240
Views
35
CrossRef citations to date
0
Altmetric
Research Article

N-OXIDATIVE TRANSFORMATION OF FREE AND N-SUBSTITUTED AMINE FUNCTIONS BY CYTOCHROME P450 AS MEANS OF BIOACTIVATION AND DETOXICATION

Pages 451-477 | Published online: 25 Jul 2002

REFERENCES

  • Hlavica P. Biological Oxidation of Nitrogen in Organic Compounds and Disposition of N-Oxidized Products. CRC Crit. Rev. Biochem. 1982; 12: 39–101
  • Kiese M. Methemoglobinemia: A Comprehensive Treatise. CRC Press, Cleveland 1974
  • Uetrecht J. The Role of N-Oxidation by Leucocytes in Drug-Induced Agranulocytosis and Other Drug Hypersensitivity Reactions. N-Oxidation of Drugs: Biochemistry, Pharmacology, Toxicology, P. Hlavica, L.A. Damani. Chapman & Hall, London 1991; 435–453
  • Kriek E. Carcinogenesis by Aromatic Amines. Biochim. Biophys. Acta 1974; 355: 177–203
  • Roberts S.M., Harbison R.D., James R.C. Human Microsomal N-Oxidative Metabolism of Cocaine. Drug Metab. Dispos. 1991; 19: 1046–1051
  • Kimura T., Kodama M., Nagata C., Kamataki T., Sato R. Comparative Study on the Metabolism of N-Methyl-4-Aminoazobenzene by Two Forms of Cytochrome P-448. Biochem. Pharmacol. 1985; 34: 3375–3377
  • Bickel M.H. The Pharmacology and Biochemistry of N-Oxides. Pharmacol. Rev. 1969; 21: 325–354
  • Uehleke H. The Role of Cytochrome P-450 in the N-Oxidation of Individual Amines. Drug Metab. Dispos. 1973; 1: 299–313
  • Damani L.A. Oxidation at Nitrogen Centers. Metabolic Basis of Detoxication: Metabolism of Functional Groups, W.B. Jakoby, J.R. Bend, J. Caldwell. Academic Press, New York 1982; 127–149
  • Hlavica P. Regulatory Mechanisms in the Activation of Nitrogenous Compounds by Mammalian Cytochrome P-450 Isozymes. Drug Metab. Rev. 1994; 26: 325–348
  • Hlavica P., Lehnerer M. Some Aspects of the Role of Cytochrome P-450 Isozymes in the N-Oxidative Transformation of Secondary and Tertiary Amine Compounds. J. Biochem. Toxicol. 1995; 10: 275–285
  • Hlavica P., Golly I., Lehnerer M., Schulze J. Primary Aromatic Amines: Their N-Oxidative Bioactivation. Hum. Exp. Toxicol. 1997; 16: 441–448
  • Hlavica P., Lehnerer M. N-Oxidative Transformation of C=N Groups as Means of Toxification and Detoxification. The Chemistry of Double-Bonded Functional Groups, S. Patai. John Wiley & Sons, Ltd., Chichester 1997; Suppl. A3: 1625–1663
  • Nelson D.R., Koymans L., Kamataki T., Stegeman J.J., Feyereisen R., Waxman D.J., Waterman M.R., Gotoh O., Coon M.J., Estabrook R.W., Gunsalus I.C., Nebert D.W. P450 Superfamily: Update of New Sequences, Gene Mapping, Accession Numbers and Nomenclature. Pharmacogenetics 1996; 6: 1–42
  • Cho A.K., Lindeke B., Sum C.Y. The N-Hydroxylation of Phentermine (2-Methyl-2-Amino-1-Phenylpropane): Properties of the Enzyme System. Drug Metab. Dispos. 1974; 2: 1–8
  • Sum C.Y., Cho A.K. The N-Hydroxylation of Phentermine by Rat Liver Microsomes. Drug Metab. Dispos. 1977; 5: 464–468
  • Cho A.K., Sum C.Y., Jonsson J., Lindeke B. The Role of N-Hydroxylation in the Metabolism of Phentermine and Amphetamine by Liver Preparations. Biological Oxidation of Nitrogen, J.W. Gorrod. Elsevier, Amsterdam 1978; 15–23
  • Kurebayashi H. Kinetic Deuterium Isotope Effects on Deamination and N-Hydroxylation of Cyclohexylamine by Rabbit Liver Microsomes. Arch. Biochem. Biophys. 1989; 270: 320–329
  • Heinze E., Hlavica P., Kiese M., Lipowsky G.N. Oxygenation of Arylamines in Microsomes Prepared from Corpora Lutea of the Cycle and Other Tissues of the Pig. Biochem. Pharmacol. 1970; 19: 641–649
  • Hlavica P., Kehl M. Studies on the Mechanism of Hepatic Microsomal N-Oxide Formation. I. Effect of Carbon Monoxide on the N-Oxidation of N,N-Dimethylaniline. Hoppe-Seyler's Z. Physiol. Chem. 1974; 355: 1508–1514
  • Hlavica P., Kiese M. N-Oxygenation of N-Alkyl- and N,N-Dialkylanilines by Rabbit Liver Microsomes. Biochem. Pharmacol. 1969; 18: 1501–1509
  • Hlavica P. Interaction of Oxygen and Aromatic Amines with Hepatic Microsomal Mixed Function Oxidase. Biochim. Biophys. Acta 1972; 273: 318–327
  • Tyrakowska B., Boeren S., Geurtsen B., Rietjens I.M.C.G. Qualitative and Quantitative Influences of Ortho Chlorine Substituents on the Microsomal Metabolism of 4-Toluidines. Drug Metab. Dispos. 1993; 21: 508–519
  • Schmidt H.L., Kexel H., Weber N. Mikrosomale Oxydationen am Stickstoffatom Aromatischer Amine. Biochem. Pharmacol. 1972; 21: 1641–1648
  • Budinsky R.A., Roberts S.M., Coats E.A., Adams L., Hess E.V. The Formation of Procainamide Hydroxylamine by Rat and Human Liver Microsomes. Drug Metab. Dispos. 1987; 15: 37–43
  • Uehleke H., Tabarelli S. N-Hydroxylation of 4,4′-Diaminodiphenylsulphone (Dapsone) by Liver Microsomes, and in Dogs and Humans. Naunyn-Schmiedeberg's Arch. Pharmacol. 1973; 278: 55–68
  • Uehleke H. N-Hydroxylation. Xenobiotica 1971; 1: 327–338
  • Vage C., Svensson C.K. Evidence that the Biotransformation of Dapsone and Monoacetyl Dapsone to Their Respective Hydroxylamine Metabolites in Rat Liver Microsomes Is Mediated by Cytochrome P-450 2C6/2C11 and 3A1. Drug Metab. Dispos. 1994; 22: 572–577
  • Kato R. Metabolic Activation of Mutagenic Heterocyclic Aromatic Amines from Protein Pyrolysates. CRC Crit. Rev. Toxicol. 1986; 16: 307–348
  • Yamazoe Y., Ishii K., Kamataki T., Kato R., Sugimura T. Isolation and Characterization of Active Metabolites of Tryptophan-Pyrolysate Mutagen Trp-P-2, Formed by Rat Liver Microsomes. Chem.-Biol. Interact. 1980; 30: 125–138
  • Boobis A.R., Sesardic D., Murray B.P., Edwards R.J., Davies D.S. Specificity and Inducibility of Cytochrome P-450 Catalysing the Activation of Food-Derived Mutagenic Heterocyclic Amines. N-Oxidation of Drugs: Biochemistry, Pharmacology, Toxicology, P. Hlavica, L.A. Damani. Chapman & Hall, London 1991; 345–355
  • Kamataki T., Kitada M., Komori M., Ohta K., Uchida T., Kikuchi O., Taneda M., Fukuta H. Comparative Biochemistry of Cytochrome P450 Species Responsible for the Activation of Mutagenic Food-Derived Heterocyclic Amines. N-Oxidation of Drugs: Biochemistry, Pharmacology, Toxicology, P. Hlavica, L.A. Damani. Chapman & Hall, London 1991; 331–343
  • Watanabe J., Kawajiri K., Yonekawa H., Nagao M., Tagashira Y. Immunological Analysis of the Roles of Two Major Types of Cytochrome P-450 in Mutagenesis of Compounds Isolated from Pyrolysates. Biochem. Biophys. Res. Commun. 1982; 104: 193–199
  • Duncan J.D., Cho A.K. N-Oxidation of Phentermine to N-Hydroxyphentermine by a Reconstituted Cytochrome P-450 Oxidase System from Rabbit Liver. Mol. Pharmacol. 1982; 22: 235–238
  • Cribb A.E., Spielberg S.P., Griffin G.P. N4-Hydroxylation of Sulfamethoxazole by Cytochrome P-450 of the Cytochrome P-450 2C Subfamily and Reduction of Sulfamethoxazole Hydroxylamine in Human and Rat Hepatic Microsomes. Drug Metab. Dispos. 1995; 23: 406–414
  • Fleming C.M., Branch R.A., Wilkinson G.R., Guengerich F.P. Human Liver Microsomal N-Hydroxylation of Dapsone by Cytochrome P-450 3A4. Mol. Pharmacol. 1992; 41: 975–980
  • Kamataki T., Maeda K., Yamazoe Y., Matsuda N., Ishii K., Kato R. A High-Spin Form of Cytochrome P-450 Highly Purified from Polychlorinated Biphenyl-Treated Rats: Catalytic Characterization and Immunochemical Quantitation in Liver Microsomes. Mol. Pharmacol. 1983; 24: 146–155
  • Butler M.A., Iwasaki M., Guengerich F.P., Kadlubar F.F. Human Cytochrome P450PA (P-450IA2), the Phenacetin O-Deethylase, Is Primarily Responsible for the Hepatic 3-Methylation of Caffeine and N-Oxidation of Carcinogenic Arylamines. Proc. Natl Acad. Sci. USA 1989; 86: 7696–7700
  • Butler M.A., Guengerich F.P., Kadlubar F.F. Metabolic Oxidation of the Carcinogens 4-Aminobiphenyl and 4,4′-Methylene-Bis(2-Chloroaniline) by Human Hepatic Microsomes and by Purified Rat Hepatic Cytochrome P-450. Cancer Res. 1989; 49: 25–31
  • Yun C., Shimada T., Guengerich F.P. Contributions of Human Liver Cytochrome P-450 Enzymes to the N-Oxidation of 4,4′-Methylene-Bis (2-Chloroaniline). Carcinogenesis 1992; 13: 217–222
  • Ishii K., Yamazoe Y., Kamataki T., Kato R. Metabolic Activation of Glutamic Acid Pyrolysis Products 2-Amino-6-Methyldipyrido [1,2-a:3′2′-d] Imidazole and 2-Amino-Dipyrido [1,2-a: 3′2′-d] Imidazole, by Purified Cytochrome P-450. Chem.-Biol. Interact. 1981; 38: 1–13
  • Raza H., King R.S., Squires R.B., Guengerich F.P., Miller D.W., Freeman J.P., Lang N.P., Kadlubar F.F. Metabolism of 2-Amino-α-Carboline, a Foodborne Heterocyclic Amine Mutagen and Carcinogen by Human and Rodent Liver Microsomes and by Human Cytochrome P450 1A2. Drug Metab. Dispos. 1996; 24: 395–400
  • Beckett A.H., Bélanger P.M. Metabolic Incorporation of Oxygen into Primary and Secondary Aliphatic Amines and the Consequences in Carbon–Nitrogen Cleavage. J. Pharm. Pharmacol. 1975; 27: 547–552
  • Hammons G.J., Guengerich F.P., Weis C.C., Beland F.A., Kadlubar F.F. Metabolic Oxidation of Carcinogenic Arylamines by Rat, Dog, and Human Hepatic Microsomes and by Purified Flavin-Containing and Cytochrome P-450 Monooxygenases. Cancer Res. 1985; 45: 3578–3585
  • Lindeke B., Paulsen-Sörman U., III. Nitrogenous Compounds as Ligands to Hemoporphyrins—The Concept of Metabolic-Intermediary Complexes. Progress in Basic and Clinical Pharmacology, P. Lomax, E.S. Vesell. Karger, Basel 1988; Vol. 1: 63–102
  • Mansuy D., Beaune P., Cresteil T., Bacot C., Chottard J.C., Gans P. Formation of Complexes Between Microsomal Cytochrome P-450-Fe(II) and Nitrosoarenes Obtained by Oxidation of Arylhydroxylamines or Reduction of Nitroarenes In Situ. Eur. J. Biochem. 1978; 86: 573–579
  • Franklin M.R. Inhibition of Mixed-Function Oxidations by Substrates Forming Reduced Cytochrome P-450 Metabolic-Intermediate Complexes. Pharmacol. Ther. A 1977; 2: 227–245
  • Mailman R.B., Kulkarni A.P., Baker R.C., Hodgson E. Cytochrome P-450 Difference Spectra: Effect of Chemical Structure on Type II Spectra in Mouse Hepatic Microsomes. Drug Metab. Dispos. 1974; 2: 301–308
  • Hlavica P., Kehl M. Comparative Studies on the N-Oxidation of Aniline and N,N-Dimethylaniline by Rabbit Liver Microsomes. Xenobiotica 1976; 6: 679–689
  • Golly I., Hlavica P. Chemical Modification of Lysine Residues in Cytochrome P-450LM2 (P-450IIB4): Influence on Heme Liganding of Arylamines. Arch. Biochem. Biophys. 1992; 292: 287–294
  • Jefcoate C.R.E., Gaylor J.L., Calabrese R.L. Ligand Interactions with Cytochrome P-450. I. Binding of Primary Amines. Biochemistry 1969; 8: 3455–3463
  • Shusterman A.J., Johnson A.S. The Role of Hydrophobicity and Electronic Factors in Regulating Alcohol Inhibition of Cytochrome P-450-Mediated Aniline Hydroxylation. Chem.-Biol. Interact. 1990; 74: 63–77
  • Ioannides C., Parke D.V. The Cytochromes P-448—A Unique Family of Enzymes Involved in Chemical Toxicity and Carcinogenesis. Biochem. Pharmacol. 1987; 36: 4197–4207
  • Novak R.F., Kapetanovic I.M., Mieyal J.J. Nuclear Magnetic Resonance Studies of Substrate–Hemoprotein Complexes in Solution. Mol. Pharmacol. 1977; 13: 15–30
  • Yun C.H., Hammons G.J., Jones G., Martin M.V., Hoppkins N.E., Alworth W.L., Guengerich F.P. Modification of Cytochrome P-450 1A2 Enzymes by Mechanism-Based Inactivator 2-Ethynylnaphthalene and the Photoaffinity Label 4-Azidobiphenyl. Biochemistry 1992; 31: 10556–10563
  • Lewis D.F.V. Cytochrome P450: Structure, Function and Mechanism. Taylor and Francis, London 1996
  • Gotoh O. Substrate Recognition Sites in Cytochrome P450 Family 2 (CYP2) Proteins Inferred from Comparative Analyses of Amino Acid and Coding Nucleotide Sequences. J. Biol. Chem. 1992; 267: 83–90
  • Hlavica P. Studies on the Active Site of Mixed Function Oxidases in Rabbit Liver Microsomes. Biochem. Biophys. Res. Commun. 1970; 40: 212–217
  • Jänig G.R., Friedrich J., Smettan G., Bernhardt R., Ristau O., Ruckpaul K. Chemical Modification of Cytochrome P-450LM2 with N-Acetylimidazole. Evidence for the Functional Involvement of Tyrosyl Residues. Biomed. Biochim. Acta 1985; 44: 1071–1082
  • Hlavica P. On the Function of Cytochrome b5 in the Cytochrome P-450-Dependent Oxygenase System. Arch. Biochem. Biophys. 1984; 228: 600–608
  • Golly I., Hlavica P. Regulative Mechanisms in NADH- and NADPH-Supported N-Oxidation of 4-Chloroaniline Catalyzed by Cytochrome b5-Enriched Rabbit Liver Microsomal Fractions. Biochim. Biophys. Acta 1987; 913: 219–227
  • Estabrook R.W., Martin-Wixtrom C., Saeki Y., Renneberg R., Hildebrandt A., Werringloer J. The Peroxidatic Function of Liver Microsomal Cytochrome P-450: Comparison of Hydrogen Peroxide and NADPH-Catalysed N-Demethylation Reactions. Xenobiotica 1984; 14: 87–104
  • Andersson B., Larsson R., Rahimtula A., Moldeus P. Hydroperoxide-Dependent Activation of p-Phenetidine Catalyzed by Prostaglandin Synthase and Other Peroxidases. Biochem. Pharmacol. 1983; 32: 1045–1050
  • Hlavica P., Golly I., Mietaschk J. Comparative Studies on the Cumene Hydroperoxide- and NADPH-Supported N-Oxidation of 4-Chloroaniline by Cytochrome P-450. Biochem. J. 1983; 212: 539–547
  • Beckett A.H., Gibson G.G. Microsomal N-Hydroxylation of Dibenzylamine. Xenobiotica 1975; 5: 677–686
  • Jeffery E.H., Mannering G.J. Interaction of Constitutive and Phenobarbital-Induced Cytochrome P-450 Isozymes During the Sequential Oxidation of Benzphetamine. Explanation for the Difference in Benzphetamine-Induced Hydrogen Peroxide Production and 455-nm Complex Formation in Microsomes from Untreated and Phenobarbital-Treated Rats. Mol. Pharmacol. 1983; 23: 748–757
  • Shuster L., Casey E., Welankiwar S.S. Metabolism of Cocaine and Norcocaine to N-Hydroxynorcocaine. Biochem. Pharmacol. 1983; 32: 3045–3051
  • Pellinen P., Kulmala L., Konttila J., Auriola S., Pasanen M., Juvonen R. Kinetic Characteristics of Norcocaine N-Hydroxylation in Mouse and Human Liver Microsomes: Involvement of CYP Enzymes. Arch. Toxicol. 2000; 74: 511–520
  • Jaccarini A., Felice M.A. The Metabolism of Pyrroles and Indoles: Ring Nitrogen Oxidation. Biological Oxidation of Nitrogen, J.W. Gorrod. Elsevier, Amsterdam 1978; 169–175
  • Kimura T., Kodama M., Nagata C. Role of Cytochrome P-450 and Flavin-Containing Monooxygenase in the N-Hydroxylation of N-Methyl-4-Aminoazobenzene in Rat Liver: Analysis with Purified Enzymes and Antibodies. Gann 1984; 75: 895–904
  • Mani C., Gelboin H.V., Park S.S., Pearce R., Parkinson A., Kupfer D. Metabolism of the Antimammary Cancer Antiestrogenic Agent Tamoxifen. I. Cytochrome P-450-Catalyzed N-Demethylation and 4-Hydroxylation. Drug Metab. Dispos. 1993; 21: 645–656
  • Benoussan C., Delaforge M., Mansuy D. Particular Ability of Cytochromes P-450 3A to Form Inhibitory P-450-Iron Metabolite Complexes upon Metabolic Oxidation of Aminodrugs. Biochem. Pharmacol. 1995; 49: 591–602
  • Hill D.L., Laster W.R., Struck R.F. Enzymatic Metabolism of Cyclophosphamide and Nicotine and Production of a Toxic Cyclophosphamide Metabolite. Cancer Res. 1972; 32: 658–665
  • Williams D.E., Shigenaga M.K., Castagnoli N. The Role of Cytochrome P-450 and Flavin-Containing Monooxygenase in the Metabolism of (S)-Nicotine by Rabbit Lung. Drug Metab. Dispos. 1990; 18: 418–428
  • Hallström G., Lindeke B., Anderson E. Metabolism of N-(5-Pyrrolidinopent-3ynyl)-Succinimide (BL 14) in Rat Liver Preparations. Characterization of Four Oxidation Reactions. Xenobiotica 1981; 11: 459–471
  • White I.N.H., Mattocks A.R. Some Factors Affecting the Conversion of Pyrrolizidine Alkaloids to N-Oxides and Pyrrolic Derivatives In Vitro. Xenobiotica 1971; 1: 503–505
  • Williams D.E., Reed R.L., Kedzierski B., Ziegler D.M., Buhler D.R. The Role of Flavin-Containing Monooxygenase in the N-Oxidation of the Pyrrolizidine Alkaloid Senecionine. Drug Metab. Dispos. 1989; 17: 380–386
  • Williams D.E., Reed R.L., Kedzierski B., Dannan G.A., Guengerich F.P., Buhler D.R. Bioactivation and Detoxication of the Pyrrolizidine Alkaloid Senecionine by Cytochrome P-450 Enzymes in Rat Liver. Drug Metab. Dispos. 1989; 17: 387–392
  • Miranda C.L., Reed R.L., Guengerich F.P., Buhler D.R. Role of Cytochrome P450IIIA4 in the Metabolism of the Pyrrolizidine Alkaloid Senecionine in Human Liver. Carcinogenesis 1991; 12: 515–519
  • Pirmohamed M., Williams D., Madden S., Templeton E., Park B.K. Metabolism and Bioactivation of Clozapine by Human Liver In Vitro. J. Pharmacol. Exp. Ther. 1995; 272: 984–990
  • Tugnait M., Hawes E.M., McKay G., Eichelbaum M., Midha K.K. Characterization of the Human Hepatic Cytochromes P450 Involved in the In Vitro Oxidation of Clozapine. Chem.-Biol. Interact. 1999; 118: 171–189
  • Koyama E., Chiba K., Tani M., Ishizaki T. Identification of Human Cytochrome P450 Isoforms Involved in the Stereoselective Metabolism of Mianserin Enantiomers. J. Pharmacol. Exp. Ther. 1996; 278: 21–30
  • Iwasaki K., Noguchi H. N-Oxidation and N-Dealkylation of Tiaramide by Liver Microsomal Cytochrome P-450. Microsomes, Drug Oxidations, and Drug Toxicity, R. Sato, R. Kato. Japan Scientific Societies Press, Tokyo 1982; 567–568
  • Becquemont L., Mouajjah S., Escaffre O., Beaune P., Funck-Brentano C., Jaillon P. Cytochrome P-450 3A4 and 2C8 Are Involved in Zopiclone Metabolism. Drug Metab. Dispos. 1999; 27: 1068–1073
  • Guengerich F.P., Müller-Enoch D., Blair I.A. Oxidation of Quinidine by Human Liver Cytochrome P-450. Mol. Pharmacol. 1986; 30: 287–295
  • Ring B.J., Parli J., George M.C., Wrighton S.A. In Vitro Metabolism of Zatosetron. Interspecies Comparison and Role of CYP3A. Drug Metab. Dispos. 1994; 22: 352–357
  • Sanwald P., David M., Dow J. Characterization of the Cytochrome P450 Enzymes Involved in the In Vitro Metabolism of Dolasetron: Comparison with Other Indole-Containing 5-HT3 Antagonists. Drug Metab. Dispos. 1996; 24: 602–609
  • Hlavica P., Kehl M. Studies on the Mechanism of Hepatic Microsomal N-Oxide Formation: The Role of Cytochrome P-450 and Mixed Function Amine Oxidase in the N-Oxidation of N,N-Dimethylaniline. Biochem. J. 1977; 164: 487–496
  • McManus M.E., Stupans I., Burgess W., Koenig J.A., De La M., Hall P., Birkett D.J. Flavin-Containing Monooxygenase Activity in Human Liver Microsomes. Drug Metab. Dispos. 1987; 15: 256–261
  • Hlavica P. Hepatic Mixed Function Amine Oxidase: An Allosteric System. Xenobiotica 1971; 1: 537–538
  • Gorrod J.W., Damani L.A. The Effect of Various Potential Inhibitors, Activators and Inducers on the N-Oxidation of 3-Substituted Pyridines In Vitro. Xenobiotica 1979; 9: 219–226
  • Wilke T.J., Jondorf W.R., Powis G. Oxidative Metabolism of 14C-Pyridine by Human and Rat Tissue Subcellular Fractions. Xenobiotica 1989; 19: 1013–1022
  • Hlavica P., Mietaschk J., Baden I. Interaction of Ligands with Cytochrome P-450: On the 442 nm Spectral Species Generated During the Oxidative Metabolism of Pyridine. Biochem. J. 1982; 204: 425–432
  • Kim S.G., Williams D.E., Schuetz E.G., Guzelian P.S., Novak R.F. Pyridine Induction of Cytochrome P-450 in the Rat: Role of P-450j (Alcohol-Inducible Form) in Pyridine N-Oxidation. J. Pharmacol. Exp. Ther. 1988; 246: 1175–1182
  • Kim S.G., Philpot R.M., Novak R.F. Pyridine Effects on P-450IIE1, IIB and IVB Expression in Rabbit Liver: Characterization of High- and Low-Affinity Pyridine N-Oxygenases. J. Pharmacol. Exp. Ther. 1991; 259: 470–477
  • De Graeve J., Gielen J.E., Kahl G.F., Tüttenberg K.H., Kahl R., Maume B. Formation of Two Metyrapone N-Oxides by Rat Liver Microsomes. Drug Metab. Dispos. 1979; 7: 166–170
  • Schwartz M.A., Williams T.H., Kolis S.J., Postma E., Sasso G.J. Biotransformation of Prochiral 2-Phenyl-1,3-Di(4-Pyridyl)-2-Propanol to a Chiral N-Oxide Metabolite. Drug Metab. Dispos. 1978; 6: 647–653
  • Hibberd A.R., Gorrod J.W. Comparative N-Oxidation of Nicotine and Cotinine by Hepatic Microsomes. Biological Oxidation of Nitrogen in Organic Molecules, J.W. Gorrod, L.A. Damani. Ellis Horwood, Chichester 1985; 246–250
  • Altuntas T.G., Gorrod J.W. Effect of Various Potential Inhibitors, Activators and Inducers on the N-Oxidation of Isomeric Aromatic Diazines In Vitro Using Rabbit Liver Microsomal Preparations. Xenobiotica 1996; 26: 9–15
  • Nakamura A., Hirota T., Morino A., Shimada T., Uematsu T. N-Oxidation of Irsoglandine by the CYP2C Subfamily in the Rat, Dog, Monkey and Man. Xenobiotica 1997; 27: 995–1003
  • Gorrod J.W., Lam S.P. The Role of Cytochrome P-450 in the Biological Nuclear N-Oxidation of Aminoazaheterocyclic Drugs and Related Compounds. N-Oxidation of Drugs: Biochemistry, Pharmacology, Toxicology, P. Hlavica, L.A. Damani. Chapman & Hall, London 1991; 157–184
  • Baba T., Yamada H., Oguri K., Yoshimura H. Participation of Cytochrome P-450 Isozymes in N-Demethylation, N-Hydroxylation and Aromatic Hydroxylation of Methyamphetamine. Xenobiotica 1988; 18: 475–484
  • Bondon A., Macdonald T.L., Harris T.M., Guengerich F.P. Oxidation of Cycloalkylamines by Cytochrome P-450. Mechanism-Based Inactivation, Adduct Formation, Ring Expansion, and Nitrone Formation. J. Biol. Chem. 1989; 264: 1988–1997
  • Cashman J.R., Yang Z., Yang L., Wrighton S.A. Stereo- and Regioselective N- and S-Oxidation of Tertiary Amines and Sulfides in the Presence of Adult Human Liver Microsomes. Drug Metab. Dispos. 1993; 21: 492–501
  • Blake B.L., Rose R.L., Mailman R.B., Levi P.E., Hodgson E. Metabolism of Thioridazine by Microsomal Monooxygenases: Relative Roles of P450 and Flavin-Containing Monooxygenase. Xenobiotica 1995; 25: 377–393
  • Williams D.E., Ding X., Coon M.J. Rabbit Nasal Cytochrome P-450 NMa has High Activity as a Nicotine Oxidase. Biochem. Biophys. Res. Commun. 1990; 166: 945–952
  • Park S.B., Jacob P., III, Benowitz N.L., Cashman J.R. Stereoselective Metabolism of (S)-(−)-Nicotine in Humans: Formation of Trans-(S)-(−)-Nicotine N-1′-Oxide. Chem. Res. Toxicol. 1993; 6: 880–888
  • Oguri K., Kaneko H., Tanimoto Y., Yamada H., Yoshimura H. A Constitutive Form of Guinea Pig Liver Cytochrome P-450 Closely Related to Phenobarbital-Inducible P-450b(e). Arch. Biochem. Biophys. 1991; 287: 105–111
  • Chung W.G., Miranda C.L., Buhler D.R. A Cytochrome P450 2B Form Is the Major Bioactivation Enzyme for the Pyrrolizidine Alkaloid Senecionine in Guinea Pig. Xenobiotica 1995; 25: 929–939
  • Linnet K., Olesen O.V. Metabolism of Clozapine by cDNA-Expressed Human Cytochrome P450 Enzymes. Drug Metab. Dispos. 1997; 25: 1379–1382
  • Fang J., Coutts R.T., McKenna K.F. Elucidation of Individual Cytochrome P450 Enzymes Involved in the Metabolism of Clozapine. Naunyn-Schmiedeberg's Arch. Pharmacol. 1998; 358: 592–599
  • Chow T., Hiroi Y., Imaoka S., Chiba K., Funae Y. Isoform-Selective Metabolism of Mianserin by Cytochrome P-450 2D. Drug Metab. Dispos. 1999; 27: 1200–1204
  • Guo Z., Smith T.J., Ishizaki H., Yang C.S. Metabolism of 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone (NNK) by Cytochrome P450IIB1 in a Reconstituted System. Carcinogenesis 1991; 12: 2277–2282
  • Hlavica P., Hülsmann S. Studies on the Mechanism of Hepatic Microsomal N-Oxide Formation. N-Oxidation of N,N-Dimethylaniline by a Reconstituted Rabbit Liver Microsomal Cytochrome P-448 Enzyme System. Biochem. J. 1979; 182: 109–116
  • Seto Y., Guengerich F.P. Partitioning Between N-Dealkylation and N-Oxygenation of the Oxidation of N,N-Dialkylarylamines Catalyzed by Cytochrome P-450 2B1. J. Biol. Chem. 1993; 268: 9986–9997
  • Guengerich F.P., Vaz A.D.N., Raner G.N., Pernecky S.J., Coon M.J. Evidence for a Role of a Perferryl–Oxygen Complex, FeO3+, in the N-Oxygenation of Amines by Cytochrome P450 Enzymes. Mol. Pharmacol. 1997; 51: 147–151
  • Schwarze W., Jaeger J., Jänig G.R., Ruckpaul K. Active Site Model of Cytochrome P-450 LM2. Biochem. Biophys. Res. Commun. 1988; 150: 996–1005
  • Gibson G.G., Tamburini P.P. Chemical Modification of the Histidine Residues of Purified Hepatic Cytochrome P-450: Influence on Substrate Binding and the Haemoprotein Spin State. Chem.-Biol. Interact. 1986; 58: 185–198
  • Krainev A.G., Shimizu T., Hiroya K., Hatano M. Effect of Mutations at Lys250, Arg251, and Lys253 of Cytochrome P450 1A2 on the Catalytic Activities and the Bindings of Bifunctional Axial Ligands. Arch. Biochem. Biophys. 1992; 298: 198–203
  • Krainev A.G., Weiner L.M., Kondrashin S.K., Kanaeva I.P., Bachmanova G.I. Substrate Access Channel Geometry of Soluble and Membrane-Bound Cytochromes P450 as Studied by Interactions with Type II Substrate Analogues. Arch. Biochem. Biophys. 1991; 288: 17–21
  • Jansson I., Gibson G.G., Sligar S.G., Cinti D.L., Schenkman J.B. Influence of Substrates of Hepatic Mixed Function Oxidases on Spin Equilibrium of Cytochrome P-450. Microsomes, Drug Oxidations, and Chemical Carcinogenesis, M.J. Coon, A.H. Conney, R.W. Estabrook, H.V. Gelboin, J.R. Gillette, P.J. O'Brien. Academic Press, New York 1980; Vol. 1: 139–142
  • Vermeir M., Boens N., Heirwegh K.P.M. Modelling of Interaction of Basic Lipophilic Ligands with Cytochrome P-450 Reconstituted in Liposomes. Determination of Membrane Partition Coefficients of S-(−)-Nicotine and N,N-Diethylaniline from Spectral Binding Studies and Fluorescence Quenching. Biochim. Biophys. Acta 1992; 1107: 93–104
  • French J.S., Guengerich F.P., Coon M.J. Interactions of Cytochrome P-450, NADPH-Cytochrome P-450 Reductase, Phospholipid, and Substrate in the Reconstituted Liver Microsomal Enzyme System. J. Biol. Chem. 1980; 255: 4112–4119
  • Tamburini P.P., White R.E., Schenkman J.B. Chemical Characterization of Protein–Protein Interactions Between Cytochrome P-450 and Cytochrome b5. J. Biol. Chem. 1985; 260: 4007–4015
  • Hlavica P., Golly I., Wolf J. Influence of N,N-Dimethylaniline on the Association of Phenobarbital-Induced Cytochrome P-450 and NADPH-Cytochrome c (P-450) Reductase in a Reconstituted Rabbit Liver Microsomal Enzyme System. Biochim. Biophys. Acta 1987; 915: 28–36
  • Gorsky L.D., Koop D.R., Coon M.J. On the Stoichiometry of the Oxidase and Monooxygenase Reactions Catalyzed by Liver Microsomal Cytochrome P-450: Products of Oxygen Reduction. J. Biol. Chem. 1984; 259: 6812–6817
  • Guengerich F.P., Ballou D.P., Coon M.J. Spectral Intermediates in the Reaction of Oxygen with Purified Liver Microsomal Cytochrome P-450. Biochem. Biophys. Res. Commun. 1976; 70: 951–956
  • Blanck J., Ristau O., Zhukov A.A., Archakov A.I., Rein H., Ruckpaul K. Cytochrome P-450 Spin Sate and Leakiness of the Monooxygenase Pathway. Xenobiotica 1991; 21: 121–135
  • Gray R.D. Kinetics and Mechanism of CO Binding to Cytochrome P-450LM2 and P-450LM4. J. Biol. Chem. 1983; 258: 3764–3768
  • Ziegler D.M. Metabolic Oxygenation of Organic Nitrogen and Sulfur Compounds. Drug Metabolism and Drug Toxicity, J.R. Mitchell, M.G. Horning. Raven Press, New York 1984; 33–53
  • Ziegler D.M. Molecular Basis for N-Oxygenation of Sec- and Tert-Amines. Biological Oxidation of Nitrogen in Organic Molecules, J.W. Gorrod, L.A. Damani. Ellis Horwood, Chichester 1985; 43–52
  • Guengerich F.P. Enzymatic Oxidation of Xenobiotic Chemicals. Crit. Rev. Biochem. Mol. Biol. 1990; 25: 97–153
  • Van der Zee J., Duling D.R., Mason R.P., Eling T.E. The Oxidation of N-Substituted Aromatic Amines by Horseradish Peroxidase. J. Biol. Chem. 1989; 264: 19828–19836
  • Ortiz de Montellano P.R. Catalytic Sites of Hemoprotein Peroxidases. Annu. Rev. Pharmacol. Toxicol. 1992; 32: 89–107
  • Okazaki O., Guengerich F.P. Evidence for Specific Base Catalysis in N-Dealkylation Reactions Catalyzed by Cytochrome P450 and Chloroperoxidase. Differences in Rates of Deprotonation of Aminium Radicals as an Explanation for High Kinetic Hydrogen Isotope Effects Observed with Peroxidases. J. Biol. Chem. 1993; 268: 1546–1552
  • Lichtenberger F., Nastainczyk W., Ullrich V. Cytochrome P450 as an Oxene Transferase. Biochem. Biophys. Res. Commun. 1976; 70: 939–946
  • Hlavica P., Aichinger G. Studies on the Cytochrome P-450 Product Complexes Formed During the Metabolism on N,N-Dimethylaniline. Biochim. Biophys. Acta 1978; 544: 185–199
  • Sugiura M., Iwasaki K., Noguchi H., Kato R. Evidence for the Involvement of Cytochrome P-450 in Tiaramide N-Oxide Reduction. Life Sci. 1974; 15: 1433–1442
  • Hlavica P., Künzel-Mulas U. Metabolic N-Oxide Formation by Rabbit-Liver Microsomal Cytochrome P-450 2B4: Involvement of Superoxide in the NADPH-Dependent N-Oxygenation of N,N-Dimethylaniline. Biochim. Biophys. Acta 1993; 1158: 83–90
  • Fridovich I. Biological Effects of the Superoxide Radical. Arch. Biochem. Biophys. 1986; 247: 1–11
  • Vaz A.D.N., McGinnity D.F., Coon M.J. Epoxidation of Olefins by Cytochrome P450: Evidence from Site-Specific Mutagenesis for Hydroperoxo-Iron as an Electrophilic Oxidant. Proc. Natl Acad. Sci. USA 1998; 95: 3555–3560
  • Coon M.J., Vaz A.D.N., McGinnity D.F., Peng H.M. Multiple Activated Oxygen Species in P450 Catalysis. Contributions to Specificity in Drug Metabolism. Drug Metab. Dispos. 1998; 26: 1190–1193
  • Toy P.H., Newcomb M., Coon M.J., Vaz A.D.N. Two Distinct Electrophilic Oxidants Effect Hydroxylation in Cytochrome P-450-Catalyzed Reactions. J. Am. Chem. Soc. 1998; 120: 9718–9719
  • Vatsis K.P., Coon M.J. Ipso-Substitution by Cytochrome P450 with Conversion of p-Hydroxybenzene Derivatives to Hydroquinone: Evidence for Hydroperoxo-Iron as the Active Oxygen Species. Arch. Biochem. Biophys. 2002; 397: 119–129
  • Imai M., Shimada H., Watanabe Y., Matsushima-Hibiya Y., Makino R., Koga H., Horiuchi T., Ishimura Y. Uncoupling of the P450cam Monooxygenase Reaction by a Single Mutation, Threonine-252 to Alanine or Valine: A Possible Role of the Hydroxy Amino Acid in Oxygen Activation. Proc. Natl Acad. Sci. USA 1989; 86: 7823–7827
  • Ortiz de Montellano P.R., Wilks A. Heme Oxygenase Structure and Mechanism. Adv. Inorg. Chem. 2001; 51: 359–407
  • Weli A.M., Lindeke B. The Metabolic Fate of Pargyline in Rat Liver Microsomes. Biochem. Pharmacol. 1985; 34: 1993–1998
  • Stefek M., Benes L., Zelnik V. N-Oxygenation of Stobadine, a γ-Carboline Antiarrhythmic and Cardioprotective Agent: The Role of Flavin-Containing Monooxygenase. Xenobiotica 1989; 19: 143–150
  • Weli A.M., Lindeke B. Peroxidative N-Oxidation and N-Dealkylation Reactions of Pargyline. Xenobiotica 1986; 16: 281–288
  • Stefek M., Benes L. Hydrogen Peroxide-Dependent Liver Microsomal N-Demethylation and N-Oxygenation of Stobadine, a γ-Carboline Antiarrhythmic and Cardioprotective Agent. Xenobiotica 1989; 19: 627–634
  • Petzold D.R., Rein H., Schwarz D., Sommer M., Ruckpaul K. Relation Between the Structure of Benzphetamine Analogues and Their Binding Properties to Cytochrome P-450LM2. Biochim. Biophys. Acta 1985; 829: 253–261
  • Gorrod J.W. Differentiation of Various Types of Biological Oxidation of Nitrogen in Organic Compounds. Chem.-Biol. Interact. 1973; 7: 289–303
  • Ziegler D.M. Recent Studies on the Structure and Function of Multisubstrate Flavin-Containing Monooxygenases. Annu. Rev. Pharmacol. Toxicol. 1993; 33: 179–199

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.