151
Views
68
CrossRef citations to date
0
Altmetric
Research Article

FOOD TOXINS, AMPA RECEPTORS, AND MOTOR NEURON DISEASES*

Pages 561-587 | Published online: 16 Aug 1999

REFERENCES

  • Spencer P. S. Lathyrism. Handbook of Clinical Neurology, Intoxications of the Nervous System, Part II, F. A. de Wolff. Elsevier, Amsterdam 1995; 21: 1–20
  • Rosling H., Tylleskär T. Cassava. Experimental and Clinical Neurotoxicology, P. S. Spencer, H. H. Schaumberg. Oxford University Press, New York 1999; 338–343
  • Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 1981; 21: 165–204
  • Hollmann M., Heinemann S. Cloned glutamate receptors. Annu. Rev. Neurosci. 1994; 17: 31–108
  • Choi. D. W. Calcium: Still center-stage in hypoxic–ischemic neuronal death. Trends Neurosci. 1995; 18: 58–60
  • Olney J. W., Ludolph A. C. Excitotoxic mechanisms of neurotoxicity. Experimental and Clinical Neurotoxicology, P. S. Spencer, H. H. Schaumburg. Oxford University Press, New York 1999; 604–610
  • Yu S. P., Yeh C.-H., Strasser U., Tian M., Choi D. W. NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 1999; 284: 336–339
  • Teitelbaum J. S., Zatorre R. J., Carpenter S., Gendron D., Evans A. C., Gjedde A., Cashman N. R. Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. New Engl. J. Med., 322: 1781–1787
  • Scallet A. C., Binienda Z., Caputo F. A., Hall S., Paule M. G., Rountree R. L., Schmued L., Sobotka T., Slikker W., Jr. Domoic acid-treated cynomolgus monkeys (M. fascicularis): Effects of dose on hippocampal neuronal and terminal degeneration. Brain Res. 1993; 627: 307–313
  • Tryphonas L., Truelove J., Todd E., Nera E., Iverson F. Experimental oral toxicity of domoic acid in cynomolgus monkeys (Macaca fascicularis) and rats. Preliminary investigations. Food Chem. Toxicol. 1990; 28: 707–715
  • Hugon J., Vallat J. M., Spencer P. S., Leboutet M. J., Barthe D. Kainic acid induces early and delayed degenerative neuronal changes in rat spinal cord. Neurosci. Lett. 1989; 104: 258–262
  • Shaw P. J., Williams T. L., Slade J. Y., Eggett C. J., Ince P. G. Low expression of GluR2 AMPA receptor subunit protein by human motor neurons. Neuroreport 1999; 10: 261–265
  • Jakowec M. W., Yen L., Kalb R. G. In situ hybridization analysis of AMPA receptor subunit gene expression in the developing rat spinal cord. Neuroscience 1995; 67: 909–920
  • Tolle T. R., Berthele A., Zieglgansberger W., Seeburg P. H., Wisden W. The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. J. Neurosci. 1993; 13: 5009–5028
  • Geiger J. R., Melcher T., Koh D. S., Sakmann B., Seeburg P. H., Jonas P., Monyer H. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 1995; 15: 193–204
  • Jonas P., Burnashev N. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 1995; 15: 987–990
  • Burke S. J., Yin H. Z., Weiss J. H. Ca2+ and in vitro kainate damage to cortical and hippocampal SMI-32(+) neurons. Neuroreport 1995; 6: 629–632
  • Carriedo S. G., Yin H. Z., Lamberta R., Weiss J. H. In vitro kainate injury to large, SMI-32(+) spinal neurons is Ca2+ dependent. Neuroreport 1995; 6: 945–948
  • Feldmeyer D., Kask K., Brusa R., Kornau H.-C., Kolhekar R., Rozov A., Burnashev N., Jensen V., Hvalby Ø., Sprengel R., Seeburg P. H. Neurological dysfunctions in mice expressing different levels of the Q-R site-unedited AMPAR subunit GluR-B. Nature Neurosci. 1999; 2: 57–64
  • Kessler A. Lathyrismus. Monatsschr. Psychiatr. Neurol. 1947; 113: 345–375
  • Ludolph A. C., Hugon J., Dwivedi M. P., Schaumburg H. H., Spencer P. S. Studies on the aetiology and pathogenesis of motor neuron diseases. 1. Lathyrism: Clinical findings in established cases. Brain 1987; 110: 149–165
  • Tekle-Haimanot R., Kidane Y., Wuhib E., Kalissa A., Alemu T., Zein Z. A., Spencer P. S. Lathyrism in rural northwestern Ethiopia: A highly prevalent neurotoxic disorder. Int. J. Epidemiol. 1990; 19: 664–672
  • Hugon J., Ludolph A. C., Spencer P. S., Gimenez-Roldan S., Dumas J. L. Studies on the etiology and pathogenesis of motor neuron diseases. III. Magnetic cortical stimulation in patients with lathyrism. Acta Neurol. Scand. 1993; 88: 412–416
  • Gimenez-Roldan S., Ludolph A. C., Hugon J., Hens M., Mateo D., Kisby G. E., Spencer P. S. Lathyrism in Spain: Progressive central nervous system deficits more than 45 years after onset?. Nutrition, Neurotoxins, and Lathyrism. The ODAP Challenge, B. N. Abegaz, R. Tekle-Haimanot, V. P. Palmer, P. S. Spencer. Third World Medical Research Foundation, New York 1994; 10–25
  • Tekle-Haimanot R., Kidane Y., Wuhib E., Kassina A., Endeshaw Y., Alemu T., Spencer P. S. The epidemiology of lathyrism in north and central Ethiopia. J. Ethiop. Med. 1993; 31: 15–24
  • Tekle-Haimanot R., Abegaz B. M., Wuhib E., Kassina A., Kidane Y., Kebede N., Alemu T., Spencer P. S. Pattern of Lathyrus sativus (grass pea) consumption and β-N-oxalyl-α,β-diaminoproprionic acid (β-ODAP) content of food samples in the lathyrism endemic region of northwest Ethiopia. Nutr. Res. 1993; 13: 1113–1126
  • Spencer P. S., Roy D. N., Ludolph A., Hugon J., Dwivedi M. P., Schaumburg H. H. Lathyrism: Evidence for role of the neuroexcitatory amino acid BOAA. Lancet, ii 1986; 1066–1067
  • Roy D. N., Kisby G. E., Robertson R. C., Spencer P. S. Toxicology of Lathyrus sativus and the neurotoxin BOAA. The Grass Pea: Threat and Promise, P. S. Spencer. Third World Medical Research Foundation, New York 1989; 76–85
  • Gilman S. Primate models of postural abnormalities. Primate Models of Neurological Disorders, B. S. Meldrum, C. D. Marsden. Raven Press, New York 1975; 55–76
  • Hugon J., Ludolph A. C., Spencer P. S., Roldan S. Gimenez, Dumas J. L. Studies of the etiology and pathogenesis of motorneuron diseases. III. Magnetic cortical stimulation in patients with lathyrism. Acta Neurol. Scand. 1993; 88: 412–416
  • Ross S. M., Spencer P. S. Specific antagonism of behavioral action of “uncommon” amino acids linked to motor-system disease. Synapse 1987; 1: 248–253
  • Ross S. M., Seelig M., Spencer P. S. Specific antagonism of excitotoxic action of “uncommon” amino acids assayed in organotypic mouse cortical cultures. Brain Res. 1987; 425: 120–177
  • Nunn P. B., Seelig M., Zagoren J. C., Spencer P. S. Stereospecific acute neuronotoxicity of “uncommon” plant amino acids linked to human motor-system diseases. Brain Res. 1987; 410: 375–379
  • Ross S. M., Roy D. N., Spencer P. S. β-N-Oxalylamino-L-alanine: Action on high-affinity transport of neurotransmitters in rat brain and spinal cord synaptosomes. J. Neurochem. 1985; 53: 710–715
  • Ross S. M., Roy D. N., Spencer P. S. β-N-Oxalylamino-L-alanine action of glutamate receptors. J. Neurochem. 1989; 53: 710–715
  • Honoré T., Nielsen M. Complex structure of quisqualate-sensitive glutamate receptors in rat cortex. Neurosci. Lett. 1995; 54: 27–32
  • Honoré T., Drejer J. Chaotropic ions affect the conformation of quisqualate receptors in rat cortical membranes. J. Neurochem. 1988; 51: 457–461
  • Ross S. M., Spencer P. S. Excitotoxic principles of plants linked to neuronal disease involving motor and other systems. Frontiers in Excitatory Amino Acids Research, J. L. Lehman. Alan R. Liss, New York 1988; 517–524
  • Acta Horticult, M. Bokanga, A. J. A. Essers, N. Poulter, H. Rosling, O. Tewe, 1994; 375
  • Roman G. C., Spencer P. S., Schoenberg B. S. Tropical myeloneuropathies: The hidden endemias. Neurology 1985; 35: 1158–1170
  • Tylleskär T., Rwiza H. T., Banea M., Howlett W. P., Aquilonius S.-M., Pearson L.-A., Rosling H. Similarities between konzo and lathyrism suggest a common pathogenetic mechanism. Nutrition, Neurotoxins, and Lathyrism, The ODAP Challenge, B. Abegaz, R. T. Haimanot, V. S. Palmer, P. S. Spencer. Third World Medical Research Foundation, New York 1994; 26–32
  • Spencer P. S. Human consumption of plant materials with neurotoxic potential. Acta Horticult. 1994; 375: 341–348
  • Tewe O. O., Iyayi E. A. Cyanogenic glucosides. Toxicants of Plant Origin, Vol. II, Glycosides, P. R. Cheeke. CRC Press, Boca Raton, FL 1989; 43–60
  • O’Brien G. M., Mbome L., Taylor A. J., Poulter N. H. Variations in cyanogen content of cassava during village processing in Cameroon. Food Chem. 1992; 44: 131–136
  • Selmar D. Translocation of cyanogenic glucosides in cassava. Acta Horticult. 1994; 375: 61–67
  • Cliff J. L. Cassava safety in times of war and drought in Mozambique. Acta Horticult. 1994; 375: 373–378
  • Trolli G. Paraplégie spastique épidémique, konzo, des indigeènes du Kwango. Résumé des Observations Reuniues, au Kwango, au Sujet de Deux Affections d’Origine Indéterminéé. Fonds Reine Elisabeth, Brussels 1938; 1–36
  • Ministry of Health Mozambique, Mantakassa: An epidemic of spastic paraparesis associated with chronic cyanide intoxication in a cassava staple area in Mozambique. 1. Epidemiology and clinical and laboratory findings in patients. Bull. World Hlth. Org. 1984; 62: 477–484
  • Ministry of Health Mozambique, Mantakassa: An epidemic of spastic paraparesis associated with chronic cyanide intoxication in a cassava staple area in Mozambique, 2. Nutritional factors and hydrocyanic content of cassava plants. Bull. World Hlth. Org. 1984; 62: 485–492
  • Howlett W. P. Konzo: A new human disease entity. Acta Horticult. 1994; 375: 323–329
  • Tylleskär T., Banea M., Bikangi N., Cooke R., Poulter N., Rosling H. Cassava cyanogens and konzo, an upper motor neuron disease found in Africa. Lancet 1992; 339: 208–211
  • Tylleskär T., Howlett W. P., Rwiza H. T., Aquilonius S. M., Stalberg E., Linden B., Mandahl A., Larsen H. C., Brubaker G. R., Rosling H. Konzo: A distinct disease entity with selective upper motor neuron damage. J. Neurol. Neurosurg. Psychiat. 1993; 56: 638–643
  • Swenne I., Eriksson U. J., Christoffersson R., Kagedal B., Lundquist P., Nilsson L., Tylleskär T., Rosling H. Cyanide detoxification in rats exposed to acetonitrile and fed a low protein diet. Fundam. Appl. Toxicol. 1996; 32: 66–71
  • Tor-Agbidye J., Palmer V. S., Sabri M. I., Craig A. M., Blythe L. L., Spencer P. S. Dietary deficiency of cystine and methionine in rats alters thiol homeostasis required for cyanide detoxification. J. Toxicol. Environ. Hlth. 1998; 55: 583–595
  • Tor-Agbidye J., Palmer V. S., Lasarev M. R., Craig A. M., Blythe L. L., Sabri M. I., Spencer P. S. Bioactivation of cyanide to cyanate in sulfur amino acid deficiency: Relevance to neurological disease in humans subsisting on cassava. Toxicol. Sci., in press
  • Lundquist P., Kagedal B., Nilsson L., Rosling H. Analysis of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid in urine by high-performance liquid chromatography. Anal. Biochem. 1995; 228: 27–34
  • Bitner R. S., Yim G. K., Isom G. E. 2-Iminothiazolidine-4-carboxylic acid produces hippocampal CA1 lesions independent of seizure excitation and glutamate receptor activation. Neurotoxicology 1997; 18: 191–200
  • Uitti R. J., Rajput A. H., Ashenhurst E. M., Rozdilsky B. Cyanide-induced parkinsonism: A clinicopathologic report. Neurology 1985; 35: 921–925
  • Carella F., Grassi M., Savoiardo M., Contri P., Rapuzzi B., Magnoni A. Dystonic-parkinsonian syndrome after cyanide poisoning: Clinical and MRI findings. J. Neurol. Neurosurg. Psychiat. 1988; 51: 1345–1348
  • Messing B., Storch B. Computer tomography and magnetic resonance imaging in cyanide poisoning. Eur. Arch. Psychiat. Neurol. Sci. 1988; 237: 139–143
  • Grandas F., Artieda J., Obeso J. A. Clinical and CT scan findings in a case of cyanide intoxication. Movement Disord. 1989; 4: 188–193
  • Feldman J. M., Feldman M. D. Sequelae of attempted suicide by cyanide ingestion: A case report. Int. J. Psychiat. Med. 1990; 20: 173–179
  • Inoue N. Extrapyramidal syndrome induced by chemical substances. Nippon Rinsho 1993; 51: 2924–2928, in Japanese
  • Rosenberg N. L., Myers J. A., Martin W. R. Cyanide-induced parkinsonism: Clinical, MRI, and 6-fluorodopa PET studies. Neurology 1989; 39: 142–144
  • Novelli A., Reilly J. A., Lysko P. G., Henneberry R. C. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 1988; 451: 205–212
  • Patel M. N., Yim G. K., Isom G. E. N-Methyl-D-aspartate receptors mediate cyanide-induced cytotoxicity in hippocampal cultures. Neurotoxicology 1993; 14: 35–40
  • Patel M. N., Peoples R. W., Yim G. K., Isom G. E. Enhancement of NMDA-mediated responses by cyanide. Neurochem. Res. 1994; 19: 1319–1323
  • Bitner R. S., Kanthasamy A., Isom G. E., Yim G. K. Seizures and selective CA-1 hippocampal lesions induced by an excitotoxic cyanide metabolite, 2-iminothiazolidine-4-carboxylic acid. Neurotoxicology 1995; 16: 115–122
  • Koshiishi I., Imanari T. State analysis of endogenous cyanate ion in human plasma. J. Pharmacobiodyn. 1990; 13: 254–258
  • Kraus L. M., Kraus A. P., Jr. The search for the uremic toxin: The case for carbamoylation of amino acids and proteins. Wien Klin. Wochenschr. 1998; 110: 521–530
  • Gonzalez C., Farias G., Maccioni R. B. Modification of tau to an Alzheimer’s type protein interferes with its interaction with microtubules. Cell. Mol. Biol. (Noisy-Le-Grand) 1998; 44: 1117–1127
  • Kuckel C. L., Lubit B. W., Lambooy P. K., Farnsworth P. Methylisocyanate and actin polymerization: The in vitro effects of carbamylation. Biochim. Biophys. Acta 1993; 5: 143–148
  • Samson F. E., Jr., Hinkley R. E., Jr. Neuronal microtubular systems. Anesthesiology 1972; 36: 417–421
  • Bradley W. G. The neuromyopathy of vincristine-induced peripheral neuropathy. Ann. Neurol. 1977; 1: 255
  • Green L. S., Donoso J. A., Heller-Bettinger I. E., Samson F. E. Axonal transport disturbance in vincristine-induced peripheral neuropathy. Ann. Neurol. 1977; 1: 255–262
  • Cerami A., Allen A. T., Graziano J. H., Derfuria F. G., Manning J. M., Gillente P. N. Pharmacology of cyanate, 1. General effects on experimental animals. J. Pharmacol. Exp. Therap. 1973; 185: 653–666
  • Alter B. P., Kan Y. W., Nathan D. G. Toxic effects of high-dose cyanate administration in rodents. Blood 1974; 1: 69–77
  • Peterson C. M., Tsairus P., Ohnishi A., Lu Y. S., Grady R., Cerami A. Sodium cyanate induced polyneuropathy in patients with sickle-cell disease. Ann. Intern. Med. 1974; 81: 152–158
  • Ohnishi A., Peterson C. M., Dyck P. J. Axonal degeneration in sodium cyanate-induced neuropathy. Arch. Neurol. 1975; 32: 530–534
  • Asbury A. K., Victor M., Adams R. D. Uremic polyneuropathy. Arch. Neurol. 1963; 8: 413–428
  • Thomas P. K., Hollinrake K., Lascelles R. G., O’Sullivan D. J., Baillod R. A., Moorhead J. F., Mackenzie J. C. The polyneuropathy of chronic renal failure. Brain 1971; 94: 761–780
  • Kraus L. M., Kraus A. P., Jr. The search for the uremic toxin: The case for carbamoylation of amino acids and proteins. Wien Klin. Wochenschr. 1998; 110: 521–530
  • Shaw C.-M., Papayannopoulou T., Stamatoyannopoulus G. Neuropathology of cyanate toxicity in rhesus monkeys. Preliminary report. Pharmacology 1974; 12: 166–176
  • Tor-Agbidye J., Palmer V. S., Spencer P. S., Craig A. M., Blythe L. L., Sabri M. I. Sodium cyanate alters glutathione homeostasis in rodent brain: Relationship to neurodegenerative diseases in protein-deficit malnourished populations in Africa. Brain Res. 1999; 820: 12–19
  • Arai A., Silberg J., Kessler M., Lynch G. Effect of thiocyanate on AMPA receptor mediated responses in excised patches and hippocampal slices. Neuroscience 1995; 66: 815–827
  • Nielsen E. O., Johansen T. H., Watjen F., Drejer J. Characterization of the binding of [3H]NS 257, a novel competitive AMPA receptor antagonist, to rat brain membranes and brain sections. J. Neurochem. 1995; 65: 1264–1273
  • Hawkinson J. E., Espitia J. E. Effects of thiocyanate and AMPA receptor ligands on (S)-5-fluorowillardiine, (S)-AMPA and (R,S)-AMPA high-performance liquid chromatography. Anal. Biochem. 1997; 10: 27–34
  • Murphy D. E., Snowhill E. W., Williams M. Characterization of quisqualate recognition sites in rat brain tissue using DL-[3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and a filtration assay. Neurochem., Res. 1987; 12: 775–781
  • Nielsen E. O., Cha J. H., Honoré T., Penney J. B., Young A. B. Thiocyanate stabilizes AMPA binding to the quisqualate receptor. Eur. J. Pharmacol. 1988; 157: 197–203
  • Baudry M., Monaghan D., Cotman C., Altar C. A. Regional distribution of binding. Eur. Pharmacol. 1988; 54: 1682–1688
  • Hall R. A., Massicotte G., Kessler M., Baudry M., Lynch G. Thiocyanate equally increases affinity for two DL-α-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) receptor states. Mol. Pharmacol. 1993; 43: 459–464
  • Shahi K., Baudry M. Increasing binding affinity of agonists to glutamate receptors increases synaptic responses at glutamatergic synapses. Proc. Natl. Acad. Sci. USA 1992; 89: 6881–6885
  • Cha J. H., Makowiec R. L., Penney J. B., Young A. B. Multiple states of rat brain, (RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors as revealed by quantitative autoradiography. Mol. Pharmacol. 1992; 41: 832–838
  • Hall R. A., Massicotte G., Kessler M., Baudry M., Lynch G. Thiocyanate equally increases affinity for two DL-alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) receptor states. Mol. Pharmacol. 1993; 43: 459–464
  • Pai K. S., Ravindranath V. L-BOAA induces selective inhibition of brain mitochondrial enzyme, NADH-dehydrogenase. Brain Res. 1993; 621: 215–221
  • Sabri M. I., Roy D. N., Lystrup B., Allen C. N., Spencer P. S. Action of β-N-oxalylamino-L-alanine on mouse brain. J. Neurochem., 65: 1842–1848
  • Tamaru M., Yoneda Y., Ogita K., Shimizu J., Nagata Y. Age-related decreases of the N-methyl-D-aspartate receptor complex in the rat cerebral cortex and hippocampus. Brain Res. 1991; 22: 83–90
  • Ludolph A. C., Spencer P. S. Toxic models of upper motor neuron disease. J. Neurol. Sci. 1996; 139(Suppl.)53–59
  • Ames B. N., Gold L. S. The prevention of cancer. Drug Metab. Rev. 1990; 30: 201–223

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.