255
Views
43
CrossRef citations to date
0
Altmetric
Research Article

DAMAGE AND REPAIR OF NERVE CELL DNA IN TOXIC STRESS*

, , &
Pages 589-618 | Published online: 16 Aug 1999

REFERENCES

  • Garruto R. M., Yase Y. Neurodegenerative disorders of the western Pacific: The search for mechanisms of pathogenesis. Trends Neurosci. 1986; 9: 368–375
  • Hirano A., Malamud N., Kurland L. T. Parkinsonism–dementia complex, an endemic disease on the island of Guam. II. Pathological features. Brain 1958; 84: 622–679
  • Kurland L. T., Molgaard C. A. Guamanian ALS: Hereditary or acquired?. Human Motor Neuron Diseases, L. P. Rowland. Raven Press, New York 1982
  • Stone R. Guam: Deadly disease dying out. Science 1994; 261: 424–426
  • Garruto R. M., Yanagihara R. Disappearance of high-incidence amyotrophic lateral sclerosis and parkinsonism-dementia on Guam. Neurology 1985; 35: 193–198
  • Garruto R. M., Yanagihara R., Gadjusek D. C., Arion D. M. Concentrations of heavy metals and essential minerals in garden soil and drinking water in the Western Pacific. Amyotrophic Lateral Sclerosis in Asia and Oceana, I. Chen, Y. Yase. National University, Taiwan 1984
  • Spencer P. S., Ohta M., Palmer V. Cycad use and motor neuron disease in Kii peninsula of Japan. Lancet 1987; 2: 1462–1463
  • Spencer P. S., Palmer V., Herman A., Asmedi A. Cycad use and motor neuron disease in Irian Jaya. Lancet 1987; 2: 1273–1274
  • Figlewicz D. A., Garruto R. M., Krizus A., Yanagihara R., Rouleau G. A. The Cu/Zn superoxide dismutase gene in ALS and Parkinsonism–dementia of Guam. NeuroReport 1994; 5: 557–560
  • Gadjusek D. C., Salazar A. M. Amyotrophic lateral sclerosis and parkinsonian syndromes in high incidence among the Auyu and Jakai people of West New Guinea. Neurology 1982; 32: 107–126
  • Gibbs C. J., Gadjusek D. C. An update on long-term in vivo and in vitro studies designed to identify a virus as the cause of amyotrophic lateral sclerosis, parkinsonism–dementia, and Parkinson’s disease. Human Motor Neuron Diseases, L. P. Rowland. Raven Press, New York 1982
  • Chen K. M., Yase Y. Parkinsonism–dementia, neurofibrillary tangles, and trace elements in the western Pacific. Senile Dementia of the Alzheimer Type, J. T. Hutlon, A. D. Kenny. Alan R. Liss Inc., New York 1985
  • Ahlskog J. E., Waring S. C., Kurland L. T., Petersen R. C., Moyer T. P., Maraganore W. S., O’Brien P. C., Esteban-Santillan C., Bush V. Guamanian neurodegenerative disease: Investigation of the calcium metabolism/heavy metal hypothesis. Neurology 1995; 45: 1340–1344
  • Perl D., Gadjusek D. C., Garruto R. M. Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia on Guam. Science 1982; 217: 1053–1055
  • Spencer P. S., Ross S. M., Kisby G., Roy D. N. Western Pacific amyotrophic lateral sclerosis: Putative role of cycad toxins. Amyotrophic Lateral Sclerosis: Concepts in Pathogenesis and Etiology, A. J. Hudson. University of Toronto Press, Toronto 1990
  • Spencer P. S., Allen C. A., Kisby G. E., Ludolph A. C. On the etiology and pathogenesis of chemically induced neurodegenerative disorders. Neurobiol. Aging 1994; 15: 265–267
  • Reed D., Labarthe D., Chen K. M., Stallones R. A cohort study of amyotrophic lateral sclerosis and Parkinsonism–dementia on Guam and Rota. Am. J. Epidemiol. 1987; 125: 92–100
  • Duncan M. W., Steele J. C., Kopin I. J., Markey S. P. 2-Amino-3-(methylamino)-propanoic acid (BMAA) in cycad flour: An unlikely cause of amyotrophic lateral sclerosis and parkinsonism–dementia of Guam. Neurology 1990; 40: 767–772
  • Kisby G. E., Ellison M., Spencer P. S. Content of the neurotoxins cycasin (methylazoxymethanol β-D-glucoside) and BMAA (β-N-methylamino-L-alanine) in cycad flour prepared by Guam Chamorros. Neurology 1992; 42: 1336–1340
  • Kobayashi A. Cycasin in cycad materials used in Japan. Fed. Proc. 1972; 31: 1476–1477
  • Zhang Z. X., Anderson D. W., Mantel N., Román G. C. Motor neuron disease on Guam: Geographic and familial occurrence, 1956–85. Acta Neurol. Scand. 1996; 94: 51–59
  • Hornabrook R. W. Essays on Kuru. Classey, Farindgon. Berkshire, Classey, U.K. 1976
  • Anderson F. H., Richardson E. P., Okazaki H., Brody J. A. Neurofibrillary degeneration on Guam: Frequency in Chamorros and non Chamorros with no known neurological disease. Brain 1975; 102: 65–77
  • Garruto R. M., Gadjusek D. C., Chen K.-M. Amyotrophic lateral sclerosis among Chamorro migrants from Guam. Ann. Neurol. 1980; 8: 612–619
  • Yase Y. The pathogenesis of amyotrophic lateral sclerosis. Lancet 1972; 2: 292–296
  • Shiraki H., Yase Y. Amyotrophic lateral sclerosis in Japan. Handbook of Clinical Neurology. Vol. 22. System Disorders and Atrophy, Part 2, P. J. Vinken, G. W. Bruyn. American Elsevier, New York 1975
  • Jones M. M., Yang M., Mickelsen O. Effects of methylazoxymethanol glucoside and methylazoxymethanol acetate on the cerebellum of the postnatal Swiss albino mouse. Fed. Proc. 1972; 31: 1508–1511
  • Spencer P. S., Kisby G. E. Slow toxins and western Pacific amyo-trophic lateral sclerosis. Handbook of Amyotrophic Lateral Sclerosis, R. A. Smith. Marcel Dekker, Inc., New York 1992
  • Spencer P. S., Kisby G. E., Ludolph A. C. Slow toxins, biologic markers, and long-latency neurodegenerative disease in the western Pacific region. Neurology 1991; 41: 62–66
  • Kisby G. E., Ross S. M., Spencer P. S., Gold B. G., Nunn P. B., Roy D. N. Cycasin and BMAA: Candidate neurotoxins for western Pacific amyotrophic lateral sclerosis/Parkinsonism–dementia complex. Neurodegeneration 1992; 1: 73–82
  • Spencer P. S., Nunn P. B., Hugon J., Ludolph A. C., Ross S. M., Roy D. N., Robertson R. C. Guam amyotrophic lateral sclerosis–parkinsonism–dementia linked to a plant excitant neurotoxin. Science 1987; 237: 517–522
  • Ross S. M., Spencer P. S. Specific antagonism of behavioral action of “uncommon” amino acids linked to motor-system diseases. Synapse 1987; 1: 248–253
  • Weiss J. H., Choi D. W. β-N-Methylamino-L-alanine neurotoxicity: Requirement for bicarbonate as a cofactor. Science 1988; 241: 973–975
  • Weiss J. H., Koh J. Y., Choi D. W. Neurotoxicity of β-N-methyl-amino-L-alanine (BMAA) and β-N-oxalylamino-L-alanine (BOAA) on cultured cortical neurons. Brain Res. 1989; 497: 64–71
  • Albin R. L., Greenamyre T. Alternative excitotoxic hypotheses. J. Am. Acad. Neurol. 1992; 42: 733–738
  • Allen C. N., Ross S. M., Spencer P. S. Properties of neurotoxic non- protein amino acids, β-N-methylamino-L-alanine (BMAA) and β-N-oxalyl-amino-L-alanine (BOAA). ALS, New Advances in Toxicology and Epidemiology, F. C. Rose, F. H. Norris. Smith Gordon, London 1990
  • Copani A., Canonico P. L., Nicoletti F. β-N-Methylamino-L-alanine (L-BMAA) is a potent agonist of “metabolotropic” glutamate receptors. Eur. J. Pharmacol. 1990; 181: 327–328
  • Kisby G. E., Nottingham V., Kayton R., Roy D. N., Spencer P. S. Brain metabolism of β-N-methylamino-L-alanine (BMAA) and protection of excitotoxicity by GABA-uptake inhibitors. Soc. Neurosci. Abstr. 1992; 18: 82
  • Seawright A. A., Brown A. W., Nolan C. C., Cavanagh J. B. Selective degeneration of cerebellar cortical neurons caused by cycad neurotoxin, L-β-methylaminoalanine (L-BMAA), in rats. Neuropathol. Appl. Neurobiol. 1990; 16: 153–169
  • Perry T. L., Bergeron C., Biro A. J., Hansen S. β-N-Methylamino-L-alanine. Chronic oral administration is not neurotoxic to mice. J. Neurol. Sci. 1989; 94: 173–180
  • Duncan M. W., Villacreses W. E., Pearson P. G., Wyatt L., Rapoport S. I., Kopin I., Markey S. P., Smith Q. R. 2-Amino-3-(methylamino)-propanoic acid (BMAA) pharmacokinetics and blood-barrier permeability in the rat. J. Pharmacol. Exp. Ther. 1991; 258: 27–35
  • Smith Q. R., Nagura H., Takada Y., Duncan M. W. Facilitated transport of the neurotoxin, β-N-methylamino-L-alanine, across the blood-brain barrier. J. Neurochem. 1992; 58: 1330–1337
  • Kabel J. F., Kisby G. E., Mako S. C., Glew R. H., Spencer P. S. Rodent brain metabolism of cycasin and DNA alkylation by methylazoxymethanol (MAM). Soc. Neurosci. Abstr. 1992; 18: 1249
  • Matsuoka T., Nishizaki T., Kisby G. E. Na+-dependent and phlorizin-inhibitable transport of glucose and cycasin in brain endothelial cells. J. Neurochem. 1998; 70: 772–777
  • Nishizaki T., Kammesheidt A., Sumikawa K., Asada T., Okada Y. A sodium- and energy-dependent glucose transporter with similarities to SGLT1-2 is expressed in bovine cortical vessels. Neurosci. Res. 1995; 22: 13–22
  • Hirayama B., Hazama A., Loo D. F., Wright E. M., Kisby G. E. Transport of cycasin by the intestinal Na+/glucose cotransporter. Biochim. Biophys. Acta 1994; 1193: 151–154
  • Matsumoto H. Cycasin. CRC Handbook of Naturally Occurring Food Toxicants, M. J. Rechcigl. CRC Press, Boca RatonFL 1985
  • Laqueur G. L., Matsumoto H. Neoplasms in female Fischer rats following intraperitoneal injection of methylazoxymethanol. J. Natl. Cancer Inst. 1967; 124: 691–697
  • Laqueur G. L., Mickelson O., Shitney M. G., Kurland L. T. Carcinogenic properties of nuts from Cycas circinalis L. indigenous to Guam. J. Natl. Cancer Inst. 1963; 31: 919–959
  • Sieber S. M., Correa P., Dalgard D. W., McIntire K. R., Adamson R. H. Carcinogenicity and hepatotoxicity of cycasin and its aglycone methylazoxymethanol acetate in nonhuman primates. J. Natl. Cancer Inst. 1980; 65: 177–189
  • Yang M. G., Mickelsen O., Campbell M. E. Cycad flour used by Guamanians: Effects produced in rats by long-term feeding. J. Nutr. 1966; 90: 153–156
  • Shimiuz T., Yasuda N., Kono I., Yagi F., Tadera K., Kobayashi A. , Hepatic and spinal lesions in goats chronically intoxicated with cycasin. Jpn. J. Vet. Sci. 1986; 8: 1291–1295
  • Dastur D. K. Cycad toxicity in monkeys: Clinical, pathological and biochemical aspects. Fed. Proc. 1964; 23: 1368–1369
  • Dastur D. K., Palekar R. S. The experimental pathology of cycad toxicity with special reference to oncogenic effects. Indian J. Cancer 1974; 2: 33–49
  • Whiting M. G. Toxicity of cycads. Econ. Bot. 1963; 17: 271–302
  • Mason M. M., Fredrickson T. N. Derriengue investigations. The Fourth Conference on the Toxicity of Cycads. Toxicity of Cycads: Implications for Neurodegenerative Disease and Cancer. Transcripts of Four Cycad Conferences, M. G. Whiting. Medical Research Foundation, New York 1988
  • Hooper P. T. Cycad poisoning. Handbook of Natural Toxins: Plant and Fungal Toxins, R. F. Keeler, A. T. Tu. Marcel Dekker, Inc., New York 1983
  • Dastur D. K., Palekar R. S., Manghani D. K. Toxicity of various forms of Cycas circinalis in rhesus monkeys—pathology of brain, spinal cord and liver. ALS. New Advances in Toxicology and Epidemiology, F. C. Rose, F. H. Norris. Smith Gordon, London 1990
  • Garcia-Ladona F. J., de Barry J., Girard C., Gombos G. Ectopic granule cell layer in mouse cerebellum after methylazoxymethanol (MAM) treatment. Exp. Brain Res. 1991; 86: 90–96
  • Lee M. H., Rabe A. Premature decline in Morris water maze performance of aging microencephalic rats. Neurotoxicol. Teratol. 1992; 14: 383–392
  • Ramakers G. M., Urban I. J.A., De Graan P. N.E., Di Luca M., Cattabeni F., Gispen W. H. The impaired long-term potentiation in the CA1 field of the hippocampus of cognitive deficient microencephalic rats is restored by D-serine. Neuroscience 1993; 54: 49–60
  • Kisby G. E., Sweatt C., McEvoy S., Spencer P. S. Potentiation of cycad toxin-induced DNA damage in brain tissue by DNA-repair inhibitors. Soc. Neurosci. Abstr. 1994; 20: 1649
  • Williams G. M., Weisburger J. H. Chemical carcinogenesis. Toxicology, The Basic Science of Poisons, C. T. Klassen, M. O. Amdur, J. Doull. MacMillian, New York 1986
  • Cimino M., Cattabeni F., Di Luca M., Peruzzi G., Andena M., Tirassa P., Angelucci F., Cozzari C., Aloe L. Levels of NGF, p75NGFR and ChAT immunoreactivity in brain of adult and aged microencephalic rats. Neurobiol. Aging 1996; 17: 137–142
  • Greiner P. O., Bonnet C. M., Angignard D., Dupont J. M., Herold M., Borzeix M. G. Neuropharmacological study of aged MAM-treated rats. Neurobiol. Aging 1992; 13: 527–529
  • Fischer M. H., Herm J. W., Waisman H. A. A preliminary biochemical examination of microencephalic rat brains. Biochem. Pharmacol. 1973; 22: 267–271
  • Fischer M. H., Welker C., Waisman H. A. Generalized growth retardation in rats induced by prenatal exposure to methylazoxymethyl acetate. Teratology 1972; 5: 223–232
  • Balduini W., et al. Microencephalic rats as a model for cognitive disorders. Clin. Neuropharmacol. 1986; 9: S8–S18
  • Ferguson S. A., Racey F. D., Paule M. G., Holson R. R. Behavioral effects of methylazoxymethanol-induced microencephaly. Behav. Neurosci. 1993; 107: 1–10
  • Gillies K., Price D. J. The fates of cells in the developing cerebral cortex of normal and methylazoxymethanol acetate-lesioned mice. Eur. J. Neurosci. 1993; 5: 73–84
  • Goldey E. S., O’Callaghan J. P., Stanton M. E., Barone S., Jr., Crofton K. M. Developmental neurotoxicity: Evaluation of testing procedures with methylazoxymethanol and methylmercury. Fundam. Appl. Toxicol. 1994; 23: 447–464
  • Cattaneo E., Reinach B., Caputi A., Cattabeni F., Di Luca M. Selectivein in vitro blockade of neuroepithelial cell proliferation by methylazoxymethanol, a molecule capable of inducing long lasting functional impairments. J. Neurosci. Res. 1995; 41: 640–647
  • Johnston M. V., Coyle J. T. Histological and neurochemical effects of fetal treatment with methylazoxymethanol on rat neocortex in adulthood. Brain Res. 1979; 170: 135–155
  • Johnston M. V., Coyle J. T. Ontogeny of neurochemical markers for noradrenergic, GABAergic and cholinergic neurons in neocortex lesioned with methylazoxymethanol acetate. J. Neurochem. 1980; 34: 1429–1441
  • Eriksdotter-Nilsson M., Jonsson G., Dahl D., Bjorklund H. Astroglial development in microencephalic rat brain after fetal methylazoxymethanol treatment. J. Dev. Neurosci. 1986; 4: 353–362
  • Hoffman J. R., Boyne L. J., Levitt P., Fischer I. Short exposure of methylazoxymethanol causes a long-term inhibition of axonal outgrowth from cultured embryonic rat hippocampal neurons. J. Neurosci. Res. 1996; 46: 349–359
  • Esclaire F., Kisby G. E., Milne J., Lesort M., Spencer P., Hugon J. The Guam cycad toxin methylazoxymethanol damages neuronal DNA and modulates tau mRNA expression and excitotoxicity. Exp. Neurol. 1999; 155: 11–21
  • Mullaart E., Boerrigter M. E.T.I., Boer G. J., Vijg J. Spontaneous DNA breaks in the rat brain during development and aging. Mutat. Res. 1990; 237: 9–15
  • Mullaart E., Boerrigter M. E.T.I., Brouwer A., Berends F., Vijg J. Age-dependent accumulation of alkali-labile sites in DNA of post-mitotic but not in that of mitotic rat liver cells. Mech. Ageing Dev. 1988; 45: 41–49
  • Bhaskar M. S., Rao K. S. Altered conformation and increased strand breaks in neuronal and astroglial DNA of aging rat brain. Biochem. Mol. Biol. Int. 1994; 33: 377–384
  • Mandavilli B. S., Rao K. S. Neurons in the cerebral cortex are most susceptible to DNA-damage in aging rat brain. Biochem. Mol. Biol. Int. 1996; 40: 507–514
  • Mandavilli B. S., Rao K. S. Accumulation of DNA damage in aging neurons occurs through a mechanism other than apoptosis. J. Neurochem. 1996; 67: 1559–1565
  • Mecocci P., MacGarvey U., Kaufman A. E., Koontz D., Shoffner J. M., Wallace D. C., Beal M. F. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann. Neurol. 1993; 34: 609–616
  • Fitzmaurice P. S., Shaw I. C., Kleiner H. E., Miller R. T., Monks T. J., Lau S. S., Mitchell J. D., Lynch P. G. Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 1996; 19: 797–798
  • Ferrante R. J., Browne S. E., Shinobu L. A., Bowling A. C., Baik M. J., MacGarvey U., Kowall N. W., Brown R. H., Jr., Beal M. F. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 1997; 69: 2064–2074
  • Sanchez-Ramos J. R., Övervik E., Ames B. N. A marker of oxyradical-mediated DNA damage (8-hydroxy-2′-deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain. Neurodegeneration 1994; 3: 197–204
  • Alam Z. I., Jenner A., Daniel S. E., Lees A. J., Cairns N., Marsden C. D., Jenner P., Halliwell B. Oxidative DNA damage in the Parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 1997; 69: 1196–1203
  • Mecocci P., MacGarvey U., Beal M. F. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann. Neurol. 1994; 36: 747–751
  • Lyras L., Cairns N. J., Jenner A., Jenner P., Halliwell B. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J. Neurochem. 1997; 68: 2061–2069
  • Gabbita S. P., Lovell M. A., Markesbery W. R. Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J. Neurochem. 1998; 71: 2034–2040
  • Aoki K., Nakatsuru Y., Sakurai J., Sato A., Masahito P., Ishikawa T. Age dependence of O6-methylguanine–DNA methyltransferase activity and its depletion after carcinogen treatment in the teleost medaka (Oryzias latopes). Mutat. Res. 1993; 293: 225–231
  • Cavanna M., Parodi S., Taningher M., Bolognesi C., Sciaba L., Brambilla G. DNA fragmentation in some organs of rats and mice treated with cycasin. Br. J. Cancer 1979; 39: 383–389
  • Damjanov I., Cox R., Sarma D. S. R., Farber E. Patterns of damage and repair of liver DNA induced by carcinogenic methylating agentsin in vivo. Cancer Res. 1973; 33: 2122–2128
  • Kidson C., Chen P., Imray F. P., Gipps E. Nervous system disease associated with dominant cellular radiosensitivity. Cellular Responses to DNA Damage, E. C. Friedberg, B. A. Bridges. Alan R. Liss, Inc., New York 1983
  • Robbins J. H. Hypersensitivity to DNA-damaging agents in primary degenerations of excitable tissue. Cellular Responses to DNA Damage, E. C. Friedberg, B. A. Bridges. Alan R. Liss, Inc., New York 1983
  • Taylor A. M. R., Harnden D. G., Arlett C. F., Harcourt S. A., Lehmann A. R., Stevens S., Bridges B. A. Ataxia-telangiectasia: A human mutation with abnormal radiation sensitivity. Nature 1975; 258: 427–429
  • Tan B. H., Bencsath A., Gaubatz J. W. Steady-state levels of 7-methylguanine increase in nuclear DNA of postmitotic mouse tissues during aging. Mutat. Res. 1990; 237: 229–238
  • Matsumoto H., Spatz M., Laqueur G. L. Quantitative changes with age in the DNA content of methylazoxymethanol-induced microencephalic rat brain. J. Neurochem. 1972; 19: 297–306
  • Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 1988; 85: 6456–6467
  • Ferrer I., Pozas E., Marti M., Blanco R., Planas A. M. Methylazoxymethanol acetate-induced apoptosis in the external granule cell layer of the developing cerebellum of the rat is associated with strong c-Jun expression and formation of high molecular weight c-Jun complexes. Neuropathol. Exp. Neurol. 1997; 56: 1–9
  • Ferrer I., Pozas E., Planas A. M. Ubiquitination of apoptotic cells in the developing cerebellum of the rat following ionizing radiation or methylazoxymethanol injection. Acta Neuropathol. 1997; 93: 402–407
  • Lafarga M., Lerga A., Andres M. A., Polanco J. I., Calle E., Berciano M. T. Apoptosis induced by methylazoxymethanol in developing rat cerebellum: Organization of the cell nucleus and its relationship to DNA and rRNA degradation. Cell Tissue Res. 1997; 289: 25–38
  • Wood K. A., Youle R. J. The role of free radicals and p53 in neuron apoptosisin in vivo. J. Neurosci. 1995; 15: 5851–5857
  • Van Den Berg H. W., Ball C. R. The effect of methylazoxymethanol acetate on DNA synthesis and cell proliferation of synchronous HeLa cells. Mutat. Res. 1972; 16: 381–390
  • Bedford A. J., Cooper E. H., Kenny T. E. A kinetic analysis of death and survival in HeLa cells following exposure to methylazoxymethanol acetate. Eur. J. Cancer 1974; 10: 713–720
  • Nagata Y., Matsumoto H. Studies on methylazoxymethanol: methylation of nucleic acids in the fetal rat brain. Proc. Soc. Exp. Biol. Med. 1969; 132: 383–385
  • Matsumoto H., Higa H. H. Studies on methylazoxymethanol, the aglycone of cycasin: Methylation of nucleic acidsin in vitro. Biochem. J. 1966; 98: 20C–22C
  • Nagasawa H. T., Shirota F. N., Matsumoto H. Decomposition of methylazoxymethanol, the aglycone of cycasin, in D2O. Nature 1972; 236: 234–235
  • Kisby G. E., Gold B. G., Austin D. R., Lystrup B., Spencer P. S. DNA damage in rodent brain tissue induced by cycad toxins. Soc. Neurosci. Abstr. 1993; 19: 196
  • Kisby G. E., Eizirik D., Sweatt C., Spencer P. S. Reactive oxygen species produced by the cycad toxin methylazoxymethanol, a candidate etiological factor for western Pacific ALS/P-D. J. Cell Biochem. 1995; 21B: 99
  • Augusto O., Netto L. E. S., Gomes L. F. DNA alkylation by carbon-centered radicals. Braz. J. Med. Biol. Res. 1992; 25: 1171–1183
  • Seeberg E., Eide L., Bjoras M. The base excision repair pathway. Trends Biochem. Sci. 1995; 20: 391–397
  • Pegg A. E., Dolan M. E., Moschel R. C. Structure, function, and inhibition of O6-alkylguanine–DNA alkyltransferase. Prog. Nucleic Acid Res. Mol. Biol. 1995; 51: 167–223
  • Woodhead A. D., Merry B. J., Cao E.-H., Holehan A. M., Grist E., Carlson C. Levels of O6-methylguanine acceptor protein in tissues of rats and their relationship to carcinogenicity and aging. J. Natl. Cancer Inst. 1985; 75: 1141–1145
  • Wiestler O., Kleihues P., Pegg A. E. O6-alkylguanine–DNA alkyltransferase activity in human brain and brain tumors. Carcinogenesis 1984; 5: 121–124
  • Wilson T. M., Rivkees S. A., Deutsch W. A., Kelley M. R. Differential expression of the apurinic/apyrimidinic endonuclease (APE/ref-1) multifunctional DNA base excision repair gene during fetal development and in adult rat brain and testis. Mutat. Res. 1996; 362: 237–248
  • Duguid J. R., Eble J. N., Wilson T. M., Kelley M. R. Differential cellular and subcellular expression of the human multifunctional apurinic/apyrimidinic endonuclease (APE/ref-1) DNA repair enzyme. Cancer Res. 1995; 55: 6097–6102
  • Silber J. R., Blank A., Bobola M. S., Mueller B. A., Kostoe D. D., Ojemann G. A., Berger M. S. Lack of the DNA repair protein O6-methylguanine–DNA methyltransferase in histologically normal brain adjacent to primary human brain tumors. Proc. Natl. Acad. Sci. USA 1996; 93: 6941–6946
  • Silber J. R., Mueller B. A., Ewers T. G., Berger M. S. Comparison of O6-methylguanine–DNA methyltransferase activity in brain tumors and adjacent normal brain. Cancer Res. 1993; 53: 3416–3420
  • Ono Y., Watanabe M., Inoue Y., Ohmoto T., Akiyama K., Tsutsui K., Seki S. Developmental expression of APEX nuclease, a multifunctional DNA repair enzyme, in mouse brains. Dev. Brain Res. 1995; 86: 1–6
  • Edwards M., Rassin D. K., Izumi T., Mitra S., Perez-Polo J. R. APE/Ref-1 responses to oxidative stress in aged rats. J. Neurosci. Res. 1998; 54: 635–638
  • Ambrosio S. M.D., Samuel M. J., Dutta-Choudury T. A., Wani A. A. O6-methylguanine–DNA methyltransferase in human fetal tissues: Fetal and maternal factors. Cancer Res. 1987; 47: 51–55
  • Grombacher T., Mitra S., Kaina B. Induction of the alkyltransferase (MGMT) gene by DNA damaging agents and the glucocorticoid dexamethasone and comparison with the response of base excision repair genes. Carcinogenesis 1996; 17: 2329–2336
  • Walton M., Lawlor P., Sirimanne E., Williams C., Gluckman P., Dragunow M. Loss of Ref-1 protein expression precedes DNA fragmentation in apoptotic neurons. Mol. Brain Res. 1997; 44: 167–170
  • Fung H., Kow Y. W., Van Houten B., Taatjes D. J., Hatahet Z., Janssen Y. M.W., Vacek P., Faux S. P., Mossman B. T. Asbestos increases mammalian AP-endonuclease gene expression, protein levels, and enzyme activity in mesothelial cells. Cancer Res. 1998; 58: 189–194
  • Ramana C. V., Boldogh I., Izumi T., Mitra S. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc. Natl. Acad. Sci. USA 1998; 95: 5061–5066
  • Korr H., Schultz B. Unscheduled DNA synthesis in various types of cells of the mouse brain in vivo. Exp. Brain Res. 1989; 74: 573–578
  • LeDoux S. P., Williams B. A., Hollensworth B. S., Shen C., Thomale J., Rajewsky M. F., Brent T. P., Willson G. L. Glial cell-specific differences in repair of O6-methylguanine. Cancer Res. 1996; 56: 5615–5619
  • Kisby G. E., Milne J., Hugon J. G., Lesort M., Esclaire F., Spencer P. S. Methylazoxymethanol (MAM), a candidate etiological factor for Guam ALS, damages rat brain DNA and modulates its repair. Soc. Neurosci. Abstr. 1996; 22: 2141
  • Kisby G. E., Springer N., Spencer P. S. In vitro neurotoxic and DNA-damage properties of nitrogen mustard (HN2). J. Appl. Toxicol., in press
  • Eizirik D. L., Kisby G. E. Cycad toxin-induced damage of rodent and human pancreatic β-islet cells. Biochem. Pharmacol. 1995; 50: 355–365
  • Kisby G. E., Springer N., Claus A., Turker M., Spencer P. S. DNA damage, neurodegeneration and motor neuron disease. Soc. Neurosci. Abstr. 1997; 23: 215
  • Lee V. M.Y., Trojanowski J. Q. Tau proteins and their significance in the pathobiology of Alzheimer’s disease. Pathobiology of Alzheimer’s Disease, A. M. Goate, F. Ashall. Academic Press Ltd, London 1995
  • Hof P. R., Nimchinsky E. A., Bueé-Scherrer V., Bueé L., Nasrallah J., Hottinger A. F., Purohit D. P., Loerzel A. J., Steele J. C., Delacourte A., Bouras C., Morrison J. H., Perl D. P. Amyotrophic lateral sclerosis/parkinsonism–dementia complex of Guam: Quantitative neuropathology, immunohistochemical analysis of neuronal vulnerability, and comparison with related neurodegenerative disorders. Acta Neuropathol. 1994; 88: 397–404
  • Mawal-Dewan M., Schmidt M. L., Balin B., Perl D. P., Lee V. M.Y., Trojanowski J. Q. Identification of phosphorylation sites in PHF-tau from patients with Guam amyotrophic lateral sclerosis/parkinsonism– dementia complex. J. Neuropathol. Exp. Neurol. 1996; 55: 1051–1059
  • Bueé-Scherrer V., Bueé L., Hof P. R., Leveugle B., Gilles C., Loerzel A. J., Perl D. P., Delacourte A. Neurofibrillary degeneration in amyotrophic lateral sclerosis/parkinsonism–dementia complex of Guam—Immunochemical characterization of tau proteins. Am. J. Pathol. 1995; 146: 924–932
  • Gensler H. L., Bernstein H. DNA damge as the primary cause of aging. Quart. Rev. Biol. 1981; 56: 279–303
  • Hanawalt P. C., Sarasin A. Cancer-prone hereditary diseases with DNA processing abnormalities. Trends Genet. 1986; 2: 124–128
  • Rao K. S., Loeb L. A. DNA damage and repair in brain: Relationship to aging. Mutat. Res. 1992; 275: 317–329
  • Olkowski Z. L., Rosenfeld J. Abnormal DNA repair in patients with ALS. Soc. Neurosci. Abstr. 1995; 21: 1005
  • Olkowski Z. L. Mutant AP endonuclease in patients with amyotrophic lateral sclerosis. NeuroReport 1998; 9: 239–242
  • Kisby G. E., Milne J., Sweatt C. Evidence of reduced DNA repair in amyotrophic lateral sclerosis brain tissue. NeuroReport 1997; 8: 1337–1340
  • Tan Z., Sun N., Schreiber S. S. Immunohistochemical localization of redox factor-1 (Ref-1) in Alzheimer’s hippocampus. NeuroReport 1998; 9: 2749–2752
  • Kisby G. E., Sweatt C., Spencer P. S. Evidence of reduced brain tissue DNA repair in neurodegenerative disease. Soc. Neurosci. Abstr. 1995; 21: 484
  • Raji N. S., Rao K. S. Trisomy 21 and accelerated aging: DNA-repair parameters in peripheral lymphocytes of Down’s syndrome patients. Mech. Ageing Dev. 1998; 100: 85–101
  • Druzhyna N., Nair R. G., LeDoux S. P., Wilson G. L. Defective repair of oxidative damage in mitochondrial DNA in Down’s syndrome. Mutat. Res. 1998; 409: 81–89
  • Kisby G. E., Sweatt C., Spencer P. S. Role of DNA repair in protecting mature nervous tissue from DNA damage. J. Cell Biochem. 1995; 21A: 348
  • Demple B., Harrison L. Repair of oxidative damage to DNA: Enzymology and biology. Annu. Rev. Biochem. 1994; 63: 915–948
  • Daniels L. B., Glew R. H. β-Glucosidase assays in the diagnosis of Gaucher’s disease. Clin. Chem. 1982; 28: 569–577

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.