35
Views
6
CrossRef citations to date
0
Altmetric
Research Article

NEUROTOXIC MECHANISMS OF DEGENERATION IN MOTOR NEURON DISEASES*

&
Pages 619-634 | Published online: 16 Aug 1999

REFERENCES

  • Olney J. W., Sharpe L. G. Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 1969; 166: 386–388
  • Choi D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1987; 1: 623–634
  • Spencer P. S., Roy D. N., Ludolph A. C., Hugon J., Dwivedi M. P., Schaumburg H. H. Lathyrism: Evidence for role of the neuroexcitatory aminoacid BOAA. Lancet 1986; ii: 1066–1067
  • Rosen R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., Donaldson D., Goto J., O'Regan J. P., Deng H.-X., Rahmani Z., Krizus A., McKenna-Yasek D., Cayabyab A., Gaston S. M., Berger R., Tanzi R. E., Halperin J., Herzfeldt B., van den Berg R., Hung W.-Y., Bird T., Deng G., Mulder D. W., Smyth C., Laing N. G., Soriano E. R., Pericak-Vance M. A., Haines J., Rouleau G. A., Gusella J. S., Horvitz H. R., Brown R. H., Jr. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59–62
  • Casari G., De Fusco M., Ciarmatori S., Zeviani M., Mora M., Fernandez P., De Michele G., Filla A., Cocozza S., Marconi R., Durr A., Fontaine B., Ballabio A. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998; 93: 973–983
  • Weal H. V., Thomson A. M. Excitatory Amino Acids and Synaptic Transmission. Academic Press, London 1991
  • Hollmann M., Heinemann S. Cloned glutamate receptors. Annu. Rev. Neurosci 1994; 17: 31–108
  • Geiger J. R., Melcher T, Koh D. S., Sakann B., Seeburg P. H., Jonas P., Monyer H. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 1995; 15: 193–204
  • Sommer B., Kohler M., Sprengel R., Seeburg P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 1991; 67: 11–19
  • Choi D. W. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 1987; 7: 369–379
  • Nicotera P., Ankarcrona M., Bonfoco E., Orrenius S., Lipton S. A. Neuronal necrosis and apoptosis: Two distinct events induced by exposure to glutamate or oxidative stress. Adv. Neurol. 1997; 72: 95–101
  • Choi D. W. Ischemia-induced neuronal apoptosis. Curr. Opin. Neurobiol. 1996; 6: 667–672
  • Simonian N. A., Coyle J. T. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 1996; 36: 83–106
  • Garcia-Segura L. M., Baetens D., Roth J., Norman A. W., Orci L. Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system. Brain Res. 1984; 296: 75–86
  • Ince P., Stout N., Shaw P., Slade J., Hunziker W., Heizmann C. W., Baimbridge K. G. Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol. 1993; 19: 291–299
  • Beal M. F. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?. Ann. Neurol. 1992; 31: 119–130
  • Albin R. L., Greenamyre J. T. Alternative excitotoxic hypotheses. Neurology 1992; 42: 733–739
  • Ludolph A. C., Riepe M., Ullrich K. Excitotoxicity, energy metabolism and neurodegeneration. J. Inherit. Metab. Dis. 1993; 16: 716–723
  • Spencer P. S., Allen R. G., Kisby G. E., Ludolph A. C. Excitotoxic disorders. Science 1990; 248: 144
  • Ludolph A. C., Hugon J., Dwivedi M. P., Schaumburg H. H., Spencer P. S. Studies on the aetiology and pathogenesis of motor neuron diseases. 1. Lathyrism: clinical findings in established cases. Brain 1987; 110: 149–165
  • Spencer P. S., Ludolph A. C., Kisby G. E. Are human neurodegenerative disorders linked to environmental chemicals with excitotoxic properties?. Ann. NY Acad. Sci. 1992; 648: 154–160
  • Ludolph A. C., Spencer P. S. Toxic models of upper motor neuron disease. J. Neurol. Sci. 1996; 139(Suppl.)53–59
  • Beal M. F. Mitochondria, free radicals, and neurodegeneration. Curr. Opin. Neurobiol. 1996; 6: 661–666
  • Tandan R. Clinical features and differential diagnosis of classical motor neuron disease. Motor Neuron Disease, A. C. Williams. Chapman & Hall Medical, London 1994; 1–27
  • Li T. M., Alberman E., Swash M. Comparison of sporadic and familial disease amongst 580 cases of motor neuron disease. J. Neurol. Neurosurg. Psychiatry 1988; 51: 778–784
  • Bergeron C., Petrunka C., Weyer L. Copper/zinc superoxide dismutase expression in the human central nervous system. Correlation with selective neuronal vulnerability. Am. J. Pathol 1996; 148: 273–279
  • Pardo C. A., Xu Z., Borchelt D. R., Price D. L., Sisodia S. S., Cleveland D. W. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc. Natl. Acad. Sci. USA 1995; 92: 954–958
  • Fridovich I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem 1995; 64: 97–112
  • Yim M. B., Chock P. B., Stadtman E. R. Enzyme function of copper, zinc superoxide dismutase as a free radical generator. J. Biol. Chem. 1993; 268: 4099–4105
  • Borchelt M. R., Lee M. K., Slunt H. S., Guarnieri M., Xu Z. S., Wong P. C., Brown R. H., Price D. L., Sisodia S. S., Cleveland D. W. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. USA 1994; 91: 8292–8296
  • Bruijn L. I., Houseweart M. K., Kato S., Anderson K. L., Anderson S. D., Ohama E., Reaume A. G., Scott R. W., Cleveland D. W. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 1998; 281: 1851–1854
  • Brown R. H. Superoxide dismutase in familial amyotrophic lateral sclerosis: models for gain of function. Curr. Opin. Neurobiol. 1995; 5: 841–846
  • Yim M. B., Kang J. H., Yim H. S., Kwak H. S., Chock P. B., Stadtman E. R. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc. Natl. Acad. Sci. USA 1996; 93: 5709–5714
  • Volkel H., Selzle M., Walk T., Jung G., Link J., Ludolph A. C. Altered dimerisation rate and aggregation of mutated copper/zinc superoxide dismutases in amyotrophic lateral sclerosis, unpublished
  • Deng H. X., Hentati A., Tainer J. A., Iqbal Z., Cayabyab A., Hung W. Y., Getzoff E. D., Hu P., Herzfeldt B., Roos R. P. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 1993; 261: 1047–1051
  • DalCanto M. C., Gurney M. E. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: A model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 1995; 676: 25–40
  • Reaume G., Elliott J. L., Hoffman E. K., Kowall N. W., Ferrante R. J., Siwek D. F., Wilcox H. M., Flood D. G., Beal M. F., Brown R. H., Scott R. W., Snider W. D. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 1995; 13: 43–47
  • Tu P. H., Raju P., Robinson K. A., Gurney M. E., Trojanowski J. Q., Lee V. M. Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc. Natl. Acad. Sci. USA 1996; 93: 3155–3160
  • Epstein C. J., Avraham K. B., Lovett M., Smith S., Elroy-Stein O., Rotman G., Bry C., Groner Y. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: Animal model of dosage effects in Down syndrome. Proc. Natl. Acad. Sci. USA 1987; 84: 8044–8048
  • Li Y., Huang T. T., Carlson E. J., Melov S., Ursell P. C., Olson J. L., Noble L. J., Yoshimura M. P., Berger C., Chan P. H. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genet. 1995; 11: 376–381
  • Gurney M., Cutting F. B., Zhai P., Doble A., Taylor C. P., Andrus P. K., Hall E. D. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol. 1996; 39: 147–158
  • Hottinger A., Fine E. G., Gurney M. E., Zurn A. D., Aebischer P. The copper chelator d-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur. J. Neurosci. 1997; 9: 2548–2552
  • Rothstein J. D., Jin L., Dykes-Hoberg M., Kuncl R. W. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. USA 1993; 90: 6591–6595
  • Ikonomidou C., Qin Y. Qin, Labruyere J., Olney J. W. Motor neuron degeneration induced by excitotoxin agonists has features in common with those seen in the SOD-1 transgenic mouse model of amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 1996; 55: 211–224
  • Carriedo S. G., Yin H. Z., Weiss J. H. Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J. Neurosci. 1996; 16: 4069–4079
  • Morrison M., Janssen W. G.M., Gordon J. W., Morrison J. H. Light and electron microscopic distribution of the AMPA receptor subunit, GluR2, in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice. J. Comp. Neurol. 1998; 395: 523–534
  • Feldmeyer D., Kask K., Brusa R., Kornau H.-C., Kolhekar R., Rozov A., Burnashev N., Jensen V., Hvalby O., Sprengel R., Seeburg P. H. Neurological dysfunction of mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nature Neurosci. 1999; 2: 57–64
  • Zuo J., De Jager P. L., Takahashi K. A., Jiang W., Linden D. J., Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 1997; 388: 769–773
  • Rothstein J. D., Martin L. J., Kuncl R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 1992; 326: 1464–1468
  • Rothstein J. D., Van Kammen M., Levey A. I., Martin L. J., Kuncl R. W. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 1995; 38: 73–84
  • Storck T., Schulte S., Hofmann K., Stoffel W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci. USA 1992; 89: 10,955–10,959
  • Kanai Y., Hediger M. A. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 1992; 360: 467–471
  • Pines G., Danbolt N. C., Bjoras M., Zhang Y., Bendahan A., Eide L., Koepsell H., Storm-Mathisen J., Seeberg E., Kanner B. I. Cloning and expression of a rat brain L-glutamate transporter. Nature 1992; 360: 464–467
  • Fairman W. A., Vandenberg R. J., Arriza J. L., Kavanaugh M. P., Amara S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 1995; 375: 599–604
  • Arriza J. L., Fairman W. A., Wadiche J. I., Murdoch G. H., Kavanaugh M. P., Amara S. G. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 1994; 14: 5559–5569
  • Arriza J. L., Eliasof S., Kavanaugh M. P., Amara S. G. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA 1997; 94: 4155–4160
  • Rothstein J. D., Dykes-Hoberg M., Pardo C. A., Bristol L. A., Jin L., Kuncl R. W., Kanai Y., Hediger M. A., Wang Y., Schielke J. P., Welty D. F. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16: 675–686
  • Tanaka K., Watase K., Manabe T., Yamada K., Watanabe M., Takahashi K., Iwama H., Nishikawa T., Ichihara N., Kikuchi T., Okuyama S., Kawashima N., Hori S., Takimoto M., Wada K. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997; 276: 1699–1702
  • Masliah E., Alford M., DeTeresa R., Mallory M., Hansen L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer's disease. Ann. Neurol. 1996; 40: 759–766
  • Masliah E., Raber J., Alford M., Mallory M., Mattson M. P., Yang D., Wong D., Mucke L. Amyloid protein precursor stimulates excitatory amino acid transport. Implications for roles in neuroprotection and pathogenesis. J. Biol. Chem. 1998; 273: 12,548–12,554
  • Torp R., Lekieffre D., Levy L. M., Haug F. M., Danbolt N. C., Meldrum B. S., Ottersen O. P. Reduced postischemic expression of a glial glutamate transporter, GLT1, in the rat hippocampus. Exp. Brain. Res. 1995; 103: 51–58
  • Meyer T., Ludolph A. C., Morkel M., Hagemeier C., Speer A. Genomic organization of the human excitatory amino acid transporter gene GLT-1. NeuroReport 1997; 8: 775–777
  • Meyer T., Munch C., Volkel H., Booms P., Ludolph A. C. The EAAT2 (GLT-1) gene in motor neuron disease: Absence of mutations in amyotrophic lateral sclerosis and a point mutation in patients with hereditary spastic paraplegia. J. Neurol. Neurosurg. Psychiatry 1998; 65: 594–596
  • Aoki M., Lin C. L., Rothstein J. D., Geller B. A., Hosler B. A., Munsat T. L., Horvitz H. R., Brown R. H. Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann. Neurol. 1998; 43: 645–653
  • Lin C. L., Bristol L. A., Jin L., Dykes-Hoberg M., Crawford T., Clawson L., Rothstein J. D. Aberrant RNA processing in a neurodegenerative disease: The cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 1998; 20: 589–602
  • Meyer T., Munch C., Knappenberger B., Liebau S., Volkel H., Ludolph A. C. Alternative splicing of the glutamate transporter EAAT2 (GLT-1). Neurosci. Lett. 1998; 241: 68–70
  • Meyer T., Munch C., Liebau S., Fromm A., Schwalenstocker B., Volkel H., Ludolph A. C. Splicing of the glutamate transporter EAAT2: A candidate gene of amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 1998; 65: 954
  • Nagai M., Abe K., Okamoto K., Itoyama Y. Identification of alternative splicing forms of GLT-1 mRNA in the spinal cord of amyotrophic lateral sclerosis patients. Neurosci. Lett. 1998; 244: 165–168
  • Meyer T., Lenk U., Kuther G., Weindl A., Speer A., Ludolph A. C. Studies of the coding region of the neuronal glutamate transporter gene in amyotrophic lateral sclerosis. Ann. Neurol. 1995; 37: 817–819
  • Munch C., Schwalenstocker B., Knappenberger B., Liebau S., Volkel H., Ludolph A. C., Meyer T. 5′-heterogeneity of the human excitatory amino acid transporter cDNA EAAT2 (GLT-1). NeuroReport 1998; 9: 1295–1297
  • Utsunomiya-Tate N., Endou H., Kanai Y. Tissue specific variants of glutamate transporter GLT-1. FEBS Lett. 1997; 416: 312–316
  • Wong P. C., Pardo C. A., Borchelt D. R., Lee M. K., Copeland N. G., Jenkins N. A., Sisodia S. S., Cleveland D. W., Price D. L. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995; 14: 1105–1116
  • Gurney M. E., Pu H., Chiu A. Y., Canto M. C. Dal, Polchow C. Y., Alexander D. D., Caliendo J., Hentati A., Kwon Y. W., Deng H. X. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994; 264: 1772–1775
  • White R. J., Reynolds I. J. Mitochondrial depolarization in glutamate-stimulated neurons: An early signal specific to excitotoxin exposure. J. Neurosci. 1996; 16: 5688–5697
  • Schinder A. F., Olson E. C., Spitzer N. C., Montal M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 1996; 16: 6125–6133

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.