schmidt J. V., Bradfield C. A. Ah Receptor Signaling Pathways. Annu. Rev. Cell Dev. Biol. 1996; 12: 55–89
  • Denison M. S., Fisher J. M., Whitlock J. P., Jr. The DNA Recognition Site for the Dioxin-Ah Receptor Complex. J. Biol. Chem. 1988; 263: 17221–17224
  • Denison M. S., Fisher J. M., Whitlock J. P., Jr. Inducible, Receptor-Dependent Protein-DNA Interactions at a Dioxin-Responsive Transcriptional Enhancer. Proc. Natl. Acad. Sci. USA 1988; 85: 2528–2532
  • Fujisawa-Sehara A., Yamane M., Fujii-Kuriyama Y. A DNA-Binding Factor Specific for Xenobiotic Responsive Elements of P-450c Gene Exists as a Cryptic Form in Cytoplasm: Its Possible Translocation to the Nucleus. Proc. Natl. Acad. Sci. USA 1988; 85: 5859–5863
  • Paulson K. E., Darnell J. E., Jr., Rushmore T., Pickett C. B. Analysis of the Upstream Elements of the Xenobiotic Compound-Inducible and Positionally Regulated Glutathione S-Transferase Ya Gene. Mol. Cell. Biol. 1990; 10: 1841–1852
  • Favreau L. V., Pickett C. B. Transcriptional Regulation of the Rat NAD(P)H:Quinone Reductase Gene. Identification of Regulatory Elements Controlling Basal Level Expression and Inducible Expression by Planar Aromatic Compounds and Phenolic Antioxidants. J. Biol. Chem. 1991; 266: 4556–4561
  • Asman D. C., Takimoto K., Pitot H. C., Dunn T. J., Lindahl R. Organization and Characterization of the Rat Class 3 Aldehyde Dehydrogenase Gene. J. Biol. Chem. 1993; 268: 12530–12536
  • Jaiswal A. K. Human NAD(P)H:Quinone Oxidoreductase2: Gene Structure, Activity, and Tissue Specific Expression. J. Biol. Chem. 1994; 269: 14502–14508
  • Vaziri C., Faller D. V. A Benzo[a]pyrene-Induced Cell Cycle Checkpoint Resulting in p53-Independent G1 Arrest in 3T3 Fibroblasts. J. Biol. Chem. 1997; 272: 2762–2769
  • Zhao W., Ramos K. S. Inhibition of DNA Synthesis in Primary Cultures of Adult Rat Hepatocytes by Benzo[a]pyrene and Related Aromatic Hydrocarbons: Role of Ah Receptor-Dependent Events. Toxicology 1995; 99: 179–189
  • Zhao W., Ramos K. S. Modulation of Hepatocyte Gene Expression by the Carcinogen Benzo[a]pyrene. Toxicol. In Vitro 1998; 12: 395–402
  • Spatz L. Biological Consequences of Oxidative Stress, L. Spatz, A. D. Bloom. Oxford University Press, New York 1992; 3–22
  • Chen Y.-H., Ramos K. S. Negative Regulation of Rat GST-Ya Via Antioxidant/Electrophile Response Elements is Directed by a C/EBP-Like Site. Biochem. Biophys. Res. Comm. 1999; 265: 18–23
  • Miller K. P., Chen Y.-H., Hastings V. L., Bral C. M., Ramos K. S. Profiles of ARE/EpRE Nuclear Protein Binding and c-Ha-ras Transactivation in Vascular Smooth Muscle Cells Treated with Oxidative Metabolites of Benzo[a]pyrene. Biochem. Pharmacol. 2000; 60: 1285–1296
  • Bral C. M., Ramos K. S. Identification of Benzo[a]pyrene-Inducible cis-acting Elements within c-Ha-ras Transcriptional Regulatory Sequences. Mol. Pharmacol. 1997; 52: 974–982
  • Liu S., Pickett C. B. The Rat Liver Glutathione S-Transferase Ya Subunit Gene: Characterization of the Binding Properties of a Nuclear Protein from HepG2 Cells that has High Affinity for the Antioxidant Response Element. Biochemistry 1996; 35: 11517–11521
  • Taniguchi N., Pickett C. B., Griffith O. W. Oxy Radicals and Antioxidative Responses in Cancer: 12th Sapporo Cancer Seminar. Cancer Res. 1993; 53: 3207–3210
  • Rushmore T. H., Morton M. R., Pickett C. B. The Antioxidant Responsive Element. J. Biol. Chem. 1991; 266: 11632–11639
  • Favreau L. V., Pickett C. B. The Rat Quinone Reductase Antioxidant Response Element. J. Biol. Chem. 1995; 270: 24468–24474
  • Friling R. S., Bensimon A., Tichauer Y., Daniel V. Xenobiotic-Inducible Expression of Murine Glutathione S-Transferase Ya Subunit Gene Is Controlled by an Electrophile-Responsive Element. Proc. Natl. Acad. Sci. USA 1990; 87: 6258–6262
  • Xie T., Belinsky M., Xu Y., Jaiswal A. K. ARE- and TRE-mediated Regulation of Gene Expression: Response to Xenobiotics and Antioxidants. J. Biol. Chem. 1995; 270: 6894–6900
  • Venugopal R., Jaiswal A. K. Nrf1 and Nrf2 Positively and c-Fos and Fra1 Negatively Regulate the Human Antioxidant Response Element-Mediated Expression of NAD(P)H:Quinone Oxidoreductase1 Gene. Proc. Natl. Acad. Sci. USA 1996; 93: 14960–14965
  • Wasserman W. W., Fahl W. E. Comprehensive Analysis of Proteins Which Interact with the Antioxidant Responsive Element: Correlation of ARE-BP-1 with the Chemoprotective Induction Response. Arch. Biochem. Biophys. 1997; 344: 387–396
  • Mulcahy R. T., Wartman M. A., Bailey H. H., Gipp J. J. Constitutive and Beta-naphthoflavone-Induced Expression of the Human Gamma-Glutamylcysteine Synthetase Heavy Subunit Gene Is Regulated by a Distal Antioxidant Response Element/TRE Sequence. J. Biol. Chem. 1997; 272: 7445–7454
  • Moehlenkamp J. D., Johnson J. A. Activation of Antioxidant/Electrophile-Responsive Elements in IMR-32 Human Neuroblastoma Cells. Arch. Biochem. Biophys. 1999; 363: 98–106
  • Rushmore T. H., King R. G., Paulson K. E., Pickett C. B. Regulation of Glutathione S-Transferase Ya Subunit Gene Expression: Identification of a Unique Xenobiotic Responsive Element Controlling Inducible Expression by Planar Aromatic Compounds. Proc. Natl. Acad. Sci. USA 1990; 87: 3826–3830
  • Rushmore T. H., Pickett C. B. Transcriptional Regulation of the Rat Glutathione S-Transferase Ya Subunit Gene. Characterization of a Xenobiotic-Responsive Element Controlling Inducible Expression by Phenolic Antioxidants. J. Biol. Chem. 1990; 265: 14648–14653
  • Favreau L. V., Pickett C. B. Transcriptional Regulation of the Rat NAD(P)H:Quinone Reductase Gene. J. Biol. Chem. 1993; 268: 19875–19881
  • Li Y., Jaiswal A. K. Regulation of Human NAD(P)H:Quinone Oxidoreductase Gene. J. Biol. Chem. 1992; 267: 15097–15104
  • Romero D. L., Mounho B. J., Lauer F. T., Born J. L., Burchiel S. W. Depletion of Glutathione by Benzo[a]pyrene Metabolites, Ionomycin, Thapsigargin, and Phorbol Myristate in Human Peripheral Blood Mononuclear Cells. Toxicol. Appl. Pharmacol. 1997; 144: 62–69
  • DiGiovanni J., Gill R. D., Nettikumara A. N., Colby A. B., Reiners J. J., Jr. Effect of Extracellular Calcium Concentration on the Metabolism of Polycyclic Aromatic Hydrocarbons by Cultured Mouse Keratinocytes. Cancer Res. 1989; 49: 5567–5574
  • Boyle W. J., Smocal T., Defize L. H.K., Angel P., Woodgett J. R., Karin M., Hunter T. Activation of Protein Kinase C Decreases Phosphorylation of c-Jun at Sites That Negatively Regulate Its DNA-Binding Activity. Cell 1991; 64: 573–584
  • Baudoin-Legros M., Paquet J. L., Brunelle G., Meyer P. Role of Nuclear Protooncogenes in the Proliferation of Aortic Smooth Muscle Cells in Spontaneously Hypertensive Rats. J. Hypertens. 1989; 7(Suppl. 6)114–115
  • Kovary K., Bravo R. Expression of Different Jun and Fos Proteins During the G0-to-G1 Transition in Mouse Fibroblasts: in vitro and in vivo Associations. Mol. Cell. Biol. 1991; 11: 2451–2459
  • Ou X., Ramos K. S. Benzo[a]pyrene Inhibits Protein Kinase C Activity in Subcultured Rat Aortic Smooth Muscle Cells. Chem. Biol. Interact. 1994; 93: 29–40
  • Ou X., Weber T. J., Chapkin R. S., Ramos K. S. Interference with Protein Kinase C-Related Signal Transduction in Vascular Smooth Muscle Cells by Benzo[a]pyrene. Arch. Biochem. Biophys. 1995; 318: 122–130
  • DiGiovanni J., Rho O., Xian W., Beltran L. Role of the Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Mouse Skin Carcinogenesis. Prog. Clin. Biol. Res. 1994; 387: 113–138
  • Tannheimer S. L., Ethier S. P., Caldwell K. K., Burchiel S. W. Benzo[a]pyrene- and TCDD-Induced Alterations in Tyrosine Phosphorylation and Insulin-Like Growth Factor Signaling Pathways in the MCF-10A Human Mammary Epithelial Cell Line. Carcinogenesis 1998; 19: 1291–1297
  • Zhang L., Connor E. E., Chegini N., Shiverick K. T. Modulation by Benzo[a]pyrene of Epidermal Growth Factor Receptors, Cell Proliferation, and Secretion of Human Chorionic Gonadotropin in Human Placental Cell Lines. Biochem. Pharmacol. 1995; 50: 1171–1180
  • Guyda H. J., Mathieu L., Lai W., Manchester D., Wang S. L., Ogilvie S., Shiverick K. T. Benzo[a]pyrene Inhibits Epidermal Growth Factor Binding and Receptor Autophosphorylation in Human Placental Cell Cultures. Mol. Pharmacol. 1990; 37: 137–143
  • Ivanovic V., Weinstein I. B. Benzo[a]pyrene and Other Inducers of Cytochrome P1-450 Inhibit Binding of Epidermal Growth Factor to Cell Surface Receptors. Carcinogenesis 1982; 3: 505–510
  • Jope R. S., Song L., Grimes C. A., Zhang L. Oxidative Stress Oppositely Modulates Protein Tyrosine Phosphorylation Stimulated by Muscarinic G Protein-Coupled and Epidermal Growth Factor Receptors. J. Neurosci. Res. 1999; 55: 329–340
  • Peus D., Vasa R. A., Meves A., Pott M., Beyerle A., Squillance K., Pittelkow M. R. H2O2 Is an Important Mediator of UVB-Induced EGF-Receptor Phosphorylation in Cultured Keratinocytes. J. Invest. Dermatol. 1998; 110: 966–971
  • Suc I., Meilhac O., Lajoie-Mazenc I., Vandaele J., Jurgens G., Salvayre R. Negre-Salvayre, A Activation of EGF Receptor by Oxidized LDL. FASEB J. 1998; 12: 665–671
  • Liu W., Akhand A. A., Kato M., Yokoyama I., Miyata T., Kurokawa K., Uchida K., Nakashima I. 4-Hydroxynonenal Triggers an Epidermal Growth Factor Receptor-Linked Signal Pathway for Growth Inhibition. J. Cell Sci. 1999; 112: 2409–2417
  • Miller J. A. Carcinogenesis by Chemicals: An Overview—G.H.A. Clowes Memorial Lecture. Cancer Res. 1970; 30: 559–576
  • Miller E. C., Miller J. A. Searches for Ultimate Chemical Carcinogens and Their Reactions with Cellular Macromolecules. Cancer 1981; 47: 2327–2345
  • Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Agency for Toxic Substances and Disease Registry. 1990
  • Slaga T. J., Bracken W. M., Dresner S., Levin W., Yagi H., Jerina D. M., Conney A. H. Skin Tumor-Initiating Activities of the Twelve Isomeric Phenols of Benzo[a]pyrene. Cancer Res. 1978; 38: 678–681
  • Levin W., Wood A. W., Wislocki P. G., Kapitulnik J., Yagi H., Jerina D. M., Conney A. H. (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene: A Potent Skin Carcinogen When Applied Topically to Mice. Proc. Natl. Acad. Sci. USA 1976; 73: 3867–3871
  • Kapitulnik J., Levin W., Conney A. H., Yagi H., Jerina D. M. Benzo[a]pyrene 7,8-dihydrodiol Is More Carcinogenic than Benzo[a]pyrene in Newborn Mice. Nature 1977; 266: 378–380
  • Kadlubar F. F., Badawi A. F. Genetic Susceptibility and Carcinogen-DNA Adduct Formation in Human Urinary Bladder Carcinogenesis. Toxicol. Lett. 1995; 82–83, 627–632
  • Weinstein I. B., Jeffrey A. M., Leffler S., Pulkrabek P., Yamasaki H., Grunberger D. Interactions between Polycyclic Aromatic Hydrocarbons and Cellular Macromolecules. Polycyclic Hydrocarbons and Cancer, H. V. Gelboin, P. O.P. Ts'o. Academic Press, New York 1978; 4–36
  • Eberhart J., Coffing S. L., Anderson J. N., Marcus C., Kalogeris T. J., Baird W. M., Park S. S., Gelboin H. V. The Time-Dependent Increase in the Binding of Benzo[a]pyrene to DNA through (+)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide in Primary Rat Hepatocyte Cultures Results from Induction of Cytochrome P450IA1 by Benzo[a]pyrene Treatment. Carcinogenesis 1992; 13: 297–301
  • Todorovic R., Devanesan P. D., Cavalieri E. L., Rogan E. G., Park S. S., Gelboin H. V. A Monoclonal Antibody to Rat Liver Cytochrome P450 IIC11 Strongly and Regiospecifically Inhibits Constitutive Benzo[a]pyrene Metabolism and DNA Binding. Mol. Carcinog. 1991; 4: 308–314
  • Yang H., Mazur-Melnyk M., de Boer J. G., Glickman B. W. A Comparison of Mutational Specificity of Mutations Induced by S9-activated B[a]P and Benzo[a]pyrene-7,8-diol-9,10-epoxide at the Endogenous aprt Gene in CHO Cells. Mutat. Res. 1999; 423: 23–32
  • Shukla R., Geacintov N. E., Loechler E. L. The Major, N2-dG Adduct of (+)-anti-B[a]PDE induces G → A Mutations in a 5′-AGA-3′ Sequence Context. Carcinogenesis 1999; 20: 261–268
  • Rodriguez H., Loechler E. L. Mutational Spectra of the (+)-anti-diol Epoxide of Benzo[a]pyrene in a supF Gene of an Escherichia coli Plasmid: DNA Sequence Context Influences Hotspots, Mutational Specificity and the Extent of SOS Enhancement of Mutagenesis. Carcinogenesis 1993; 14: 373–383
  • Rodriguez H., Loechler E. L. Mutagenesis by the (+)-anti-diol Epoxide of Benzo[a]pyrene: What Controls Mutagenic Specificity?. Biochemistry 1993; 32: 1759–69
  • Mackay W., Benasutti M., Drouin E., Loechler E. L. Mutagenesis by the Major Adduct of Activated Benzo[a]pyrene, (+)-anti-BP-N2-Gua, When Studied in an Escherichia coli Plasmid Using Site-Directed Methods. Carcinogenesis 1992; 13: 1415–1425
  • Shukla R., Liu Y., Geacintov N., Loechler E. L. The Major, N2-dG Adduct of (+)-anti-B[a]PDE Shows a Dramatically Different Mutagenic Specificity (Predominantly, G → A) in a 5-GCT-3 Sequence Context. Biochemistry 1997; 36: 10256–10261
  • Shukla R., Jelinsky S., Liu T., Geacintov N. E., Loechler E. L. How Stereochemistry Affects Mutagenesis by N2-dG Adducts of B[a]PDE: Configuration of the Adduct Bond Is More Important than of the Hydroxyl Groups. Biochemistry 1997; 36: 13263–13269
  • Ross R. The Pathogenesis of Atherosclerosis, a Perspective for the 1990s. Nature 1993; 362: 801–809
  • Benditt E. P., Benditt J. M. Evidence for a Monoclonal Origin of Human Atherosclerotic Plaques. Proc. Natl. Acad. Sci. USA 1973; 70: 1753–1756
  • Schwartz S. M., Murry C. E. Proliferation and the Monoclonal Origins of Atherosclerotic Lesions. Annu. Rev. Med. 1998; 49: 437–460
  • Ramos K. S., Parrish A. R. Growth-Related Signaling as a Target of Toxic Insult in Vascular Tissue. Life Sciences 1995; 57: 627–635
  • Zhang Y., Ramos K. S. The Induction of Proliferative Vascular Smooth Muscle Cell Phenotypes by Benzo[a]pyrene Does Not Involve Mutational Activation of ras Genes. Mutat. Res. 1997; 373: 285–292
  • Sadhu D. N., Merchant M., Safe S. H., Ramos K. S. Modulation of Protooncogene Expression in Rat Aortic Smooth Muscle Cells by Benzo[a]pyrene. Arch. Biochem. Biophys. 1993; 300: 124–131
  • Ramos K. S., Zhang Y., Sadhu D. N., Chapkin R. C. The Induction of Proliferative Phenotypes in Vascular Smooth Muscle Cells by Benzo[a]pyrene Is Characterized by Upregulation of Phosphatidylinositol Metabolism and c-Ha-ras Gene Expression. Arch. Bioch. Biophys. 1996; 332: 213–222
  • Serabjit-Singh C. J., Bend J. R., Philpot R. M. Cytochrome P-450 Monooxygenase System Localization in Smooth Muscle of Rabbit Aorta. Mol. Pharmacol. 1985; 28: 72–79
  • Thirman M. J., Albrecht J. H., Krueger M. A., Erickson R. R., Cherwitz D. L., Park S. S., Gelboin H. V., Holtzman J. L. Induction of Cytochrome CYPIA1 and Formation of Toxic Metabolites of Benzo[a]pyrene by Rat Aorta: A Possible Role in Atherogenesis. Proc. Natl. Acad. Sci. USA 1994; 91: 5397–5401
  • Bond J. A., Omiecinski C. J., Juchau M. R. Kinetics, Activation, and Induction of Aortic Mono-Oxygenases—Biotransformation of Benzo[a]pyrene. Biochem. Pharmacol. 1979; 28: 305–311
  • Shanlin F. U., Davies M. J., Stocker R., Dean R. T. Evidence for Roles of Radicals in Protein Oxidation in Advanced Human Atherosclerotic Plaque. Biochem. J. 1998; 333: 519–525
  • Hough J. L., Baird M. B., Sfeir G. T., Pacini C. S., Darrow D., Wheelock C. Benzo[a]pyrene Enhances Atherosclerosis in White Carneau and Show Racer Pigeons. Arterioscleros. Thromb. 1993; 13: 1721–1727
  • Zwijsen R. M., van Kleef E. M., Alink G. M. A Comparative Study on the Metabolic Activation of 3,4-benzo[a]pyrene to Mutagens by Aorta Smooth Muscle Cells of Rat and Rabbit. Mutat. Res. 1990; 230: 111–117
  • Kitamura S. Effects of Cigarette Smoking on Metabolic Events in the Lung. Environ. Health Perspect. 1987; 72: 283–296
  • Ramos K. S., Chacon E., Acosta D., Jr. Toxic Responses of the Heart and Vascular Systems. Casarett and Doull's Toxicology, The Basic Science of Poisons, C. D. Klaassen. McGraw-Hill, New York 1996; 487–527
  • Juchau M. R., Lee Q. P., Fantel A. G. Xenobiotics Biotransformation/Bioactivation in Organogenesis-Stage Conceptal Tissues: Implications for Embryotoxicity and Teratogenesis. Drug Metab. Rev. 1992; 24: 195–238
  • Winn L. M., Wells P. G. Free Radical-Mediated Mechanisms of Anticonvulsant Teratogenicity. Eur. J. Neurol. 1995; 2(Suppl. 4)5–29
  • Fantel A. G. Reactive Oxygen Species in Development Toxicity: Review and Hypothesis. Teratology 1996; 53: 196–217
  • Wells P. G., Winn L. M. Biochemical Toxicology of Chemical Teratogeneseis. Crit. Rev. Biochem. Mol. Biol. 1996; 31: 1–40
  • Wells P. G., Winn L. M. The Role of Biotransformation in Development Toxicity. Comprehensive Toxicology, vol. 10: Reproductive and Endocrine Toxicology, I. G. Sipes, C. A. McQueen, A. J. Gandolphi. Elsevier, Amsterdam 1997; 489–507
  • Wells P. G., Kim P. M., Nicol C. J., Parman T., Winn L. M. Reactive Intermediates. Handbook of Experimental Pharmacology Drug Toxicity in Embryonic Development, R. J. Kavlock, G. P. Daston. Springer-Verlag, Berlin 1997; 451–516
  • Wells P. G., Kim P. M., Laposa R. R., Nicol C. J., Parman T., Winn L. M. Oxidative Damage in Chemical Teratogenesis. Mutat. Res. 1997; 396: 65–78
  • Winn L. M., Wells P. G. Evidence of Embryonic Prostaglandin H Synthase-Catalyzed Bioactivation and Reactive Oxygen Species-Mediated Oxidation of Macromolecules in Phenytoin and Benzo[a]pyrene teratogenesis. Free Rad. Biol. Med. 1997; 22: 607–621
  • Winn L. M., Wells P. G. Phenytoin-Initiated DNA Oxidation in Murine Embryo Culture, and Embryoprotection by the Antioxidative Enzymes Superoxide Dismutase and Catalase: Evidence for Reactive Oxygen Species Mediated DNA Oxidation in the Molecular Mechanism of Phenytoin Teratogenicity. Mol. Pharmacol. 1995; 48: 112–120
  • Wells P. G., Obilo F. C., de Morais S. M.F. Benzo[a]pyrene Embryopathy in Rats Genetically Deficient in Bilirubin UDP-Glucuronyl Transferase. FASEB J. 1989; 3: A1025
  • Gregus Z., Klaassen C. D. Mechanisms of Toxicity. Casarett and Doull's Toxicology, The Basic Science of Poisons, C. D. Klaassen. McGraw-Hill, New York 1996; 35–74
  • Nicol C. J., Harrison M. L., Laposa R. R., Gimelshtein I. L., Wells P. G. A Teratologic Suppressor Role for p53 in Benzo[a]pyrene-Treated Transgenic p53-deficient Mice. Nature Genet. 1995; 10: 181–187
  • Harrison M. L., Nicol C. J., Wells P. G. Tumor Suppressor Genes and Chemical Teratogenesis: Benzo[a]pyrene Embryopathy and Cytochromes P-450. Activities in p53-Deficient Transgenic Mice. Toxicologist 1994; 14: 246
  • Lu L. J., Anderson L. M., Jones A. B., Moskal T. J., Salazar J. J., Hokanson J. A., Rice J. M. Persistence, Gestation Stage-Dependent Formation and Interrelationship of Benzo[a]pyrene-Induced DNA Adducts in Mothers, Placentae and Fetuses of Erythrocebus Patas Monkeys. Carcinogenesis 1993; 14: 1805–1813
  • Iannaccone P. M., Fahl W. E., Stols L. Reproductive Toxicity Associated with Endometrial Cell Mediated Metabolism of Benzo[a]pyrene: A Combined in vitro in vivo Approach. Carcinogenesis 1984; 5: 1437–1442
  • Arnould J. P., Verhoest P., Bach V., Libert J. P., Belegaud J. Detection of Benzo[a]pyrene-DNA Adducts in Human Placenta and Umbilical Cord Blood. Hum. Exp. Toxicol. 1997; 16: 716–721
  • Sanyal M. K., Li Y. L., Biggers W. J., Satish J., Barnea E. R. Augmentation of Polynuclear Aromatic Hydrocarbon Metabolism of Human Placental Tissues of First-Trimester Pregnancy by Cigarette Smoke Exposure. Am. J. Obstet. Gynecol. 1993; 168: 1587–1597
  • Shendrikova I. A., Ivanov-Golitsyn M. N., Likchachev A. Y. The Transplacental Penetration of Benzo[a]pyrene in Mice. Vopr. Onkologii 1974; 20: 53–56
  • Srivastava V. K., Chauhan S. S., Srivastava P. K., Kumar V., Misra U. K. Fetal Translocation and Metabolism of PAH Obtained from Coal Fly Ash Given Intratracheally to Pregnant Rats. J. Toxicol. Environ. Health 1986; 18: 459–469
  • Legraverend C., Guenther T. M., Nebert D. W. Importance of the Route of Administration for Genetic Differences in Benzo[a]pyrene-Induced in utero Toxicity and Teratogenicity. Teratology 1984; 29: 35–47
  • Mackenzie K. M., Angevine D. M. Infertility in Mice Exposed in utero to Benzo[a]pyrene. Biol. Reprod. 1981; 24: 183–191
  • Shum S., Jensen N. M., Nebert D. W. The Murine Ah Locus: In utero Toxicity and Teratogenesis Associated with Genetic Differences in Benzo[a]pyrene Metabolism. Teratology 1979; 20: 365–376
  • Payne. The Pathological Effects of the Intraperitoneal Injection of 3,4-benzopyrene into Rats and Mice. Br. J. Cancer 1958; 12: 65–74
  • Urso P., Gengozian N. Depressed Humoral Immunity and Increased Tumor Incidence in Mice Following in utero Exposure to Benzo[a]pyrene. J. Toxicol. Environ. Health 1980; 6: 569–576
  • Bulay O. M., Wattenberg L. W. Carcinogenic Effects of Polycyclic Hydrocarbon Carcinogen Administration to Mice During Pregnancy on the Progeny. J. Natl. Cancer Inst. 1971; 46: 397–402
  • Soyka L. F. Hepatic Drug Metabolizing Enzyme Activity and Tumorigenesis in Mice Following Perinatal Exposure to Benzo[a]pyrene. Pediatr. Pharmacol. 1980; 1: 85–96
  • Sheveleva G. A. On the Effect of 3,4-benzpyrene on the Development of the Foetus Applied at Different Stages of Gestation. Gig. Tr. Prof. Zabol. 1978; 7: 54
  • This paper was referred by Dr. Daniel Acosta, Ph.D., University of Cincinnati, Cincinnati, OH 45267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.