97
Views
35
CrossRef citations to date
0
Altmetric
Research Article

FRONTIER ORBITALS IN CHEMICAL AND BIOLOGICAL ACTIVITY: QUANTITATIVE RELATIONSHIPS AND MECHANISTIC IMPLICATIONS*

Pages 755-816 | Published online: 16 Aug 1999

REFERENCES

  • Fukui K. Recognition of stereochemical paths by orbital interaction. Acc. Chem. Res. 1971; 4: 57–64
  • Klopman G. A semi-empirical treatment of molecular structures II. Molecular terms and application to diatomic molecules. J. Am. Chem. Soc. 1964; 86: 4550–4557
  • Klopman G. Chemical reactivity and the concept of charge- and frontier-controlled reactions. J. Am. Chem. Soc. 1968; 90: 223–234
  • Klopman G., Hudson R. F. Polyelectronic perturbation treatment of chemical reactivity. Theoret. Chim. Acta 1967; 8: 165–174
  • Hudson R. F., Klopman G. A general perturbation treatment of chemical reactivity. Tetraheadron Lett. 1967; 1103–1108
  • Salem L. Intermolecular orbital theory of the interaction between conjugated systems. I. General theory. J. Am. Chem. Soc. 1968; 90: 543–552, and 553–566
  • Fleming I. Frontier Orbitals and Organic Chemical Reactions. John Wiley & Sons, New York 1980
  • Kier L. B. Molecular Orbital Theory in Drug Research. Academic Press, New York 1971
  • Molecular Orbital Studies in Chemical Pharmacology, L. B. Kier. Springer-Verlag, New York 1970
  • Simon Z. Quantum Biochemistry and Specific Interactions. Abacus, London 1976
  • Lewis D. F. V. COMPACT and the importance of frontier orbitals in toxicity mediated by the cytochrome P450 mono-oxygenase system. Toxicol. Model. 1995; 1: 85–97
  • Clark T. Handbook of Computational Chemistry. John Wiley & Sons, New York 1985
  • Hirst D. M. A Computational Approach to Chemistry. Blackwell, Oxford 1990
  • Warshel A. Computer Modeling of Chemical Reactions in Enzymes and Solutions. John Wiley & Sons, New York 1997
  • Lewis D. F. V. MINDO/3: A review of the literature. Chem. Rev. 1986; 86: 1111–1123
  • Lewis D. F. V. MO-QSARs: A review of molecular orbital-generated quantitative structure–activity relationships. Prog. Drug Metab. 1990; 12: 205–255
  • Kubinyi H. QSAR and 3D QSAR in drug design 1 and 2. Drug Discovery Today 1997; 2: 457–567, and 538–546
  • Atkins P. W., Friedman R. S. Molecular Quantum Mechanics. Oxford University Press, Oxford 1997
  • Murrell J. N., Harget A. J. Semi-empirical Self-consistent-field Molecular Orbital Theory of Molecules. John Wiley & Sons, New York 1972
  • Dewar M. J. S. Development and status of MINDO/3 and MNDO. J. Mol. Struct. 1983; 100: 41–50
  • Dewar M. J. S., Dougherty R. C. The PMO Theory of Organic Chemistry. Plenum, New York 1975
  • Dewar M. J. S., Storch D. M. Comparative tests of theoretical procedures for studying chemical reactions. J. Am. Chem. Soc. 1985; 107: 3898–3902
  • Pople J. A., Beveridge D. L. Approximate Molecular Orbital Theory. McGraw–Hill, New York 1970
  • Richards W. G. Quantum Pharmacology. Butterworths, London 1983
  • Segal G. A. Semi-empirical Methods of Electronic Structure Calculation. Plenum, New York 1977
  • McWeeney R. Coulon's Valence. Oxford University Press, Oxford 1979
  • Pople J. A., Santry D. P., Segal G. A. Approximate self-consistent molecular orbital theory. I. Invariant procedures. J. Chem. Phys. 1965; 465: 129–135
  • Bingham R. C., Dewar M. J. S., Lo D. H. MINDO/3: An improved version of the MINDO semi-empirical SCF-MO method. J. Am. Chem. Soc. 1975; 97: 1285–1293
  • Dewar M. J. S., Zoebisch E. G., Healy E. F., Stewart J. J. P. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985; 107: 3902–3909
  • Lewis D. F. V. The calculation of molar polarizabilities by the CNDO/2 method: Correlation with the hydrophobic parameter, log P. J. Computat. Chem. 1989; 10: 145–151
  • Lewis D. F. V. Molecular orbital calculations on solvents and other small molecules: Correlation between electronic and molecular properties. J. Computat. Chem. 1987; 8: 1084–1089
  • Vinter J. G., Davis A., Saunders M. R. Strategic approaches to drug design. I. An integrated software framework for molecular modelling. J. Computer-Aided Mol. Design 1987; 1: 31–51
  • Jefcoate C. R. E., Graylor J. L., Calabrese R. L. Ligand interactions with cytochrome P450. I. Binding of primary amines. Biochemistry 1969; 8: 3455–3463
  • Lewis D. F. V., Lake B. G. Molecular modelling of human CYP2B isoforms and their interaction with substrates, inhibitors and redox components. Xenobiotica 1997; 27: 443–487
  • Lewis D. F. V., Ioannides C., Parks D. V. Molecular modelling of mammalian cytochromes P450 and evaluation of chemical toxicity and metabolism using COMPACT. QSAR and Molecular Modelling: Computational Tools and Biological Applications, F. Sanz, J. Giraldo, F. Manaut. Prous, Barcelona 1996; 595–600
  • Lewis D. F. V. Cytochromes P450: Structure Function and Mechanisms. Taylor & Francis, London 1996
  • Ayrton A. D., McFarlane M., Walker R., Neville S., Ioannides C. The induction of P450 I proteins by aromatic amines may be related to their carcinogenic potential. Carcinogenesis 1990; 11: 803–809
  • Ayrton A. D., McFarlane M., Walker R., Neville S., Coombs M. M., Ionnides C. Induction of the P450I family of proteins by polycyclic aromatic hydrocarbons: Possible relationship to their carcinogenicity. Toxicology 1990; 60: 173–186
  • Lewis D. F. V. Quantitative structure–activity relationships in substratesinducers and inhibitors of cytochrome P4501 (CYP1). Drug Metab. Rev. 1997; 29: 589–650
  • Lewis D. F. V., Ioannides C., Parke D. V., Walker R. Quantitative structure–activity relationships in some cooked food mutagens. Food Addit. Contam. 1995; 12: 715–724
  • Hansch C. Structure–activity relationships of chemical mutagens and carcinogens. QSAR in Environmental Toxicology—IV, J. L. M. Hermens, A. Opperhuizen. Elsevier, Amsterdam 1991; 17–29
  • Poso A., von Wright A., Gynther J. An empirical and theoretical study on mechanisms of mutagenic activity of hydrazine compounds. Mutat. Res. 1995; 332: 63–71
  • Benigni R., Richard A. M. QSARs of mutagens and carcinogens: Two case studies illustrating problems in the construction of models for noncongeneric chemicals. Mutat. Res. 1996; 371: 29–49
  • Lewis D. F. V., Pratt J. M. The P450 catalytic cycle and oxygenation mechanism. Drug Metab. Rev. 1998; 30: 739–786
  • Bakale G., McCreary R. D. Response of the ke test to NCI/NTP-screened chemicals. II. Genotoxic carcinogens and non-genotoxic non-carcinogens. Carcinogenesis 1992; 13: 1437–1445
  • Benigni R., Andreoli C., Giuliani A. Structure–activity studies of chemical carcinogenesis: Use of an electrophilic reactivity parameter in a new QSAR model. Carcinogenesis 1989; 10: 55–61
  • Marcus R. A., Sutin N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 1985; 811: 265–322
  • Perring K. D. Application of tritium nuclear magnetic resonance spectroscopy in kinetic and labelling studies, Ph.D. thesis. Department of Chemistry, University of Surrey. 1979
  • Lewis D. F. V. Cytochromes P450: Structure, Function and Mechanism. Taylor & Francis, London 1996
  • Jones R. A. Y. Physical and Mechanistic Organic Chemistry. Cambridge University Press, Cambridge 1979
  • Schofield K. Aromatic Nitration. Cambridge University Press, Cambridge 1980
  • Lewis D. F. V., Parke D. V. The genotoxicity of benzanthracenes: A quantitative structure–activity study. Mutat. Res. 1995; 328: 207–214
  • Lewis D. F. V., Ioannides C., Parke D. V. Structural requirements for substrates of cytochromes P450 and P448. Chem.–Biol. Interact. 1987; 64: 39–60
  • Sugden D., Chong N. W. S., Lewis D. F. V. Structural requirements at the melatonin receptor. Br. J. Pharmacol. 1995; 114: 618–623
  • Lewis D. F. V., Kitchen U., Sugden D., English J., Arendt J. Molecular modelling of G-protein coupled receptors: The interaction between specific ligands and their binding sites. Trends in QSAR and Molecular Modelling, C. G. Wermuth. Elsevier, Amsterdam 1993; 489–494
  • Lewis D. F. V., Gray T. J. B., Lake B. G. The use of structure–activity relationships. Drug Metabolism from Molecules to Man, D. J. Benford, J. W. Bridges, G. G. Gibson. Taylor & Francis, London 1987; 369–378
  • Lewis D. F. V. Molecular orbital calculations on tumour inhibitory phenyl aziridines. Xenobiotica 1989; 19: 341–356
  • Lewis D. F. V. Molecular orbital calculations on tumour-inhibitory aniline mustards: QSARs. Xenobiotica 1989; 19: 243–251
  • Lewis D. F. V., Brantom P. G., Ioannides C., Walker R., Parke D. V. Nitrosamine carcinogenesis: Rodent assays, quantitative structure–activity relationships and human risk assessment. Drug Metab. Rev. 1997; 29: 1055–1078
  • Lewis D. F. V., Tamburini P. P., Gibson G. G. The interaction of a homologous series of hydrocarbons with hepatic cytochrome P450. Molecular orbital-derived electronic and structural parameters influencing the haemoprotein spin state. Chem.–Biol. Interact. 1986; 58: 289–299
  • Lewis D. F. V., Lake B. G., Dickins M., Eddershaw P. J., Tarbit M. H., Goldfarb P. S. Molecular modelling of CYP2B6, the human CYP2B isoform, by homology with the substrate-bound CYP102 crystal structure: Evaluation of CYP2B6 substrate binding affinity. Xenobiotica 1999; 29: 361–393
  • Lewis D. F. V., Ioannides C., Parke D. V. An improved and updated version of the COMPACT procedure for the evaluation of P450-mediated chemical activation. Drug Metab. Rev. 1998; 30: 709–737
  • Lewis D. F. V., Ioannides C., Parke D. V. Prediction of chemical carcinogenicity from molecular and electronic structures: A comparison of MINDO/3 and CNDO/2 molecular methods. Toxicol. Lett. 1989; 45: 1–13
  • Lewis D. F. V., Ioannides C., Parke D. V. Molecular modelling of mammalian cytochromes P450 and evaluation of chemical toxicity and metabolism using COMPACT. QSAR and Molecular Modelling: Concepts, Computational Tools and Biological Applications, F. Sanz, J. Giraldo, F. Manaut. Prous, Barcelona 1996; 595–600
  • Stewart J. J. P. MOPAC: A semi-empirical molecular orbital program. J. Computer-Aided Mol. Design 1990; 4: 1–45
  • Stewart J. J. P. Semi-empirical molecular orbital methods. Rev. Computat. Chem. 1990; 1: 45–81
  • Sugimura T., Wakabayashi K., Nagao M., Esumi H. A new class of carcinogens: Heterocyclic amines in cooked food. Food, Nutrition and Chemical Toxicity, D. V. Parke, C. Ioannides, R. Walker. Smith-Gordon, London 1993; 259–276
  • Oesch F., Glatt H., Utesch D. Metabolic perspectives on in vitro tests. Xenobiotica 1988; 18: 35–44
  • Wislocki P. G., Fiorentini K. M., Fu P. P., Yang S. K., Lu A. Y. H. Tumour-initiating ability of the twelve monomethylbenz[a]anthracenes. Carcinogenesis 1982; 3: 215–217
  • Hay R. W. Bio-Inorganic Chemistry. John Wiley & Sons, New York 1984
  • Lewis D. F. V., Ioannides C., Schulte-Hermann R., Parke D. V. Quantitative structure–activity relationships in a series of endogenous and synthetic steroids exhibiting induction of CYP3A activity and increase in liver weight associated with increased DNA synthesis. J. Steroid Biochem. Mol. Biol., (submitted)
  • Glennon R. A., Gessner P. K. Serotonin receptor binding affinities of tryptamine analogues. J. Med. Chem. 1979; 22: 428–432
  • Davies R. H., Smith L. H. Partial agonism of cardiac β-adrenoceptor blocking agents and competitive conformer-receptor occupancy. Int. J. Quantum Chem., Quantum Biol. Symp. 1980; 7: 331–345
  • Pharmacology of Antihypertensive Drugs, A. Scriabine. Raven Press, New York 1980
  • Michel M. C. β-Adrenergic receptors. Receptor Data for Biological Experiments, H. N. Doods, J. C. A. van Meel. Ellis Horwood, Chichester 1991; 19–22
  • Safe S., Bandiera S., Sawyer T., Zmudzka B., Mason G., Romkes M., Denomme M. A., Sparling J., Okey A. B., Fujita T. Effects of structure on binding to the 2,3,7,8-TCDD-receptor protein and AHH induction: Halogenated biphenyls. Environ. Health Perspect. 1985; 61: 21–33
  • Denomme M. A., Homonoko K., Fujita T., Sawyer T., Safe S. Effects of substituents on the cytosolic receptor binding avidities and aryl hydrocarbon hydroxylase induction potencies of 7-substituted 2,3-dichlorodibenzo-p-dioxins. Mol. Pharmacol. 1985; 27: 656–661
  • Khan A. H., Ross W. C. J. Tumour-growth inhibitory nitrophenyl aziridines and related compounds: Structure–activity relationship. Chem.–Biol. Interact. 1970; 1: 27–47
  • Khan A. H., Ross W. C. J. Tumour-growth inhibitory nitrophenyl aziridines and related compounds: Structure–activity relationships. Chem.–Biol. Interact. 1972; 4: 11–22
  • Bardos T. J., Chmielewicz Z. F., Hebborn P. Structure–activity relationships of alkylating agents in cancer chemotherapy. Ann. NY Acad. Sci. 1968; 163: 1006–1025
  • Bardos T. J., Datta-Gupta N., Hebborn P., Tiggle D. J. A study of comparative chemical and biological activities of alkylating agents. J. Med. Chem. 1969; 8: 167–174
  • Lewis D. F. V. Molecular orbital calculations on tumour-inhibitory phenyl aziridines: QSARs. Xenobiotica 1989; 19: 341–356
  • Wishnok J. S., Archer M. C., Edelman A. S., Rand W. M. Nitrosamine carcinogenicity: A quantitative Hansch–Taft structure–activity relationship. Chem.–Biol. Interact. 1978; 20: 43–54
  • Sangster J. Octanol–water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 1989; 18: 1111–1229
  • Suzuki T., Kudo Y. Automatic log P estimation based on combined additive modelling methods. J. Computer-Aided Mol. Design 1990; 4: 155–198
  • White R. E., McCarthy M. Active site mechanics of liver microsomal cytochrome P450. Arch. Biochem. Biophys. 1986; 246: 19–32
  • Lewis D. F. V., Ioannides C., Parke D. V. A quantitative structure–activity relationship study on a series of 10 para-substituted toluenes binding to cytochrome P4502B4 (CYP2B4) and also their hydroxylation rates. Biochem. Pharmacol. 1995; 50: 619–625
  • Hansch C., Leo A. J. Substituent Constants for Correlation Analysis in Chemistry and Biology. John Wiley & Sons, New York 1979
  • Eldirdiri N. Uptake and metabolic effects of some halogenoalkanes, Ph.D. Thesis. University of Surrey, GuildfordU.K. 1992
  • Calleja C., Pascussi J. M., Mani J. C., Maurel P., Vilarem M. J. The antibiotic rifampicin is a nonsteroidal ligand and activator of the human glucocorticoid receptor. Nature Med. 1998; 4: 92–96
  • Kliewer S. A., Moore J. T., Wade L., Staudinger J. L., Watson M. A., Jones S. A., McKee D. D., Oliver B. B., Willson T. M., Zetterstrom R. H., Perlmann T., Lehmann J. M. An orphan nuclear receptor activated by pregnanes defines a novel steroid signalling pathway. Cell 1998; 92: 73–82
  • Lewis D. F. V., Lake B. G. Molecular modelling of the rat peroxisome proliferator-activated receptor α (rPPARα) by homology with the human retinoic acid X receptor α (hRXRα) and investigation of peroxisome proliferator binding interactions: QSARs. Toxicol. In Vitro 1998; 12: 619–632

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.